KDD2018 Transcribing Content from Structural Images with Spotlight Mechanism

Zhenya Huang¹ Enhong Chen^{1*} Qi Liu¹ Fuzheng Zhang² Xie Xing² Guoping Hu³ Yu Yin¹ ¹Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China,

{yxonic,huangzhy}@mail.ustc.edu.cn, {cheneh,qiliuql}@ustc.edu.cn;

²Microsoft Research Asia, {fuzzhang,xing.xie}@microsoft.com; ³iFLYTEK Research, gphu@iflytek.com

Abstract

Transcribing content from structural images is a challenging task as not only the content objects should be recognized, but the internal structure should also be preserved. In our work, we propose a hierarchical Spotlight Transcribing Network (STN) framework followed by a two-stage "where-to-what" solution. We first decide "where-to-look" through a novel spotlight mechanism to focus on different areas of the original image following its structure. Then, we decide "what-to-write" by developing a GRU based network with the spotlight areas for transcribing the content accordingly.

Problem Definition

Definition 3.1. (Structural Image Transcription Problem). Given a structural $W \times H$ image x, our goal is to transcribe the content from it as a sequence $\hat{y} = \{\hat{y}_1, \hat{y}_2, \dots, \hat{y}_T\}$ as close as possible to the source code sequence y, where each \hat{y}_t is the predicted token taking from the specific language corresponding to the image.

Spotlight Transcribing Network (STN)

Spotlight Mechanism

Given spotlight handle $s_t = (x_t, y_t, \sigma_t)^T$, assign weights to encoded vectors following Gassian distribution.

Spotlight Control

We provide two control modules:

• Markovian control module (as in STNM with Markov property) • **Recurrent** control module (as in *STNR* with

Introduction

Transcribing Content from Images • OCR

• Scene text recognition Straightforward content

Previous works

Structural Images

a8[fis] dis16 a[b c ...

(a) Music score example

ignore large proportion of structural images, where the content objects are **well-formed** in **complex** manners, e.g., music scores (Figure (a)) and formulas (Figure (b)).

Challenges

The overall architecture of Spotlighted Transcribing Network (STN) consists of two main components:

- 1. Image encoder: a CNN based feature extractor; 2. A hierarchical **transcribing decoder**:
 - **Spotlight Module**: find out "*where-to-look*";
 - **Transcription Module**: generates the token sequence.

Training and Refining STN

The model is trained by standard backpropagation, with reinforcement learning as a refinement:

- State: the internal states in STN framework;
- Action: token generation;
- Reward: reconstruction similarity between original image and compiled image.

usually follow a fineare organized in a

 $f(x) = \frac{\sqrt{x-1}}{x-2}$

grained grammar, and (b) Formula example complex manner

- Content objects in structural images, even if they just take a small proportion, may carry much semantics
- There exist plenty of similar objects puzzling the transcribing task

Structural images: printed graphics that organized in a

complex structure.	
Characteristics:	

Preliminaries

Avg. image Avg. tokens Dataset pixels 15,602.7 Formula 97 .190.7 607.061

Experiments

Transcribing performance

Outperforms traditional attention based methods.

Validation loss

Converges faster and achieves lower validation loss.

Spotlight visualization

• STNR finds a more reasonable reading path; • STNR clearly distinguishes similar regions properly.

(a) Melody					(b) Formula					(c) Multi-Line				
Baseline	Testing set percentage				Baseline	Testing set percentage				Baseline	Testing set percentage			
	40%	30%	20%	10%	Dasenne	40%	30%	20%	10%	Dasenne	40%	30%	20%	10%
EncDec	0.266	0.272	0.277	0.282	EncDec	0.405	0.427	0.445	0.451	EncDec	0.218	0.227	0.251	0.267
AttnDot	0.524	0.548	0.580	0.617	AttnDot	0.530	0.563	0.600	0.611	AttnDot	0.334	0.447	0.554	0.599
AttnFC	0.683	0.710	0.730	0.756	AttnFC	0.657	0.701	0.717	0.725	AttnFC	0.614	0.642	0.686	0.707
AttnPos	0.725	0.736	0.741	0.758	AttnPos	0.716	0.723	0.732	0.741	AttnPos	0.624	0.652	0.698	0.720
STNM	0.729	0.733	0.749	0.759	STNM	0.717	0.726	0.740	0.749	STNM	0.674	0.705	0.731	0.734
STNR	0.738	0.748	0.758	0.767	STNR	0.739	0.751	0.759	0.778	STNR	0.712	0.736	0.754	0.760

Figure 7: Comparison between attention and spotlight mechanism on Melody dataset.

\sqrt

-

\frac