

QuesNet: A Unified Representation for Heterogeneous Test Questions

Yu Yin¹, Qi Liu¹, Zhenya Huang¹, Enhong Chen¹*, Wei Tong¹, Shijin Wang^{2,3}, Yu Su^{2,3}

¹Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China, {yxonic,huangzhy}@mail.ustc.edu.cn, {cheneh,qiliuql}@ustc.edu.cn

²iFLYTEK Research, iFLYTEK CO., LTD., ³State Key Laboratory of Cognitive Intelligence, {sjwang3,yusu}@iflytek.com

Abstract

Understanding learning materials (e.g. test questions) is a crucial issue in online learning systems. Unfortunately, many supervised approaches suffer from the problem of scarce human labeled data, whereas abundant unlabeled resources are highly underutilized. While pretraining has the ability to alleviate this problem, existing pretraining methods in NLP area are infeasible to learn test question representations due to several problems. First, questions usually comprise of heterogeneous data including content text, images and side information. Second, there exists both basic linguistic information as well as domain logic and knowledge. To this end, here we propose a novel pre-training method, namely QuesNet. We first design a unified framework to aggregate question information with its heterogeneous inputs into a comprehensive vector. Then we propose a two-level hierarchical pre-training algorithm consisting of a novel holed language model objective and a domain-oriented objective, to learn better understanding of test questions. We conduct extensive experiments on large-scale real-world question data, where the experimental results clearly demonstrate the effectiveness of QuesNet for question understanding as well as its superior applicability.

QuesNet: Modeling and Pre-training

QuesNet Architecture

The overall architecture of QuesNet consists of three hierarchical layers:

- 1. Embedding layer: encodes heterogeneous information
- 2. Content layer: models linguistic relation and context
- 3. Sentence layer: aggregate linguistic information focusing on long-term and global complex relations

Datasets

The dataset we used, along with the large question corpus, are supplied by iFLYTEK Co., Ltd., from their online education system called Zhixue.

Figure 4: Distribution of question inputs and labels.

Introduction

Background

How to get better question understanding is the fundamental issue promoting many questionbased applications, such as difficulty estimation, knowledge mapping and score prediction.

Existing Approaches

Pre-training

For solving previously mentioned challenges, we design a novel hierarchical pre-training algorithm:

. Embedding pretraining: pre-train separately

2. Holed Language Model (HLM): like LM, but the probability of an input is conditioned by its context from both sides

3. Domain-Oriented Objective: use answers and options of a test question as a natural guidance

Table	1:	Statistics	of	datasets
-------	----	-------------------	----	----------

	All	KM	DE	SP
Questions	675,264	13,372	2,465	15,045
Questions with image	165,859	3,318	299	2,952
Questions with meta	488,352	8,030	1,896	5,948
Questions with option	242,960	4840	1,389	4,364
vg. Words per question	59.10	58.43	60.25	51.94
Students	-	-	-	50,945
Records	-	-	-	3,358,111
abel sparsity	-	1.98%	0.37%	2.22%

Evaluation Tasks

Knowledge mapping: a multi-label task **Difficulty estimation**: estimate a numerical Score prediction: a sophisticated domainspecific application

Comparison Methods

Method	Text	Image	Meta	Low level	High level
Original				<u> </u>	_
ELMo	~			-	-
BERT	~			-	-
H-BERT	~	~	~	-	-
ONT					

• Rules for syntactic p:atterns or semantic encodings Representation networks in end-to-end frameworks **Pre-training** Take full advantage of large-scale unlabeled question corpus

Challenges

- Test questions contain coherent heterogeneous data
- We need to carefully consider the advanced logic information aside from the basic linguistic context
- The learned question representations should have great accessibility and be easy to apply to downstream tasks

AB = AC, angle A = 20 degrees. Now let DE be the intersects AB at D and AC at E. Connect B and E, then

1 1 ~ V / 1 /

Table 3: Performance of comparison methods on different tasks.

Methods		Knowledge	mapping		Difficulty estimation				Student performance prediction			
Methous	ACC	Precision	Recall	F-1	MAE	RMSE	DOA	PCC	MAE	RMSE	ACC	AUC
Original	0.5744	0.4147	0.7872	0.5432	0.2200	0.2665	0.6064	0.3050	0.4245	0.4589	0.7459	0.5400
ELMo	0.6942	0.7960	0.7685	0.7820	0.2250	0.2655	0.5561	0.4299	0.3569	0.4361	0.7866	0.5773
BERT	0.6224	0.7326	0.6711	0.7005	0.2265	0.2975	0.6258	0.3600	0.4009	0.4630	0.7390	0.5279
H-BERT	0.6261	0.7608	0.6911	0.7243	0.2097	0.2698	0.6597	0.3713	0.3925	0.4528	0.7784	0.5838
QuesNet	0.7749	0.8659	0.8075	0.8357	0.2029	0.2530	0.6137	0.4499	0.3445	0.4403	0.7999	0.6354
Table 4: Ablation experiments.												

Methods	Knowledge mapping				Difficulty estimation				Student performance prediction			
	ACC	Precision	Recall	F-1	MAE	RMSE	DOA	PCC	MAE	RMSE	ACC	AUC
QN-T	0.7050	0.8264	0.7436	0.7829	0.2166	0.2733	0.6123	0.3040	0.4488	0.4713	0.7454	0.6052
QN-I	0.1136	0.2232	0.3195	0.2628	0.2265	0.2713	0.5961	0.2178	0.4711	0.4899	0.7400	0.5921
QN-M	0.0355	0.1396	0.2853	0.1875	0.2251	0.2737	0.5549	0.2205	0.4719	0.4908	0.7410	0.5502
QN-TI	0.7207	0.8307	0.7595	0.7935	0.2110	0.2647	0.6029	0.3333	0.4279	0.4678	0.7523	0.6221
QN-TM	0.7196	0.8428	0.7523	0.7950	0.2114	0.2664	0.6151	0.3315	0.4353	0.4803	0.7456	0.6156
QN-IM	0.1428	0.2323	0.2818	0.2547	0.2277	0.2707	0.5766	0.2279	0.4710	0.4906	0.7411	0.5513
ON (no pre)	0 5659	0.6816	0 7091	0.6951	0 2225	0 2657	0 5750	0 3087	0 4349	0 4759	0 7488	0 5891

Experiments

Performance

• Pre-training based methods outperforms original ones in general; • QuesNet has the best performance

guarantee among all the pre-training based methods.

Ablation Experiments