Beijing, China. Nov. 03-07, 2019

The 28th ACM International Conference on Information and Knowledge Management

Exploring Multi-Objective Exercise Recommendations in Online Education Systems

Zhenya Huang¹, Qi Liu¹, Chengxiang Zhai², Yu Yin¹, Enhong Chen¹, Weibo Gao¹, Guoping Hu³

¹Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China, ²University of Illinois at Urbana-Champaign, ³iFLYTEK Research

Khan Academy

Introduction

Online education systems become popular

- ➤ Abundant learning materials
 - ➤ E.g., exercise, course, video
- ➤ Personalized learning on students' own paces Recommender systems
- >Suggest suitable exercises instead of letting self-seeking
- ➤Interactive systems between agent vs. student
- Key Problem
 - Design an optimal recommendation strategy that can recommend the best exercises at the right time

Existing recommendation for online learning

- ➤ Basic idea
 - Try to discover the weaknesses of students
 - ➤ Recommending non-mastered exercises
- >Educational psychology
- Cognitive diagnosis, Q-learning
- ➤ Data mining
 - Content-based, Collaborative Filtering, Deep learning
- **Problem**
 - ➤ Single Objective (repeating)
 - Lose interests (always too hard)

Multiple Objectives

- ➤ Review & Explore
- ➤ Difficulty Smoothness
- **Engagement**

品 学堂在线

Eg1. The image of the quadratic function $y = x^2 - 2x - 2x$

A. x < -1 B. x > 3 C. -1 < x < 3 D. x < -3 or x > 3

Function Function

Challenges

- ➤ How to define above objectives based on exercising trajectories
- ➤ How to enable flexible recommendations with above objectives simultaneously?
- Large space of exercise candidates

Problem Definition

Given

- \triangleright Student $u = \{(e_1, p_1), (e_2, p_2), \cdots, (e_T, p_T)\},\$
- \triangleright Exercise: triplet $e = \{c, k, d\}$
 - Content c: word sequence
 - ➤ Knowledge k: concept attribute
 - ➤ Difficulty level d: error rate

Goal

Find the optimal exercises at each step for each student

Find an optimal policy $\pi: S \to A$ of recommending exercises to students, maximizing the multi-objective rewards

DRE Framework

Optimization Objective

➤ Optimal action-value function

$$Q^*(s, a) = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q^*(s', a')|s, a].$$

- Compute all Q-values is infeasible
 - Estimate and store all (s, a) pairs
 - ➤ Update all Q-values
- **>**Solution
 - **EQN**: as a non-linear function approximator θ

$$Q^*(s, a) \approx Q(s, a; \theta)$$

➤ Minimize the objective function to estimate this network approximator

$$L_t(\theta_t) = \mathbb{E}_{s, a, r, s'}[(y - Q(s, a; \theta_t))^2],$$
 $y = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q(s', a'; \theta_{t'})|s, a]$
15 end

Algorithm 1: DRE Learning with Off-Policy Training

- ¹ Initialize replay memory \mathcal{D} with capacity Z;
- ² Initialize action-value function *Q* with random weights.; 3 for $u = 1, 2, \dots, |U|$ do
- Randomly initialize state s_0 ;
- for $t = 1, 2, \dots, T$ do
- Observe state $s_t = (e_t, p_t)$ in EQNM or
- $s_t = \{(e_1, p_1), \dots, (e_t, p_t)\} \text{ in EQNR};$ Execute action a_t (e_{t+1}) from off-policy $\pi_o(s_t)$;
- Compute reward r_t according to p_{t+1} by Eq. (10);
 - Set state $s_{t+1} = (e_{t+1}, p_{t+1})$ in EQNM or
- $s_{t+1} = \{(e_1, p_1), \dots, (e_t, p_t), (e_{t+1}, p_{t+1})\} \text{ in EQNR};$
- Store transition (s_t, a_t, r_t, s_{t+1}) in \mathcal{D} ;
- Sample minibatch of transition (s, a, r, s') from \mathcal{D} ;
- terminal s' $r + \gamma \max_{a'}(Q(s', a'); \theta)$ non-terminal s'
- Minimize $(y Q(s, a); \theta)^2$ by Eq. (3);

DRE implementations

(d) PROGRAM

(f) PROGRAM

Exercise Q-Network

- ➤ Generate recommendation
 - \triangleright Implement network approximator θ
- >Exercise Module
 - ➤ Goal: Learn exercise semantics
 - ➤ Knowledge Embedding
 - ➤ Content Embedding: Bi-LSTM
- >Two implements
 - ➤ Goal: Learn student knowledge states
 - Estimate Q value Q(s, a)
 - ➤ EONM with Markov property
 - $s_t = (e_t, p_t)$
 - ► EQNR with Recurrent manner
 - $s_t = \{(e_1, p_1), \cdots, (e_t, p_t)\}$

Multi-Objective Rewards

>Review & Explore

$$r_1 = \begin{cases} \beta_1 & \text{if} \quad p_t = 0 \quad \text{and} \quad k_{t+1} \cap k_t = \emptyset, \\ \beta_2 & \text{if} \quad k_{t+1} \setminus \{k_1 \cup k_2 \cup \dots \cup k_t\} \neq \emptyset, \\ 0 & \text{else.} \end{cases}$$

➤ Difficulty Smoothness

$$r_2 = \mathcal{L}(d_{t+1}, d_t) = -(d_{t+1} - d_t)^2,$$

Engagement

$$r_3 = 1 - |g - \varphi(u, N)|, \quad \varphi(u, N) = \frac{1}{N} \sum_{i=t-N}^{t} p_i,$$

> Balancing

$$r = \alpha_1 \times r_1 + \alpha_2 \times r_2 + \alpha_3 \times r_3, \quad \{\alpha_1, \alpha_2, \alpha_3\} \in [0, 1].$$

Datasets

(c) MATH

(e) MATH

Point-wise Recommendation

Offline Evaluation

>Evaluation on logged data

- ➤ Ranking problem
 - ➤ Provide an list at a particular time based on Q-values (related to performance) from bad to good (70%/30%) (a) MATH

Methods	NDCG@10	NDCG@15	MAP@10	MAP@15	F1@10	F1@15		
IRT PMF FM	0.5065 0.4900 0.5123	0.6235 0.5986 0.6279	0.3373 0.3155 0.3419	0.4463 0.4163 0.4507	0.2100 0.2016 0.2123	0.3464 0.3347 0.3489		
DKT DKVMN	0.5587 0.5657	0.7033 0.7112	0.3959 0.4021	0.5486 0.5581	0.2797 0.2895	0.4634 0.4747		
DQN	0.5031	0.7001	0.3191	0.5296	0.2912	0.5178		
DREM DRER	0.6114 0.6129	0.7773 0.7813	0.4355 0.4337	0.6353 0.6435	0.3559 0.3676	0.6033 0.6099		
(b) PROGRAM								

(b) PROGRAM									
Methods	NDCG@10	NDCG@15	MAP@10	MAP@15	F1@10	F1@15			
IRT	0.3369	0.4231	0.1852	0.2430	0.0879	0.1530			
PMF	0.3330	0.4152	0.1810	0.2336	0.0842	0.1467			
FM	0.3664	0.4456	0.2081	0.2617	0.0921	0.1567			
DKT	0.3893	0.4924	0.2361	0.3197	0.1451	0.2445			
DKVMN	0.3853	0.4889	0.2351	0.3226	0.1555	0.2620			
DQN	0.3422	0.4901	0.1851	0.3095	0.1781	0.3266			
DREM	0.4446	0.5638	0.2753	0.3834	0.1683	0.3325			
DRER	0.4538	0.5907	0.2802	0.4059	0.2091	0.3655			

Online Evaluation

Sequence-wise Recommendation

- >Evaluation on simulated environment
- > Reward effectiveness
 - Select the best exercise step by step

Figure 7: Results of Smoothness vs. Engagement rewards.

- \checkmark DRER with larger β_2 has faster coverage growth speed ✓ The difficulty levels of recommendations do not vary dramatically in most cases
- ✓ If we set g with lower value (0.2), DRER would
- recommend more difficult exercises