

Learning Behavior-oriented Knowledge Tracing

Bihan Xu^{1,2}, Zhenya Huang^{1,2}, Jiayu Liu^{1,2}, Shuanghong Shen^{1,2}, Qi Liu^{1,2}, Enhong Chen^{1,2}, Jinze Wu³, Shijin Wang^{2,3}

 Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China
 State Key Laboratory of Cognitive Intelligence
 iFLYTEK Research, iFLYTEK Co., Ltd, Hefei, China

CONTENTS

01Background02Architecture03Experimental Results

04 Conclusion

CONTENTS

01 Background

02 Architecture

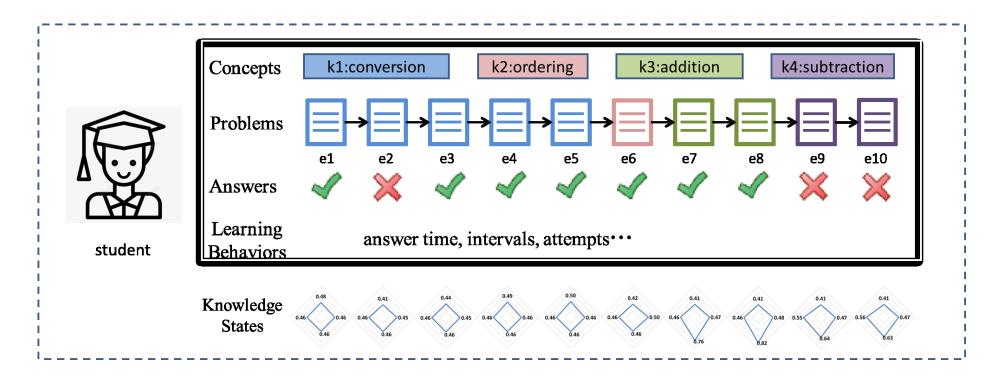
03 Experimental Results

04 Conclusion

Background

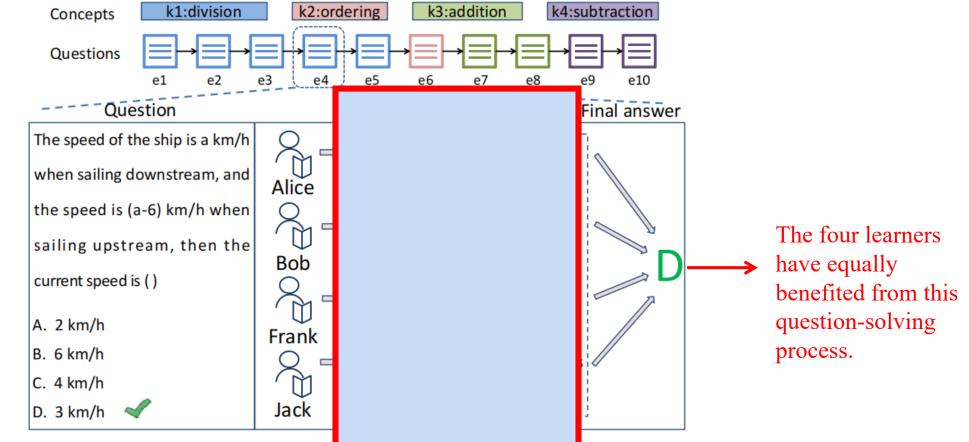
Knowledge Tracing

- Estimate students' knowledge states based on their historical learning interactions.
- Help students realize their weakness and improve learning efficiency.

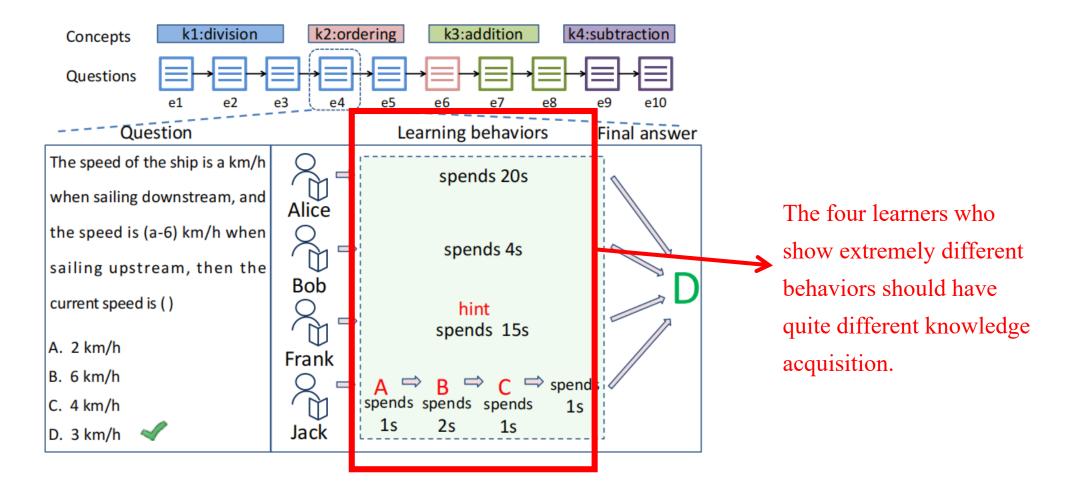


4

• Previous works focus on exploring learners' question-response pairs to track their knowledge mastery while neglecting the critical learning behaviors.

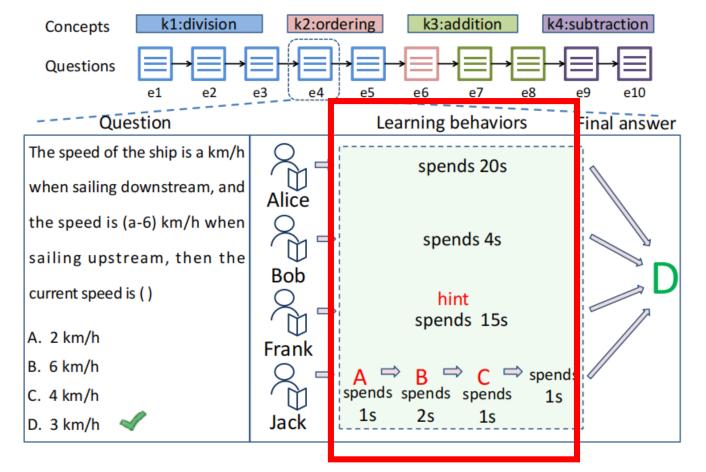


• Only consider the question-response pairs would lead to misleading estimation results.



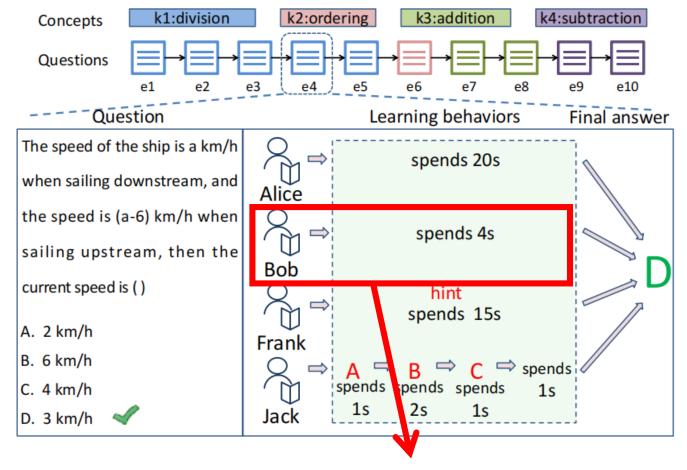
We summarize three typical behaviors and investigate their complex effects on assessing learners' knowledge states:

- **Speed**. The response time for a learner to answer a question.
- Attempts. The number of attempts to answer a question.
- **Hints**. The number of requested hints to answer a question.



We summarize three typical behaviors and investigate their complex effects on assessing learners' knowledge states:

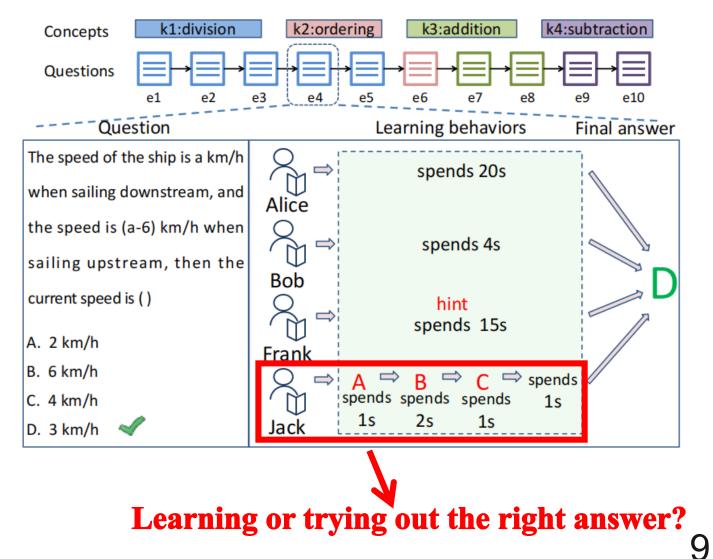
- **Speed**. The response time for a learner to answer a question.
- Attempts. The number of attempts to answer a question.
- **Hints**. The number of requested hints to answer a question.



Very skilled or just guessing?

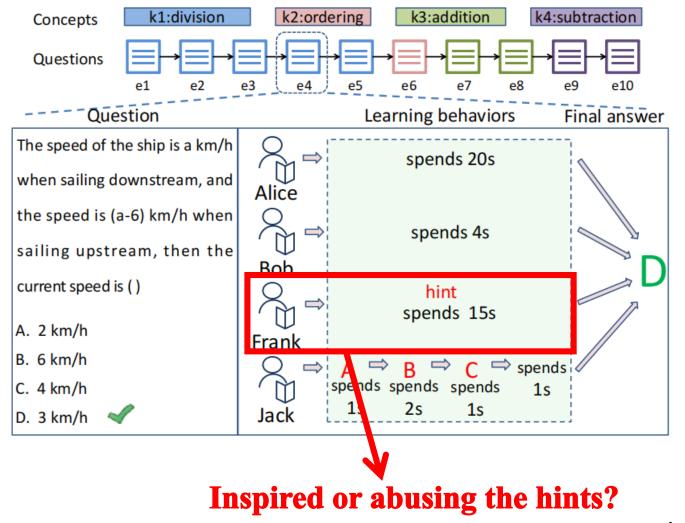
We summarize three typical behaviors and investigate their complex effects on assessing learners' knowledge states:

- **Speed**. The response time for a learner to answer a question.
- Attempts. The number of attempts to answer a question.
- **Hints**. The number of requested hints to answer a question.



We summarize three typical behaviors and investigate their complex effects on assessing learners' knowledge states:

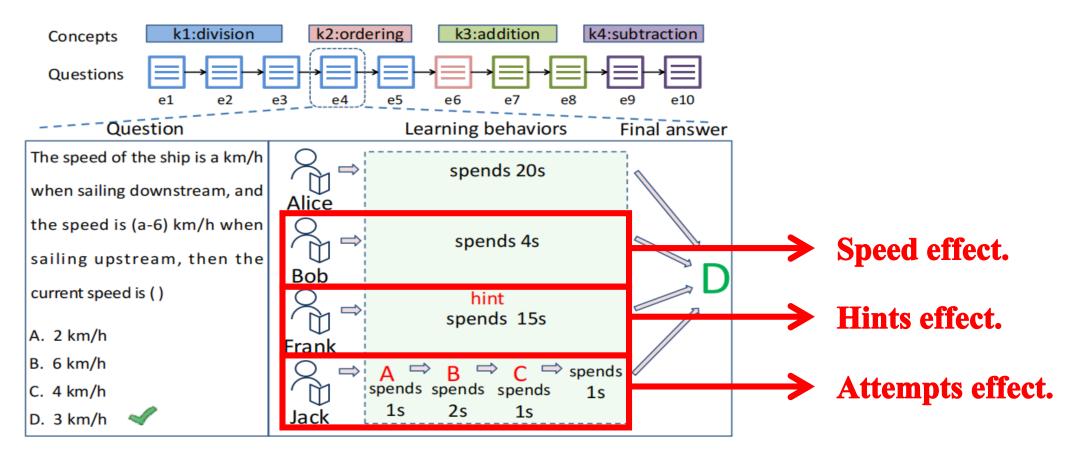
- **Speed**. The response time for a learner to answer a question.
- Attempts. The number of attempts to answer a question.
- **Hints**. The number of requested hints to answer a question.



Challenges

• How to quantify each behavior's effect.

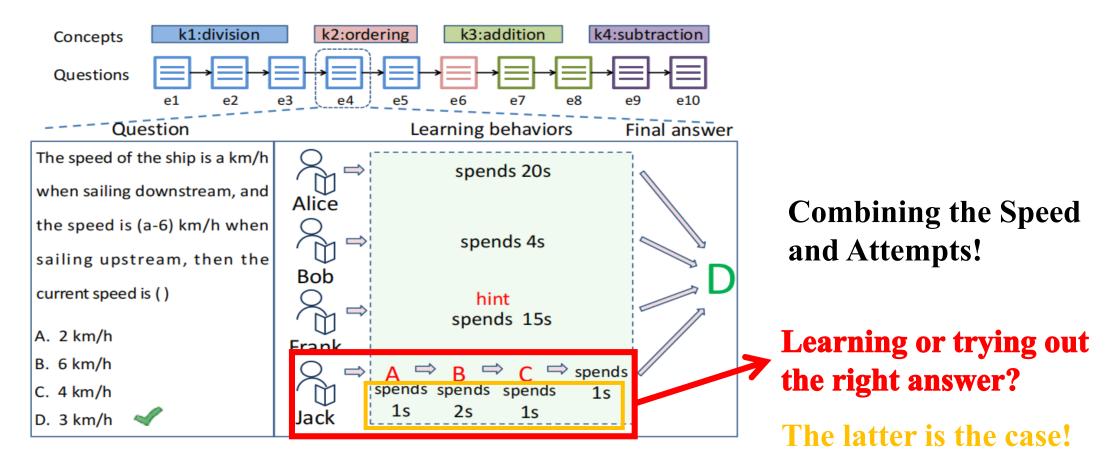
• It is difficult to quantify the distinctive effect mechanisms of each behavior on assessing learners' knowledge acquisition.



Challenges

• How to measure the fused effect of multiple behaviors.

• It is a great challenge to capture the complex dependent patterns of multiple learning behaviors.



CONTENTS

02 Architecture

Experimental Results

04 Conclusion

U3

한) 산 & 쇼) 생 값 있 것 같 Definently all their are und the banking at these

Input: Learner's learning records $X = \{(e_1, r_1, b_1), (e_2, r_2, b_2), \dots, (e_T, r_T, b_T)\}$ at each

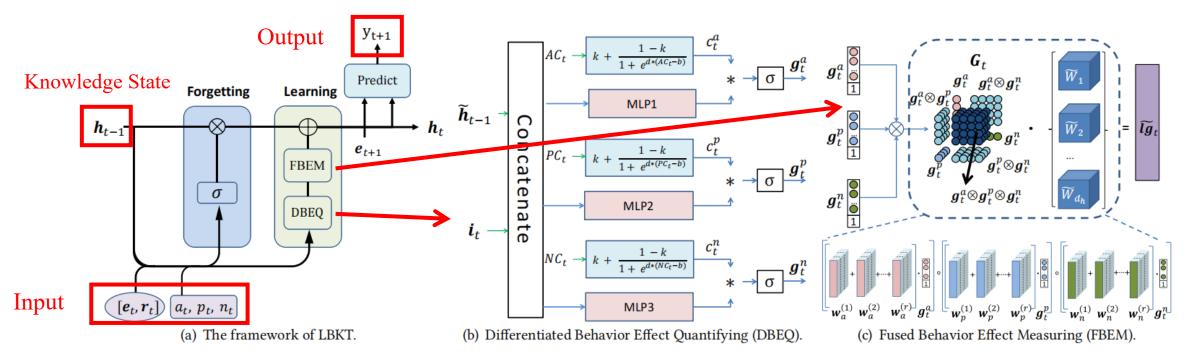
time step.

- e_t : question at time step t
- r_t : response at time step t
- b_t : behaviors composed of (a_t, p_t, n_t) representing the Speed, Attempts, and Hints

Output: The predicted learner's performance on next question e_{t+1} .

Learning Behavior-oriented Knowledge Tracing Model

- Evaluate the distinctive and fused effect of multiple learning behaviors
- Combine the forgetting factor and knowledge acquisition.



Learning Sequence Representation

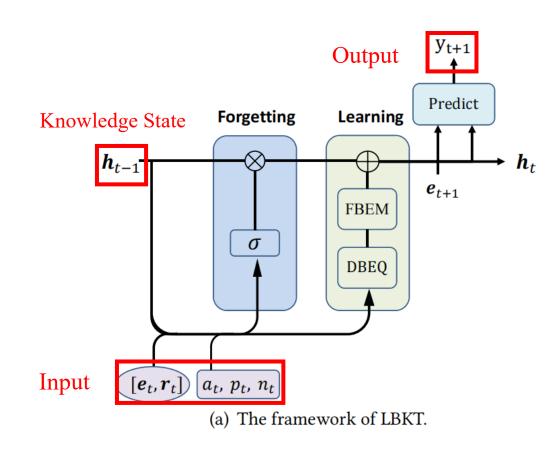
Knowledge State Embedding

 $\boldsymbol{h}_t \in \mathbb{R}^{M \times d_h}$ M denotes the number of

concepts.

Basic Interaction Representation

- \boldsymbol{e}_t , \boldsymbol{r}_t denote question and response embeddings respectively,
- $\boldsymbol{i}_t = ReLU(\boldsymbol{W}_1[\boldsymbol{e}_t \oplus \boldsymbol{r}_t] + \boldsymbol{b}_1)$



Differentiated Behavior Effect Quantifying Speed Effect.

The response time of learner *i* on question *j* obeys: $\ln a_{ji} \sim \mathcal{N}(\mu_j, \sigma_j^2)$ Log-normal distribution

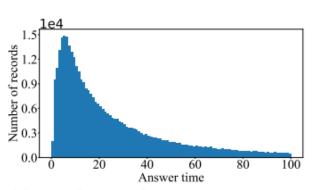
we compute the Speed factor AC_{ji} as:

$$AC_{ji} = 1 - P(\mathcal{N}(\mu_j, \sigma_j^2) \le \ln a_{ji})$$

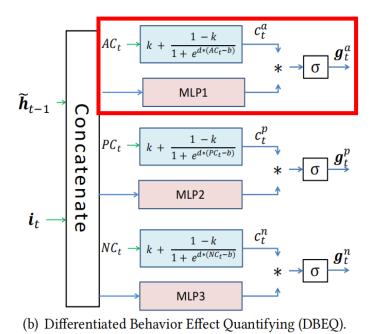
where higher speed correlates to higher AC_{ji} .

The knowledge acquisition vector \boldsymbol{g}_t^a monitored by Speed factor AC_t at time step t is:

$$\begin{split} c_t^a &= k + \frac{1-k}{1+e^{d \cdot (AC_t-b)}}, \\ g_t^a &= \sigma(c_t^a \cdot (W_2^a[\widetilde{h}_{t-1} \oplus i_t] + b_2^a)), \end{split}$$



(a) Distribution of time on ASSIST2009.



Differentiated Behavior Effect Quantifying

Attempts Effect.

The number of attempts of learner *i* on question *j* obeys:

 $p_{ji} \sim \mathcal{P}(\lambda_j^p),$ **Poisson distribution**

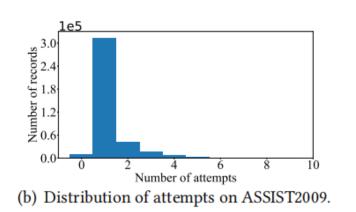
we compute the Attempts factor PC_{ji} as:

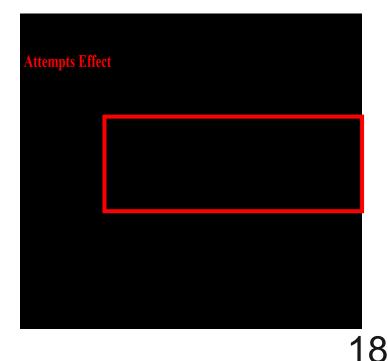
$$PC_{ji} = 1 - P(\mathcal{P}(\lambda_j^p) \ge p_{ji}),$$

where more attempts stands for higher PC_{ji} .

The knowledge acquisition vector \boldsymbol{g}_t^p monitored by Attempts factor PC_t at time step t is:

$$\begin{split} c_t^p &= k + \frac{1-k}{1+e^{d \cdot (PC_t-b)}}, \\ g_t^p &= \sigma(c_t^p \cdot (W_2^p[\widetilde{h}_{t-1} \oplus i_t] + b_2^p)), \end{split}$$





Differentiated Behavior Effect Quantifying Hints Effect.

The number of requested hints of learner *i* on question *j* obeys: $n_{ji} \sim \mathcal{P}(\lambda_j^n)$ Poisson distribution

we compute the Hints factor NC_{ji} as:

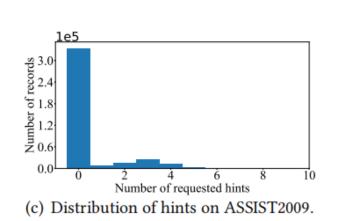
$$NC_{ji} = 1 - P(\mathcal{P}(\lambda_j^n) \ge n_{ji})$$

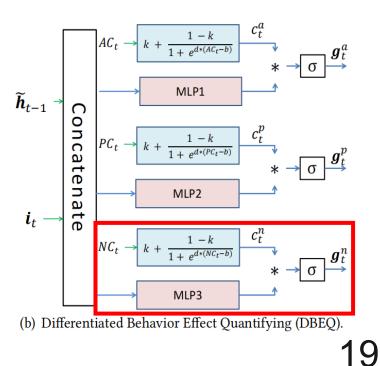
where more hints used equals to higher NC_{ji} .

The knowledge acquisition vector \boldsymbol{g}_t^n monitored by Hints factor NC_t at time step t is:

$$c_t^n = k + \frac{1-k}{1+e^{d \cdot (NC_t-b)}},$$

$$g_t^n = \sigma(c_t^n \cdot (W_2^n[\widetilde{h}_{t-1} \oplus i_t] + b_2^n)),$$





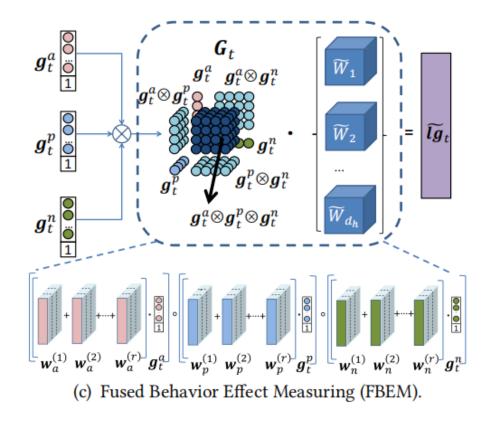
Fused Behavior Effect Measuring

To capture the dependency among different behaviors.

$$G_{t} = \begin{bmatrix} \boldsymbol{g}_{t}^{a} \\ 1 \end{bmatrix} \otimes \begin{bmatrix} \boldsymbol{g}_{t}^{p} \\ 1 \end{bmatrix} \otimes \begin{bmatrix} \boldsymbol{g}_{t}^{n} \\ 1 \end{bmatrix},$$
$$\widetilde{\boldsymbol{l}} \widetilde{\boldsymbol{g}}_{t} = ReLU(\boldsymbol{W}_{3} \cdot \boldsymbol{G}_{t} + \boldsymbol{b}_{3}),$$

To save the space and computation overhead, we decompose $W_3 \in \mathbb{R}^{d_h \times (d_h+1) \times (d_h+1) \times (d_h+1)}$ by:

$$\widetilde{W}_k = \sum_{i=1}^R (w_{a,k}^{(i)} \otimes w_{p,k}^{(i)} \otimes w_{n,k}^{(i)}),$$



Assuming that W_3 is staked by $\widetilde{W}_k \in \mathbb{R}^{(d_h+1)\times (d_h+1)\times (d_h+1)}$, $k = 1, ..., d_h$

Fused Behavior Effect Measuring

To capture the dependency among different behaviors.

 $\widetilde{\boldsymbol{lg}}_t = ReLU(\boldsymbol{W}_3 \cdot \boldsymbol{G}_t + \boldsymbol{b}_3),$

The high-order multiplication is transferred to:

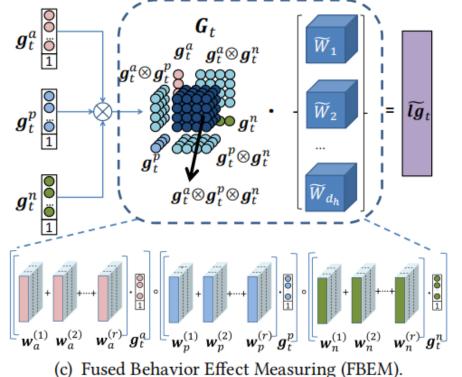
$$W_{3} \cdot G_{t} = \left(\sum_{i=1}^{r} (w_{a}^{(i)} \otimes w_{p}^{(i)} \otimes w_{n}^{(i)})\right) \cdot G_{t}$$

$$= \sum_{i=1}^{r} (w_{a}^{(i)} \otimes w_{p}^{(i)} \otimes w_{n}^{(i)}) \cdot G_{t}$$

$$= \sum_{i=1}^{r} (w_{a}^{(i)} \otimes w_{p}^{(i)} \otimes w_{n}^{(i)}) \cdot \left(\begin{bmatrix}g_{t}^{a}\\1\end{bmatrix} \otimes \begin{bmatrix}g_{t}^{p}\\1\end{bmatrix} \otimes \begin{bmatrix}g_{t}^{n}\\1\end{bmatrix}\right)$$

$$= \left(\sum_{i=1}^{r} w_{a}^{(i)} \cdot \begin{bmatrix}g_{t}^{a}\\1\end{bmatrix}\right) * \left(\sum_{i=1}^{r} w_{p}^{(i)} \cdot \begin{bmatrix}g_{t}^{p}\\1\end{bmatrix}\right) * \left(\sum_{i=1}^{r} w_{n}^{(i)} \cdot \begin{bmatrix}g_{t}^{n}\\1\end{bmatrix}\right), \quad w_{a}^{(i)} \cdot w_{p}^{(i)}, w_{n}^{(i)} \in \mathbb{R}^{d_{h} \times (d_{h}+1)}$$

 $O(d_h \times (d_h + 1) \times (d_h + 1) \times (d_h + 1))$ to $O(r \times d_h \times (d_h + 1))$.



Knowledge State Updating

Consider the influence of both the forgetting factor and knowledge acquisition:

$$f_t = \sigma(W_4[h_{t-1} \oplus i_t \oplus AC_t \oplus PC_t \oplus NC_t] + b_4),$$

$$h_t = f_t * h_{t-1} + lg_t,$$

Performance Prediction

$$\widetilde{\boldsymbol{h}}_{t} = \boldsymbol{q}_{\boldsymbol{e}_{t+1}} \cdot \boldsymbol{h}_{t},$$
$$y_{t+1} = \sigma(\boldsymbol{W}_{5}[\widetilde{\boldsymbol{h}}_{t} \oplus \boldsymbol{e}_{t+1}] + \boldsymbol{b}_{5}),$$

Training Objective

$$\mathbb{L} = -\sum_{t=1}^{T} (r_t \log y_t + (1 - r_t) \log(1 - y_t)).$$

CONTENTS

01Background02Architecture03Experimental Results

04 Conclusion

Datasets

- ASSIST2009 and ASSIST2012 are both collected from the ASSISTments online tutoring system.
- Junyi is collected from Junyi Academy, a Chinese e-learning platform. We select 1000 most active learners.

Statistics	Datasets											
orunorico	ASSIST2009	ASSIST2012	Junyi									
Records	297,343	2,622,857	4,316,340									
Learners	3,006	22,397	1,000									
Questions	9,798	37,413	701									
Concepts	107	254	39									
Avg.attempts	1.532	1.354	1.417									
Avg.time (s)	51.220	54.322	208.398									
Avg.hints	0.428	0.394	0.249									

Records without concepts and learners whose answering sequence is less than 10 are removed. Questions answered less than 10 times are also removed.

Baselines

- **RNN-based: DKT** (Piech et al., 2015), **DKT_concat** (an variant of DKT), **AT-DKT** (Liu et al, 2023)
- Memory-based: DKVMN (Zhang et al., 2017), DMKT (Wang et al., 2021)
- Attention-based: SAKT (Pandey et al., 2019), AKT (Ghosh et al., 2020)
- Learning-forgetting paradigm: LPKT (Shen et al., 2021)

Ι	Method	DKT	DKT_concat	AT-DKT	DKVMN	DMKT	SAKT	AKT	LPKT
٦	With Behavior?	×	\checkmark	×	×	\checkmark	×	×	

1999년 1월 24일 전 22일 전 23일 Delvered y elithépere mod Portandagy of Chirae

Learner performance prediction Results

			ASSIST200				ASSIST2012						Junyi				
Methods	Ι	RMSE		AUC	Ι	ACC		RMSE	Ι	AUC	Ι	ACC	Ι	RMSE	AUC		ACC
DKT DKT_concat AT-DKT DKVMN DMKT SAKT AKT LPKT		0.4372 0.4335 0.4370 0.4416 0.4370 0.4545 0.4273		0.7430 0.7508 0.7574 0.7400 0.7569 0.7111 0.7766		0.7127 0.7204 0.7172 0.7038 0.7196 0.6885 0.7289		$\begin{array}{c} 0.4226\\ 0.4193\\ 0.4162\\ 0.4224\\ 0.4224\\ 0.4236\\ 0.4084\\ 0.4078\end{array}$		$\begin{array}{c} 0.7364\\ 0.7447\\ 0.7544\\ 0.7351\\ 0.7377\\ 0.7335\\ \underline{0.7760}\\ 0.7751 \end{array}$		0.7333 0.7407 0.7440 0.7359 0.7383 0.7333 0.7559		0.3536 0.3518 0.3537 0.3544 0.3538 0.3544 0.3538	0.7586 0.7655 0.7581 0.7565 0.7586 0.7590 0.7593		0.8326 0.8340 0.8325 0.8324 0.8336 0.8323 0.8325
LBKT		0.4236 0.4203*		<u>0.7788</u> 0.7863 *		0.7325 0.7380*		<u>0.4078</u> 0.4043*		0.7731 0.7823 [*]		<u>0.7567</u> 0.7613 *		0.3509 0.3494*	<u>0.7689</u> 0.7723 *		<u>0.8344</u> 0.8362*

- Classic models which applies behaviors (DKT_concat, DMKT and LPKT) outperform other classic models.
- LBKT significantly outperforms all baseline methods on all datasets and evaluation metrics.

Ablation Study

- **LBKT_None** : LBKT fed none behaviors.
- **LBKT_Speed** : LBKT fed only **Speed**.
- **LBKT_Attempt**: LBKT fed only Attempts.
- **LBKT_Hint**: LBKT fed only Hints.

Table 5: Results of learners' performance prediction for LBKT fed with different behaviors. The second best results are underlined and the best results are bold.

	ASSIST2009						Ι		ASSIST2012							Junyi		
Methods	Ι	RMSE		AUC		ACC	I	RMSE		AUC		ACC		RMSE	I	AUC		ACC
LBKT		0.4203		0.7863		0.7380		0.4043		0.7823		0.7613		0.3494		0.7723		0.8362
LBKT_None LBKT_Speed LBKT_Attempt LBKT_Hint		$0.4279 \\ 0.4206 \\ 0.4224 \\ 0.4223$		$\begin{array}{c} 0.7733\\ \underline{0.7854}\\ 0.7835\\ 0.7831 \end{array}$		$\begin{array}{c} 0.7276 \\ \underline{0.7373} \\ 0.7336 \\ 0.7335 \end{array}$		$\begin{array}{c} 0.4082 \\ 0.4062 \\ \underline{0.4058} \\ 0.4066 \end{array}$		$\begin{array}{c} 0.7759 \\ 0.7781 \\ \underline{0.7792} \\ 0.7786 \end{array}$		$0.7549 \\ 0.7583 \\ \underline{0.7588} \\ 0.7587 \\ 0.7587 \\ \end{array}$		$\begin{array}{c} 0.3510\\ \underline{0.3501}\\ 0.3506\\ 0.3503 \end{array}$		$\begin{array}{c} 0.7681 \\ \underline{0.7699} \\ 0.7685 \\ 0.7698 \end{array}$		$\begin{array}{c} 0.8341 \\ \underline{0.8356} \\ 0.8342 \\ 0.8354 \end{array}$

- All the three behaviors are necessary compared with LBKT-None.
- The Speed behavior contributes most to LBKT

(1) 약 (1) 와 상 간 있 것 같 (1) diverting all Schemer and Perturning of Chin

Parameter Sensitivity Fused Behavior Effect Measuring Module **Differentiated Behavior** $\frac{1-k}{+e^{\mathbf{d}\cdot(AC_t-\mathbf{b})}},$ $(\mathbf{w}_a^{(i)} \otimes \mathbf{w}_p^{(i)} \otimes \mathbf{w}_n^{(i)})) \cdot G_t$ $W_3 \cdot G_t = ($ $c_t^a = k +$ Effect Quantifying Module 0.79 0.4250.79 0.423 0.79 0.424 0.79 0.4240.78 0.4240.78 0.78 0.78 AUC 0.423 0.423 0.422 ACC 0.77 O.77 O.76 0.77 0.76 0.77 0.76 O 0.77 0.423 -RMSE 0.422 HSW2 0.422 HSWN 0.421 HSWN 0.421 HSW 0.422 HSW3 0.76 0.75 0.75 00 0.75 00 0 0.75 AUC AUC 0.421 AUC ACC ACC 0.42 -RMSE RMSE 0.42 0.42 RMSE 0.74 0.42 0.74 0.74 0.74 0.73 0.419 0.73 0.4190.73 0.4190.73 0.4190.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11 13 15 3 5 0 0.5 0.6 0.7 1.1 5 9 17 19 6 1 (a) Sensitivity of k. (b) Sensitivity of b. (c) Sensitivity of d. (d) Sensitivity of r.

- LBKT achieves best performance when k = 0.3, b = 0.7, d = 10, r = 4.
- LBKT shows stable ability to the different levels of parameters.

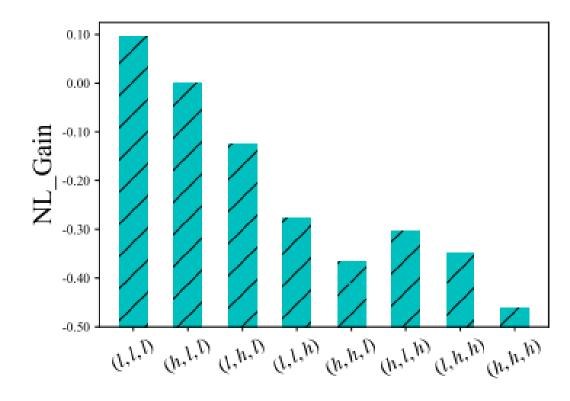
Association between behaviors and knowledge acquisition

Normalized Learning Gain (NL_Gain):

$$y_t = \sigma(W_5[\tilde{h}_{t-1} \oplus e_t] + b_5)$$
$$y'_t = \sigma(W_5[\tilde{h}_t \oplus e_t] + b_5),$$
$$NL_Gain = \frac{y'_t - y_t}{1 - y_t},$$

Learning gain after answering a question.

For each behavior, we classify records into high and low groups.



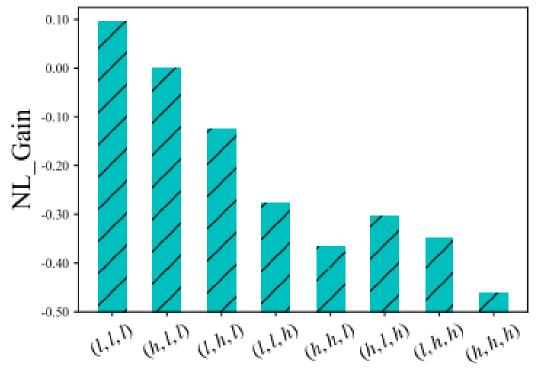
X axis: each group Y axis: the NL_Gain value

Association between behaviors and knowledge acquisition

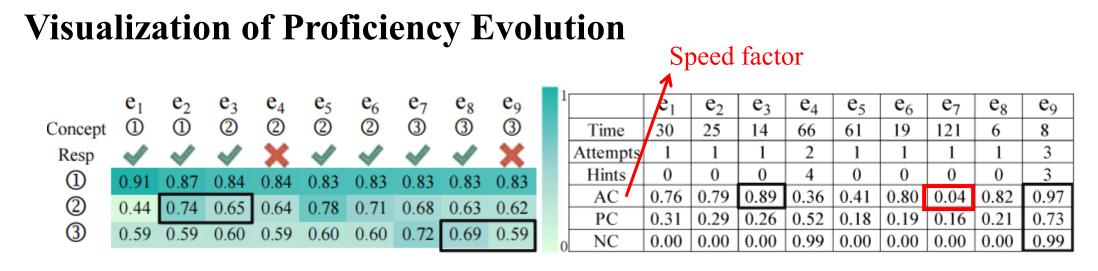
- The NL_Gain of group (*l*,*l*,*l*) is the highest while group (*h*, *h*, *h*) is the lowest.
- The NL_Gain of groups that infer a high factor on just one behavior is higher than those groups that infer high factors on two or three behaviors.

Higher Speed, more attempts and more hints used correlate to poorer learning gain.

X axis: each group Y axis: the NL_Gain value



③ v¹ li) li) li (i) li (i)



LBKT tracks learners' proficiency not only based on their responses but also considers different behaviors' effect:

- Although e_3 is answered correctly, the proficiency on the corresponding concept decreases from 0.74 to 0.65 due to high speed.
- The decline of proficiency after answering e_9 is driven by the fused effect.

CONTENTS

01 Background 02 Architecture 03

Experimental Results

04Conclusion

Conclusion

- We pointed out the significant effects of learning behaviors on knowledge tracing.
- We proposed LBKT model to quantify the distinctive and cooperative effects of behaviors on knowledge acquisition as well as the forgetting factor.
- Experimental results on three public datasets showed that LBKT outperformed previous classic KT methods.
- In the future, we will try to incorporate more behaviors and deeply mine how these behaviors affect learners' knowledge states.

Thank You for listening!

Author: Bihan Xu Email: xbh0720@mail.ustc.edu.cn

