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||| Background

B Cognitive Diagnosis: A fundamental task in many scenarios,
especially intelligent education
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||| Traditional Works

B IRT, MIRT: scalar or latent vectors for students and exercises;
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P(Ruv = 1|9u; av; bv) — 1 4+ exp(—1,7av(9u - bv))

Skill proficiency Discrimination Difficulty

W difficulty, discrimination, ability
B DINA: binary vectors for students and exercises;

P(Rij = 1|ag) = (1 —spiig; ™
Skill proficiency vector Slip Guess

B Q-matrix
B MF: latent vectors for students and exercises;

P(Ruv — 1|0wbv) =06, -b,
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® Problems in the interaction functions:
® manually designed - labor intensive <
® mostly linear = limited approximation ability
® simplistic assumptions - restricted scope of applications

S

It is urgent to find an automatic way to learn the complex interactions
for cognitive diagnosis.

Learn the interaction function with neural network from data
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||| Challenges

M Black-box nature of neural network
W difficult to get explainable diagnosis results

?

B |everage rich exercise text information
W difficult for traditional non-neural functions
B worthy of exploring with the strong ability of neural network
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||| NeuralCD Framework

B Student Factors: knowledge proficiency vector F*
B Exercise Factors: knowledge relevancy vector F*"

B other exercise factors F°t"e" (optional): e.g., difficulty, discrimination
B Interaction Function: interactive multi layers

B Output: the probability that the student would correctly answer the

exercise
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gly NeuralCD Framework

® Explainable
B FS o Fk": gttach each entry of F$ R Proficiency F*
to a specific knowledge concept BIRIR IR IR Relevancy Fr
B Monotonicity Assumption: The probability of correct response to

the exercise is monotonically increasing at any dimension of the
student s knowledge proficiency.
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||| NeuralCDM

B Feasible and effective — basic implementation with Q-matrix

®

i

Positive Full Connection

Positive Full Connection

Positive Full Connection

Q. 1] pydiff ) input layer:

disc
: o ( - O ) = b | |
Knowledge Knowledge Knowledge Exercise Qe o ( hs — hdl ff )thlSC

Relevancy Proficiency Difficulty Discrimination 4 T
| xQ I XA TXB | xD Fkn o FS

I . A
0j0]0]0 | o] of ofFN o]

Student Exercise _ _
One-hot One-hot Directly from Q-matrix




||| NeuralCDM

B Feasible and effective — basic implementation with Q-matrix

®
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||| NeuralCDM

B Feasible and effective — basic implementation with Q-matrix

[ @ ] output layer:
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||| Generality of NeuralCD

B NeuralCD framework is general and can cover some traditional models
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® e.g., IRT, MIRT, MF
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||| Generality of NeuralCD

B NeuralCD framework is general and can cover some traditional models
M e.g., IRT, MIRT, MF
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||| NeuralCDM+

B Extendible - refine Q-matrix with exercise texts
M pre-train a CNN to predict knowledge concepts of the input exercise
B combine with Q-matrix through a partial order probabilistic scheme:

knowledge relevancy: Q-matrix >= predicted > other = 0
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||| Experiments

B Datasets
Dataset Math ASSIST B Math: Zhixue!,
#Students 10268 4,163 mathematical exercises
#Knowledge concepts 1,488 123 .
#Response 10gs 864722 324,572 W ASSIST: Assistment?,
#Knowledge concepts per exercise 1.53 [.19 mathematical exercises
AVG 4, 2.28 8.05 -
STD Loy 0.305 0316 (without texts) and logs
B Student performance prediction
Math ASSIST
Model Accuracy RMSE AUC Accuracy  RMSE AUC
DINA 0.593+.001 0.487+.001 0.686+.001 0.650+.001 0.467+.001 0.676+.002
IRT 0.782+.002 0.387+.001 0.7954+.001 0.674+.002 0.464+.002 0.685+.001
MIRT 0.793+.001 0.378+.002 0.8134+.002 0.701+£.002 0.461£.001 0.719+.001
Best PMF 0.763+.001 _0.407+£.001 0.7924+.002 0.661+.002 0.476£.001 0.732+.001
NeuralCDM  0.792+.002 0.378+.001 0.820+.001 0.719+.008 0.439+.002 0.749+.001
NeuralCDM+ 0.804+.001 0.371+.002 0.835+.002 - - -

Private dataset, provided by iFLYTEK Co., Ltd.
Zhttps://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010



||| Experiments

B Model interpretation

B [f student a has a better mastery on knowledge concept k than student b,
then a 1s more likely to answer exercises related to k correctly than b.
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||| Experiments

® Case study

M a student’s performance on

3 exercise in ASSIST
B and his/her diagnosed
result

i The student is more likely to
' response correctly when

' his/her proficiency satisfies

i the requirement of the

| exercise.
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||| Conclusion

B We propose a neural cognitive diagnostic framework: NeuralCD
B student and exercise factors, neural network interaction layers
B monotonicity assumption

B Feasibility: NeuralCDM with Q-matrix
B Extendibility: Neural CDM+ with refined Q-matrix that leverages exercise

texts
B Generality: covers some traditional models

B Effective and explainable: experiments on two real-world datasets

Code for NeuralCDM is available at https://github.com/bigdata-ustc/NeuralCD
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