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» Learning path recommendation aims to provide learners with a reasonable order of items to

achieve their learning goals.
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Figurel: Illustration of Learning Path Recommendatioin [1].

[1] Liu, Qi, et al. ""Exploiting cognitive structure for adaptive learning." Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 2019.
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» Intuitively, the learning process on the learning path can be metaphorically likened to walking.
Just as walking involves taking one step at a time to reach a destination, learning requires
progressing through items methodically to achieve mastery.
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» Despite extensive efforts in this area, most previous methods mainly focus on the relationship
among items but overlook the difficulty of items, which may raise two issues from a real walking
perspective: “rough” and “inefficient”
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Figure 2: Contrasting Learning Path Recommendation: Considering vs. Without Considering Item Difficulty.

State Key Laboratory of Cognitive Intelligence




» First, the path may be rough: When learners tread the path without considering item difficulty, it’s
akin to walking a dark, uneven road, making learning harder and dampening interest.
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» Second, the path may be inefficient: Treating different difficulty levels of items in the learning path
with equal effort 1s akin to taking the same number of steps regardless of the distance of the journey.

Allowmg learners only a few attempts on Successive relation == Learning path Concepts  /\ Exercises v Feedback
very challenging items before switching. < — Hdiff @ 1 o
Without considering | s QI 0y
o . aaly Eor o008
Persisting with a difficult item despite __ e : 8] AL o™

numerous attempts without mastery.

Considering

difficulty
Result in 1nefficiencies in the learning
journey.
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» We focus on the issue of step-by-step recommendations for session-based learning paths based on

real-time interactions. o o L e2 .
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Figure 3: Illustration of Learning Process in One Session
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» To conquer the above limitations, we propose a novel method named Difficulty-constrained

Learning Path Recommendation (DLPR), which 1s aware of item difficulty.
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» Hierarchical Graph Enhenced Item Representation === =TT
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Our Method

» Hierarchical Graph Enhenced Item Representation ST TSI T
Graph Representation
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Following some previous works, we calculate the difficulty based on & ©)
statistical information as follows: ©) ,
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2 j=1 4 == 0 The more learners get it wrong,
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where S; is the number of learners who answer the practice items Iy X3 | l :
ej. aj == 0 indicates learners that answered incorrectly and Ap : : XN | : |

represents the predefined level of item difficulty.

State Key Laboratory of Cognitive Intelligence



Our Method

» Hierarchical Graph Enhenced Item Representation

Graph Representation

Item representation

We represent all of the items and their difficulty with embeddings.

items difficulty simplified mean aggregation
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Knowledge State Estimation L’, €riv1| Tl Cpip, v .r.rif-’. o
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[2] Shen, Shuanghong, et al. '"Assessing student's dynamic knowledge state by exploring the question difficulty effect." Proceedings of the 45th international ACM SIGIR
conference on research and development in information retrieval. 2022.
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L-Agent
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> State sg =hi-149G : learning goals
» Action Space
> Policy ¢i = Softmax(FC(sl)),

VE(sisgr) = FC(s)).

promotion

» Reward ] Ep,: it i is the last learning stage

r. = _—

! 0, otherwise,
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» Difficulty-driven Hierarchical Reinforement Learning
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> Datasets
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Dataset Junyi ASSISTO09
» Junyi: use the prerequisite graph of items provided learning items 36 97
practice items 711 16,836
learners 245,511 4,092
> Assist09: construct a transition graph as an estimation records 25,367,573 | 397,235
number of edges in HG 267 683
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Experiments

> Simulators

» For evaluation, a key issue is that existing realistic data only contains static information. This data

cannot directly analyze if practice items not in a sequence can be answered correctly.

(Evaluater)
{ KSS: Knowledge Structure based Simulator Rule-based

KES: Knowledge Evolution based Simulator Data-based
i.e. KES-Junyi & KES-ASSIST

Observation
Learning Path Reward, Done, Info

More infomation about simulators can be found in [1] @

[1] Liu, Qi, et al. "Exploiting cognitive structure for adaptive learning." Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 2019.
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Experiments

» Baseline Approaches

» Rec-based: KNN (Cover et al., 1967), GRU4Rec (Hidasi et al., 2015)
» RL-based: DQN (Chen et al., 2018), Actor-Critic ( Konda et al., 1999),
CB (Intayoad et al., 2020), RLTutor ( Kubotani et al., 2021)

> RL&Cog-based: CSEAL (Liu et al., 2019), GEHRL (Li et al., 2023)

» Following previous works, we evaluate these methods based on the promotion E _E
e S

given by simulators. Ep = Esup — Es
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Experiments

» Overall Performance Comparison

Table 1: Performance comparison for learning path recommendation methods. Existing state-of-the-art results are underlined
and the best results are bold. Our DLPR is compared with the SOTA GEHRL and * indicates a p-value < 0.05 in the t-test.

KNN GRU4Rec DON Actor-Critic CB RLTutor CSEAL GEHRL I DLPR |
step=5  0.1005 0.1124 0.1559  0.1437 0.0852  0.1999 0.2095  0.2321 | 0.5583* |
KSS step=10 0.3133  0.2767 0.2836  0.4072 0.2643  0.4008 0.4233  0.5644 | 0.7294* | T
step=20 0.2972  0.1998 0.3236  0.4931 0.2614  0.5303 0.5716  0.7426 | 0.8305* |
step=5  -0.0902 -0.0047 0.0299  0.1004 0.0666  -0.0007  0.0975 0.1198 I 0.2049* |
KES-Junyi step=10 -0.1455 -0.0721 -0.1058 0.1671 0.1451  -0.0379  0.2021  0.2278 | 0.3835" |
step=20 0.1343  0.0993 0.1536  0.1916 0.2098  -0.1034  0.2505 0.4206 | 0.6124* |
step=5  -0.0549 -0.0536 -0.0495 -0.0004 -0.0563 -0.0611  0.0482 0.0751 [ 0.0807* |
KES-ASSIST09  step=10 -0.0731 -0.1003 -0.0934 -0.0327 -0.1294 -0.1096  0.0637 0.0918 | 0.1544* |
step=20 -0.0932 -0.1344 -0.0267 0.0676 0.0038  0.0784 0.1009  0.1971 | 0.3283* | v

» Our proposed DLPR outperforms all baselines in all three simulators
» Reinforcement Learning methods exhibit superior performance due to real-time interactive feedback

» Fewer steps and higher complexity reduce performance, underscoring the need for better recommendations
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» Learning Path Efficiency and Smoothness

Table 2: Learning path efficiency and smoothness for learning path recommendation methods. It should be noted that “-” in the
table indicates that the method cannot achieve absolute promotion and meet the learning goals.

" —— == ==

KNN  GRU4Rec DON  Actor-Critic CB RLTutor CSEAL GEHRL; DLPR

|
KSS 'Learning-Stepsl 54 72 48 41 56 34 29 14 ; 8 :
efficiency <« _Cog-Gap ; 03216 0.3889 0.3709  0.3921 0.3514 03336 03639 02436 | 0.1017 :
Diff-MAD 0.3886  0.3267 0.3574 0.3749 03309 03696 03231 02704 , 0.1200 |
. Learning-Steps - - - - 219 - 128 96 33 |

KES- |
Junyl copGap - - : - 03413 - 0.3898 03641 | 01313 |
smoothness <  Dif-MAD | - - - - 0.3687 - 02791 03144 = 0.1614 |
Learning-Steps - - - - - 536 378 185 | 69 |

KES-ASSIST09

Cog-Gap - - - - - 04197 03823 03562 | 0.1391 |
Diff-MAD - - - - 0.2947  0.2893  0.2998 ' 0.1577 |

-
I
I
I

» The Learning-Steps metric captures the average number of steps required to achieve learning goals.

?:1 [hj — DPj] .
Cog-Gap = , Diff-MAD = "
n n—

Ef;ll |DPjyq — DPj|

1
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Experiments

» Ablation Study

o| DLPR w/o ACS| which refers to DLPR without adaptive learning
action space in section 5.2.2.

¢| DLPR w/o Init-diff|] which eliminates the guidance of initial diffi-
culty control in section 5.4.1.

¢| DLPR w/o0 Torlerance| which excludes the practice tolerance
control in section 5.4.2.
DLPR w/o Diff-reward| which removes the reward rf ! that con-
trols difficulty variations in section 5.3.4.

YV V V V

Table 3: Results of ablation experiments.

Learning Steps Cog-Gap Diff-MAD
w/o ACS 154 0.1707 0.2099
w/o Init-diff 86 0.2133 0.1796
w/o Torlerance | 94 0.2654 0.1832
w/o Diff-reward | 61 0.3516 0.3235

The complete model achieved the best overall performance

ACS had the most significant impact on the number of learning steps

Init-diff and Tolerance played varying roles in all three factors

Diff-reward had the greatest influence on cognitive differences and difficulty smoothness

State Key Laboratory of Cognitive Intelligence



predefined difficulty level

Similar to the common practice of categorizing
difficulty levels into three tiers: easy, medium,
and hard, here we aim for a more granular
analysis of difficulty by classifying it into 10,
30, 50, 100, and 500 levels.

10 m 30 m 50 m 100 m 500

Converage Reward
o o
oo w

=
—

0
RLTutor CSEAL GEHRL DLPR

Figure 5: The performance of some methods under different
predefined difficulty levels.

9

Properly defining difficulty level segmentation is
important !
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» Case Study

addition- basic- logical-
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multiplication
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Figure 4: Visualization of different learning paths recommended by four selected methods for the same learning goal items.

» Our method, considering both knowledge structure and item difficulty, efficiently recommends
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paths with smoothness and achieves all goals.
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Conclusion

» we addressed two special issues “rough” and “in efficient” of learning paths from a real walking perspective

and proposed an effective and smooth learning path recommendation method considering item difficulty

» we constructed a hierarchical graph of learning and practice items to capture their difficulty and higher-order
correlations.

» we designed a Difficulty driven Hierarchical Reinforcement Learning framework to generate learning paths

smoothly and efficiently through two agents’ collaboration.

» Extensive experimental results validate the superiority of our framework in providing highly satisfactory

learning path recommendations by thoroughly considering item difficulty.

» Never theless, as we primarily conducted the experiments in the simulated environments, further research will

develop the system and test the model in practical settings in the real-world environments to investigate
broader impacts.
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