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ih Background

Mathematical reasoning is one of the core abilities of general Al

® Requirements:
* grasp mathematical knowledge and logical thinking from solving several mathematical
problems

® Math word problems (MWP) is a fundamental reasoning task that has attracted much attention
since the 1960s

Math word | Jack has 3 apples and Amy has 2 bananas,
problem how many fruits do they have?

Expression: 3+2 Answer: 5
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ih Background

Problem definition of MWP

® Input: a sequence of n words and numeric values P = {p4, Py, ..., Pn}
 E.g., “Jack has 3 apples ... ”

® Output: mathematical expression Ep, answer Sp
* Ep ={y1,¥2, ..., Ym}, Wwhere y; comes from Vp =V, U V. U Np
v’ Vy: operators, e.g. {+,%X, —,+}
v" V: numeric constants, e.g. {1, }
v" Np: numeric variables from P, e.g. {3,2}

v E.g.,“3+2”
. S, real value Math word | Jack has 3 apples and Amy has 2 bananas,
v Eg.,5 problem how many fruits do they have?
Expression: 3+2 Answer: 5
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ih Background

Related Work

® Traditional work
e Rule-based Methods

Tremendous human effort and low generality

 Statistic-based Methods —
* Semantics parsing-based Methods _
® DI -based Methods EXpreSSion
* Seq2Seq framework: from language translation h_‘ _L _L Ti_. T
. Decoder | LSTM LSTM LSTM LSTM LSTM
* Semantics-focused: Graph2Tree, HMS ... t
« Reasoning-focused: GTS, TSN-MD ... Encoder: | GRU |—| foU _'ﬁﬁfﬁ_' fo” — fo“ )
* Ensemble-based: MultiE/D Embedding: @0 00 @0 00 T (1) T_g o0 T_gs

Dan have . total ?

Paradigm: problem-expression
Problem
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ih Background

Motivation

problem-expression paradigm lacks the processes of learning/applying explicit knowledge

1. Humans acquire explicit mathematical knowledge from solving problems

* Educational theory of cognitivism (Mowrer 1960)
2. Humans produce solutions for MWP by applying this knowledge in logical thinking

3. Necessary to integrate these two processes
into machines to build a stronger Al

Math Word Problem
Amy has 2 apples. She has 3 times as
many bananas as apples. How many
Learning fruits does she have?

Knowledge

“times” is related to “ x”

“apples™ belongs to “fruits”,

TS Expression: 3 x2 +2
V
Applying Answer: 8

Our goal: general framework in which different MWP

solvers can learn and apply explicit knowledge
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ih Background

Challenges

® How to formalize the explicit knowledge

® How to probe a learning mechanism that simulates how humans gain knowledge
from solving MWP, which meanwhile should be general to work with different

solvers

® How to design a general knowledge application mechanism based on distinct solver

architectures
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ih Our Method

LeAp: Overview

Problem-Knowledge

Knowledge-Expression

|1 Pr(
Knowledge Encoder P,(Z|X) Prior P(Z)
___-_-_-_-___-_-_- r ] 1]
Problem Sentences X @ Word-word Knowledge Z
X| = “Amyhas ...” P /”X___rilitﬂ——- WO, ¢
Xz = “Abucket...” I\_D<\\ ——
Al Word-operator
i ©) | relation
|
|
|
|
|
e > Xp = “Amy has ... 3 times ... she have?” ———-————————

Knowledge Decoder Py (Y|Z,X)

Semantics-enhanced

module

- — Ww

Reasoning-enhanced
module
RE :,. ' 1) - ws!

— ww

= — W,

-

Expressions Y

Yl=3)(2+2

Y,=3+68

_____ T > ©

Backbone Solver

Learning by Applying (LeAp): problem-knowledge-expression paradigm
1. Learning 1is the process of encoding data to knowledge: problem-knowledge (Knowledge Encoder)

2. Reasoning is the process of decoding knowledge to data: knowledge-expression (Knowledge Decoder)
3. Knowledge 1s viewed as the hidden state (Knowledge Prior)
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ih Our Method

® Formulization
* Relation knowledge Z (Bernoulli variables)

v' word-word ww; ;
v' word-operator wo; .

. MWP: maxP,(Y|X) = [ P(Z) - Py(Y|Z,X)dZ
> Ep (z1x)llog Po(Y|Z, X)] = KL(F, (Z|X)||P(Z))

ELBO
* Three main parts:
v' P,(Z|X): arbitrary NN (Knowledge Encoder)
v' Py(Y|Z,X): arbitrary MWP solver (Knowledge Decoder)
v P(Z): pre-defined prior (Bernoulli) distribution
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ih Our Method

problem-knowledge
Knowledge Encoder P ,(Z|X)
® Knowledge Encoder: P ,(Z|X) provlem Sentences X [ G [ ormors Knowledge Z
*  ww; ;~Bernoulli(o (fl (w;, Wj))) X; = “Amyhas " 7] _relation
. X> = “Abucket ...” > @< [ —__
. Woi,c~Bern0ulll(a( o (w;, oc))) ’ ™l Word-operator
@,__+ relation
® Knowledge Decoder: Py(Y|Z, X)
 Backbone Solver
 Semantics-enhanced module
«  Reasoning-enhanced module knowledge-expression
Knowledge Decoder Py (Y|Z, X)
Knowledge Z Semantics-enhanced Reasoning-enhanced Expressions ¥

module

module

" > @ ,=3+068
@ @ @ SEP Oﬁo REi‘ A st : YZ
— 'W(“, |
D@ | || | g |@
- | |
| |
| |
| |

- ?uhgraph: ——————— - G E @

Backbone Solver

‘WWIJ‘ Woi,c
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« RNN: GTS, TSN-MD
.+ BERT: MWP-BERT
® Knowledge Decoder: Py(Y|Z, X) . » MWP encoder: Graph2Tree, HMS

 Backbone Solver / .

(H,s;) = Sol — Enc(w;) e |
_» Output gate: Seq2Seq
. » Pointer-generator network: HMS |

 Backbone Solver / ------------------------------------------------- i

Po(¥ily1, oy Vi1, P) = Sol — Dec(s;, e(y;), options)
St+1 = f3(se, e(ye), options)

||I Our Method e ———— O

*  Discussion:
v s;: goal g, in GTS, Graph2Tree,...; hidden state in Seq2Seq
v’ options: c¢; (context vector), 1, (representation of the partial expressions)
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th Our Method - &
® Knowledge Decoder: Py(Y|Z, X)

* Semantics — enhanced Module / Apply knowledge to
(H,s;) = Sol — Enc(w;) improve problem
H = AEg - ReLU(AE -H- W, + b1) - Wa + ba comprehension
* Reasoning — enhanced Module RE}

Po(Vily1, oy Vi1, P) = Sol — Dec(ss, e(y;), options)
St+1 = f3(se, e(y:), options)

H' = Ag -ReLU(Ag - [ws' - s;, H']- Wy + by) - W5 + bs,
H' = H' + LayerNorm(H"),
b= .HE. :
0" = L?};’GI‘NDI‘HI(REL}I(AD H -Wg + bg)), e (fa (s, hY))
O" = ReLU([O", O] - Wr+b7), toY exp (fa(se,hf))

e(yr) 310" = O + LayerNorm(0%), ————, Apply knowledge to f1(si hl) = o7 tanh (W - [s, h])

improve symbol reasoning
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ith Our Method

® Prior: P(Z)
*  ww; j~Bernoulli(4,)
*  wo;.~Bernoulli(6,)
* 6, =0.1 for sparsity

® Adyv: simulate the abilities of learners with knowledge backgrounds by setting P(Z)
* 0, = 0.5 for knowledge that a learner has mastered
— Guide to learn target knowledge

* Visualized in experiments
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th Theoretical Result

Learn knowledge from MWP

LeAp KG
Link Prediction
LeAp VS Link Prediction | from MWP
P(Zi,j =Ti,j|X,Y)? P(Zi,j =T'i’j|X)
P(Zi,j — ri,le, Y) > P(Zi,j — T'i,j|X) ?

Investigation Investigation

1) Whether the optimization objective of LeAp 2) If 1) holds, whether P,(Z|X,Y) is larger (i.e.,
optimizes the posterior B, (Z|X,Y) more accurate) than P, (Z|X)
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th Theoretical Result

® Assumption: Effective knowledge
Definition 1. Effective knowledge Z:Vz; j € Z,

Pp(Y|zi; =1, X)—Pp(Yl|z,; = 0,X)]-(2r;;—1) > 0.

Ifr;; = 1,then Py(Y|z;; = 1,X) > Pg(Y|z;; = 0,X)
Ifr;; = 0, then Pg(Y|z;; = 0,X) > Pg(Y|z;; = 1,X)

® Simplified setting:
@ Train *f, XLF by Link Prediction task
@ Initialize LeAp with ¢f, XLP

® Train LeAp, investigate how the VAE loss adjuste®?, X1¥
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ith Theoretical Result

Theorem 1. Assume P,(z;; = 7i;|X)

holds in a neighborhood U of (o, X*¥) and knowl-
edge Z is effective. Then, for each z; ; € Z. maximjz-
ing the objective of MWP solving in Eq. (1), 1e.,| Ly

Ep, (= ,1x)log Pa(Y |z ;. X)|.[is equivalent to maxifmizi g
LiakErij-Po(Y|zi; =1,X)- Pozi; = 1| X)+

(1 —7rij5) Po(Y|zi; =0,X)- Py(z; =0|X) (12)
in U, where §(X) £ max { —

> §(X)

and B(a, b, c) =

OPs (Y |2 ;=b,X
Py(Yzj =a,X)- \ e )”-

de

Answer

Investigation

1) Whether the optimization objective of LeAp
optimizes the posterior P, (Z|X,Y)
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Theorem 2. Under the assumption of “Effective knowl-
edge”, the following inequality holds:

P(Yl|zij =7ri;.X)-P(X)
P(X.Y)

> 1. (17)

Answer

Investigation
2) If 1) holds, whether P,(Z|X,Y) is larger (i.e.,
more accurate) than P, (Z|X)



th Theoretical Result

® Summary
* Under the Assumption of Effective Knowledge
* Theoreml:

LeAp 1s optimizing P(Zi, =T |X , Y) \

 Theorem?2:
P(Zi,j = Ti,j|XJ Y) > P(Zi,j = Ti,jlx) \/

* Note: superiority lies in the mechanism to calculate the posterior probability
based on the information (1.e., Y ) provided by solving MWP
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ih Experiment

® Dataset
 Math23K, MAWPS, SVAMP

® Baseline methods

* Seq2Seq

© Graph2iree } Semantics-focused methods
« HMS

« GTS |

e TSN-MD } Reasoning-focused methods

e Multi-E/D — Ensemble-based method
® Evaluate metric: Answer Accuracy
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ith Experiment

Accuracy Performance

directly apply knowledge Z from external
knowledge bases (HowNet & ConceptNet) in

/ Knowledge Decoder
Math23K ~ MAWPS SVAMP

ORI | LeAp || LeAp-EK ORI | LeAp ||LeAp-EK ORI CeAp || LeAp-EK

Seq2Seq 0.640 | 0.660"" 0.652™ 0.797 0.803 0.807" 0.200 [0.2367"" || 0.220™™
Graph2Tree | 0.774 0.779" 0.782™" 0.837 | 0.852™ 0.849*~ 0.319 [0.341""" 0.325"
HMS 0.761 0.769 0.765 0.803 | 0.8127 0.805 0.179 0.196™ 0.191*"
GTS 0.756 | 0.772"" 0.767" 0.826 | 0.834™ 0.830" 0.277 0.285 0.279
TSN-MD 0.774| 0.786"" 0.778" 0.844 | 0.8537 0.848 0.2007 | 0.302* 0.294"

Mult-E/D | 0.784| 0.791* || 0.793** / / / / / /

Table 1: Answer accuracy (* * * : p < 0.001, %= : p < 0.01,* : p < 0.05). t: implemented by MTPToolkit (Lan et al. 2022).
* LeAp can enhance the mathematical reasoning ability of MWP solvers
* Applicability of Knowledge Decoder that applies knowledge for different solvers and
further verifies the reasonability of our “Effective knowledge™ assumption
* Reflects the importance and benefits of LeAp’s learning mechanism to gain knowledge

autonomously
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ith Experiment

Accuracy Performance

LeAp Math23K MAWPS SVAMP

(backbone) | w/oSE w/oORE woSE woRE w/oSE w/oRE
Seq2Seq 0.645 0.648 0.798 0.802 0.210 0.228
Graph2Tree | 0.778 0.776 0.8346 0.845 0.335 0.328

HMS 0.766  0.762  0.809  0.801  0.193  0.189
GTS 0.770  0.761  0.830  0.830  0.265  0.284

TSN-MD | 0.782  0.783  0.847  0.852  0.203  0.300

Muli-E’D | 0.790  0.788 / / / /

» Effectiveness of each component

* Semantics/Reasoning-enhanced modules are suitable for different types of backbones
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ith Experiment

Knowledge Learning

Il Co-occur [l TF-IDF I LP

(balgf(?gne) word-word pairs | word-operator pairs
house-home total-“+"
Seq25eq egg-food selling-=“—"
add-all pieces-"*x"
apple-fruit more-“+"
Graph2Tree sale-buy times-"=“x"
give-hold gave-*—"
person-people leftover-“+"
HMS more-total other-“+"
more-another add-“+"
potato-food earned-“+"
GTS apple-fruit rate-"*="
piece-part added-“+"
per-each olve-*—"
TSN-MD store-sale costs-“—"
red-blue borrowed-“+"

* LeAp gains reasonable and interpretable

knowledge with different backbones
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Figure 3: Precision@50 of word-word relations ww; ;.

Superiority and robustness of LeAp’s
autonomous learning mechanism
Rationality of our theoretical analyses.




ith Experiment

Knowledge Prior

LeAp mw= Seq2Seq wemmm GGraph2Tree wess GTS

- Math23K - MAWPS

o - — o

= —_— =S — ] i /

Q 0.750 § 0.850 L

< < " |

E 0.700- g 0.825 B
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Figure 4: Answer accuracy with o = 0%, 20%. 40%,, 60%.

* With the increase of a, the answer accuracy of LeAp shows an increasing trend, just as a human
learner with a richer knowledge foundation can better carry out mathematical reasoning
* When a = 0%, LeAp still outperforms the original backbones (“ORI™)
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ith Experiment

Case 1:
constrictor 1s

Albc/‘fﬁa&lrm snakes. The garden snake is 10 inches long. The boa

timesjlonger than the garden snake. How long is the boa constrictor?

GraphZTI'EE_'
LeAp (Graph2Tree)

10, 71 (wrong)
10, 7] (right)

[0.10
X - 0.05

158 -

18 -
7.
the -

times -

15 -

10 -

inches -
longer -

the -

boa -
constrictor? -

Albert -
has -
two -
snakes. -
The -
garden -
snak_c .
long. -
The -
boa -
constrictor -
than -
garden -
snake -
How -
long -

on monday than on tuesday how many kids did she play with on monday

Case 2: julia played tag with 14 kids on tuesday . if she played tag with ids

Graph2Tree [—, 14, 8] (wrong)
LeAp (Graph2Tree) §[+, |4, 8] (right)

L0.2
+" -0.1
I I I | | I | | 1 | | I I | 1 I I I | I | I I I I I | I I I |
STWOOT ® O E0TW g0 0% g g g e he= BT N =N
=0FsE—~TY o= < 0= gra’o%‘mo%‘%:jg;aﬁ_?:o%‘
2Tz ¥ 3 -8 2% PS5 PEEE 2E S
B = " h Q = =
2 E 2 g
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By applying the learned knowledge wo; .
between “times” and “X”, “more” and “+”,
LeAp reasons “x” and *“+” accurately

Can also explain how to reason the
corresponding answers
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il Conclusion

® [ carning by Apply (LeAp) for explicit knowledge learning and applying
*  General problem-knowledge-expression paradigm
*  Semantics/reasoning-enhanced modules to strengthen problem understanding and
symbol reasoning by applying knowledge effectively
* Theoretically proved the superiority of LeAp’s autonomous learning mechanism
® Experimental results proved the effectiveness and interpretability

® Extend to other kinds of knowledge/problems

® Explore its potential to enrich external knowledge bases
o ..
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