

### Learning by Applying: A General Framework for Mathematical Reasoning via Enhancing Explicit Knowledge Learning

### Jiayu Liu<sup>1,2</sup>, Zhenya Huang<sup>1,2\*</sup>, Chengxiang Zhai<sup>3</sup>, Qi Liu<sup>1,2</sup>

<sup>1</sup>Anhui Province Key Laboratory of Big Data Analysis and Application, School of Data Science & School of Computer Science and Technology, University of Science and Technology of China (USTC); <sup>2</sup> State Key Laboratory of Cognitive Intelligence; <sup>3</sup> University of Illinois at Urbana-Champaign

#### Reporter: Jiayu Liu AAAI-2023









### Mathematical reasoning is one of the core abilities of general AI

- Requirements:
  - grasp mathematical knowledge and logical thinking from solving several mathematical problems
- Math word problems (MWP) is a fundamental reasoning task that has attracted much attention since the 1960s

| Math word  | Jack ha | s 3 apples and Amy has 2 bananas, |
|------------|---------|-----------------------------------|
| problem    | how ma  | my fruits do they have?           |
| Expression | 3+2     | Answer: 5                         |

### Background



### **Problem definition of MWP**

- Input: a sequence of *n* words and numeric values  $P = \{p_1, p_2, ..., p_n\}$ 
  - E.g., "Jack has 3 apples ... "
- Output: mathematical expression  $E_P$ , answer  $S_P$ 
  - $E_P = \{y_1, y_2, \dots, y_m\}$ , where  $y_i$  comes from  $V_P = V_O \cup V_C \cup N_P$ 
    - ✓  $V_0$ : operators, e.g. {+,×, -,÷}
    - ✓  $V_C$ : numeric constants, e.g. {1,  $\pi$ }
    - ✓  $N_P$ : numeric variables from *P*, e.g. {3,2}
    - ✓ E.g., "3+2"
  - $S_P$ : real value

| $\checkmark$ | E.g., | 5 |
|--------------|-------|---|
|--------------|-------|---|

| Math word<br>problem | Jack has how mar | 3 apples and Amy has 2 bananas,<br>ny fruits do they have? |
|----------------------|------------------|------------------------------------------------------------|
| Expression           | : 3+2            | Answer: 5                                                  |

## **Background**

- Traditional work
  - **Rule-based Methods**
  - Statistic-based Methods
  - Semantics parsing-based Methods
- **DL-based** Methods
  - Seq2Seq framework: from language translation

**Related Work** 

- Semantics-focused: Graph2Tree, HMS ... •
- Reasoning-focused: GTS, TSN-MD ...
- Ensemble-based: MultiE/D •

#### Paradigm: problem-expression

Tremendous human effort and low generality









### **Motivation**

problem-expression paradigm lacks the processes of learning/applying explicit knowledge

- 1. Humans acquire explicit mathematical knowledge from solving problems
  - Educational theory of cognitivism (Mowrer 1960)
- 2. Humans produce solutions for MWP by applying this knowledge in logical thinking
- 3. Necessary to **integrate** these two processes into machines to build a stronger AI



**Our goal: general framework in which different MWP solvers can learn and apply explicit knowledge** 





### Challenges

- How to formalize the explicit knowledge
- How to probe a learning mechanism that simulates how humans gain knowledge from solving MWP, which meanwhile should be general to work with different solvers
- How to design a general knowledge application mechanism based on distinct solver architectures





#### Learning by Applying (LeAp): problem-knowledge-expression paradigm

- 1. Learning is the process of encoding data to knowledge: problem-knowledge (Knowledge Encoder)
- 2. Reasoning is the process of decoding knowledge to data: knowledge-expression (Knowledge Decoder)
- 3. Knowledge is viewed as the hidden state (Knowledge Prior)

**Our Method** 

#### Anhui Province Key Laboratory of Big Data Analysis and Application (USTC)

### **I** Our Method

- Formulization
  - **Relation knowledge Z** (Bernoulli variables)
    - ✓ word-word  $ww_{i,j}$
    - ✓ word-operator  $wo_{i,c}$



• **MWP**:  $\max P_{\theta}(Y|X) = \int P(Z) \cdot P_{\theta}(Y|Z,X) dZ$  $\geq \mathbb{E}_{P_{\varphi}(Z|X)}[\log P_{\theta}(Y|Z,X)] - \mathrm{KL}(P_{\varphi}(Z|X)||P(Z))$ 

ELBO

- Three main parts:
  - ✓  $P_{\varphi}(Z|X)$ : arbitrary NN (Knowledge Encoder)
  - ✓  $P_{\theta}(Y|Z,X)$ : arbitrary MWP solver (Knowledge Decoder)
  - ✓ P(Z): pre-defined prior (Bernoulli) distribution





## Our Method



#### problem-knowledge

- Knowledge Encoder:  $P_{\varphi}(Z|X)$ 
  - $ww_{i,j} \sim Bernoulli(\sigma(f_1(w_i, w_j)))$
  - $wo_{i,c} \sim Bernoulli(\sigma(f_2(w_i, o_c)))$
- Knowledge Decoder:  $P_{\theta}(Y|Z,X)$ 
  - Backbone Solver
  - Semantics-enhanced module
  - Reasoning-enhanced module



knowledge-expression



### Our Method



Backbone Solver

 $(H, s_1) = Sol - Enc(w_i)$ 

RNN: GTS, TSN-MD

MWP encoder: Graph2Tree, HMS

Output gate: Seq2Seq

• Pointer-generator network: HMS

**BERT: MWP-BERT** 

. . .

٠

Backbone Solver

 $P_{\theta}(y_t|y_1, \dots, y_{t-1}, P) = Sol - Dec(s_t, e(y_t), options)$  $s_{t+1} = f_3(s_t, e(y_t), options)$ 

- Discussion:
  - ✓  $s_t$ : goal  $q_t$  in GTS, Graph2Tree,...; hidden state in Seq2Seq
  - options:  $c_t$  (context vector),  $r_t$  (representation of the partial expressions)

### Our Method

- Knowledge Decoder:  $P_{\theta}(Y|Z,X)$ 
  - Semantics enhanced Module

 $(H, s_1) = Sol - Enc(w_i)$  $\mathbf{H}' = \mathbf{A}_{\mathbf{E}} \cdot \operatorname{ReLU}(\mathbf{A}_{\mathbf{E}} \cdot \mathbf{H} \cdot \mathbf{W}_1 + b_1) \cdot \mathbf{W}_2 + b_2$ 



comprehension

• Reasoning - enhanced Module  $P_{\theta}(y_{t}|y_{1}, ..., y_{t-1}, P) = Sol - Dec(s_{t}, e(y_{t}), options)$   $s_{t+1} = f_{3}(s_{t}, e(y_{t}), options)$   $H^{t} = \mathbf{A}_{\mathbf{E}} \cdot \operatorname{ReLU}(\mathbf{A}_{\mathbf{E}} \cdot [ws^{t} \cdot s_{t}, \mathbf{H}'] \cdot \mathbf{W}_{4} + b_{4}) \cdot \mathbf{W}_{5} + b_{5},$   $\hat{\mathbf{H}}^{t} = \mathbf{H}^{t} + \operatorname{LayerNorm}(\mathbf{H}^{t}),$   $\mathbf{O}^{t} = \operatorname{LayerNorm}(\operatorname{ReLU}(\mathbf{A}_{\mathbf{D}} \cdot \hat{\mathbf{H}}^{t} \cdot \mathbf{W}_{6} + b_{6})),$   $\hat{\mathbf{O}}^{t} = \operatorname{ReLU}([\mathbf{O}^{t}, \mathbf{O}] \cdot \mathbf{W}_{7} + b_{7}),$   $e(y_{t}) \ni [\mathbf{O}'] = \mathbf{O} + \operatorname{LayerNorm}(\hat{\mathbf{O}}^{t}), \qquad \text{Apply knowledge to improve symbol reasoning}$   $RE_P^t$ 



### **I** Our Method



- Prior: P(Z)
  - $ww_{i,j} \sim Bernoulli(\delta_1)$
  - $wo_{i,c} \sim Bernoulli(\delta_1)$
  - $\delta_1 = 0.1$  for sparsity
  - Adv: Simulate the abilities of learners with knowledge backgrounds by setting P(Z)
    - $\delta_1 = 0.5$  for knowledge that a learner has mastered
      - $\rightarrow$  Guide to learn target knowledge
    - Visualized in experiments

# 1958 Contraction of the second second

### **I** Theoretical Result



#### Investigation

1) Whether the optimization objective of LeAp optimizes the posterior  $P_{\varphi}(Z|X,Y)$ 

#### Investigation

2) If 1) holds, whether  $P_{\varphi}(Z|X,Y)$  is larger (i.e., more accurate) than  $P_{\varphi}(Z|X)$ 

### **I** Theoretical Result



• Assumption: Effective knowledge

**Definition 1.** Effective knowledge  $Z: \forall z_{i,j} \in Z$ ,  $[P_{\theta}(Y|z_{i,j} = 1, X) - P_{\theta}(Y|z_{i,j} = 0, X)] \cdot (2r_{i,j} - 1) > 0.$ 

• If 
$$r_{i,j} = 1$$
, then  $P_{\theta}(Y|z_{i,j} = 1, X) > P_{\theta}(Y|z_{i,j} = 0, X)$ 

• If 
$$r_{i,j} = 0$$
, then  $P_{\theta}(Y|z_{i,j} = 0, X) > P_{\theta}(Y|z_{i,j} = 1, X)$ 

#### • Simplified setting:

- (1) Train  $\varphi^{LP}$ ,  $X^{LP}$  by Link Prediction task
- (2) Initialize LeAp with  $\varphi^{LP}$ ,  $X^{LP}$
- (3) Train LeAp, investigate how the VAE loss adjust  $\varphi^{LP}$ ,  $X^{LP}$

### **Theoretical Result**

**Theorem 1.** Assume  $P_{\varphi}(z_{i,j} = r_{i,j}|X) > \delta(X)$ holds in a neighborhood U of  $(\varphi^{LP}, X^{LP})$  and knowledge Z is effective. Then, for each  $z_{i,j} \in Z$ , maximizing the objective of MWP solving in Eq. (1), i.e.,  $L_1 =$  $E_{P_{\varphi}(z_{i,j}|X)}[\log P_{\theta}(Y|z_{i,j}, X)]$ , is equivalent to maximizing  $L_3 = r_{i,j} \cdot P_{\theta}(Y|z_{i,j} = 1, X) \cdot P_{\varphi}(z_{i,j} = 1|X) +$  $(1 - r_{i,j}) \cdot P_{\theta}(Y|z_{i,j} = 0, X) \cdot P_{\varphi}(z_{i,j} = 0|X)$  (12) in U, where  $\delta(X) \triangleq \max \{\frac{1}{1 + \frac{\beta(1 - r_{i,j}, r_{i,j}, c)}{\beta(r_{i,j}, 1 - r_{i,j}, c)}}\}|_{c=\theta, x_i \in X},$ 

and  $\beta(a, b, c) \triangleq P_{\theta}(Y|z_{i,j} = a, X) \cdot \left\| \frac{\partial P_{\theta}(Y|z_{i,j} = b, X)}{\partial c} \right\|.$ 

## Answer

#### Investigation

1) Whether the optimization objective of LeAp optimizes the posterior  $P_{\varphi}(Z|X,Y)$ 



**Theorem 2.** Under the assumption of "Effective knowledge", the following inequality holds:

$$\frac{P(Y|z_{i,j} = r_{i,j}, X) \cdot P(X)}{P(X, Y)} > 1.$$
(17)

Answer

#### Investigation

2) If 1) holds, whether  $P_{\varphi}(Z|X,Y)$  is larger (i.e., more accurate) than  $P_{\varphi}(Z|X)$ 

### **Theoretical Result**



- Summary
  - Under the Assumption of Effective Knowledge
  - Theorem1:

LeAp is optimizing  $P(z_{i,j} = r_{i,j} | X, Y) \sqrt{\frac{1}{2}}$ 

• Theorem2:

 $P(z_{i,j} = r_{i,j} | X, Y) > P(z_{i,j} = r_{i,j} | X) \sqrt{1}$ 

• Note: superiority lies in the mechanism to calculate the posterior probability based on the information (i.e., Y ) provided by solving MWP



## **Experiment**

#### **Setups**

- Dataset
  - Math23K, MAWPS, SVAMP
- Baseline methods
  - Seq2Seq
  - Graph2Tree
- Semantics-focused methods

- HMS
- GTS
- TSN-MD

- Reasoning-focused methods
- Evaluate metric: Answer Accuracy



## **L** Experiment



**Accuracy Performance** 

directly apply knowledge Z from external knowledge bases (HowNet & ConceptNet) in Knowledge Decoder

|            | Math23K |              |              | MAWPS |              |              | SVAMP             |               |               |
|------------|---------|--------------|--------------|-------|--------------|--------------|-------------------|---------------|---------------|
|            | ORI     | LeAp         | LeAp-EK      | ORI   | LeAp         | LeAp-EK      | ORI               | LeAp          | LeAp-EK       |
| Seq2Seq    | 0.640   | $0.660^{**}$ | $0.652^{**}$ | 0.797 | 0.803        | $0.807^{*}$  | 0.200             | $0.236^{***}$ | $0.220^{***}$ |
| Graph2Tree | 0.774   | $0.779^{*}$  | $0.782^{**}$ | 0.837 | $0.852^{**}$ | $0.849^{**}$ | 0.319             | $0.341^{***}$ | $0.325^{*}$   |
| HMS        | 0.761   | 0.769        | 0.765        | 0.803 | $0.812^{*}$  | 0.805        | 0.179             | $0.196^{**}$  | $0.191^{**}$  |
| GTS        | 0.756   | $0.772^{**}$ | $0.767^{**}$ | 0.826 | $0.834^{**}$ | $0.830^{*}$  | 0.277             | 0.285         | 0.279         |
| TSN-MD     | 0.774   | $0.786^{**}$ | $0.778^{*}$  | 0.844 | $0.853^{*}$  | 0.848        | $0.290^{\dagger}$ | $0.302^{**}$  | $0.294^{*}$   |
| Multi-E/D  | 0.784   | $0.791^{*}$  | $0.793^{**}$ | /     | /            | /            | /                 | /             | /             |

Table 1: Answer accuracy (\* \* \* :  $p \le 0.001$ , \*\* :  $p \le 0.01$ , \* :  $p \le 0.05$ ). †: implemented by MTPToolkit (Lan et al. 2022).

- LeAp can enhance the mathematical reasoning ability of MWP solvers
- Applicability of Knowledge Decoder that applies knowledge for different solvers and further verifies the reasonability of our "Effective knowledge" assumption
- Reflects the importance and benefits of LeAp's learning mechanism to gain knowledge autonomously





#### **Accuracy Performance**

| LeAp       | Math23K |        | MAWPS  |        | SVAMP  |        |
|------------|---------|--------|--------|--------|--------|--------|
| (backbone) | w/o SE  | w/o RE | w/o SE | w/o RE | w/o SE | w/o RE |
| Seq2Seq    | 0.645   | 0.648  | 0.798  | 0.802  | 0.210  | 0.228  |
| Graph2Tree | 0.778   | 0.776  | 0.846  | 0.845  | 0.335  | 0.328  |
| HMS        | 0.766   | 0.762  | 0.809  | 0.801  | 0.193  | 0.189  |
| GTS        | 0.770   | 0.761  | 0.830  | 0.830  | 0.265  | 0.284  |
| TSN-MD     | 0.782   | 0.783  | 0.847  | 0.852  | 0.293  | 0.300  |
| Multi-E/D  | 0.790   | 0.788  | /      | /      | /      | /      |

- Effectiveness of each component
- Semantics/Reasoning-enhanced modules are suitable for different types of backbones





### Knowledge Learning

| LeAp<br>(backbone) | word-word pairs | word-operator pairs |  |  |
|--------------------|-----------------|---------------------|--|--|
|                    | house-home      | total-"+"           |  |  |
| Seq2Seq            | egg-food        | selling-"—"         |  |  |
|                    | add-all         | pieces-"×"          |  |  |
|                    | apple-fruit     | more-"+"            |  |  |
| Graph2Tree         | sale-buy        | times-"×"           |  |  |
|                    | give-hold       | gave-"-"            |  |  |
|                    | person-people   | leftover-"+"        |  |  |
| HMS                | more-total      | other-"+"           |  |  |
|                    | more-another    | add-"+"             |  |  |
|                    | potato-food     | earned-"+"          |  |  |
| GTS                | apple-fruit     | rate-"÷"            |  |  |
|                    | piece-part      | added-"+"           |  |  |
|                    | per-each        | give-"—"            |  |  |
| TSN-MD             | store-sale      | costs-"–"           |  |  |
|                    | red-blue        | borrowed-"+"        |  |  |

• LeAp gains reasonable and interpretable knowledge with different backbones



Figure 3: Precision@50 of word-word relations  $ww_{i,j}$ .

- Superiority and robustness of LeAp's autonomous learning mechanism
- Rationality of our theoretical analyses.





### Knowledge Prior



Figure 4: Answer accuracy with  $\alpha = 0\%, 20\%, 40\%, 60\%$ .

- With the increase of α, the answer accuracy of LeAp shows an increasing trend, just as a human learner with a richer knowledge foundation can better carry out mathematical reasoning
- When  $\alpha = 0\%$ , LeAp still outperforms the original backbones ("ORI")



#### Case study





1958 To The State of State of

- By applying the learned knowledge wo<sub>i,c</sub> between "times" and "×", "more" and "+", LeAp reasons "×" and "+" accurately
- Can also explain how to reason the corresponding answers



### **Conclusion**



#### Summary

- Learning by Apply (LeAp) for explicit knowledge learning and applying
  - General problem-knowledge-expression paradigm
  - Semantics/reasoning-enhanced modules to strengthen problem understanding and symbol reasoning by applying knowledge effectively
  - Theoretically proved the superiority of LeAp's autonomous learning mechanism
- Experimental results proved the effectiveness and interpretability

### **Future Work**

- Extend to other kinds of knowledge/problems
- Explore its potential to enrich external knowledge bases



The 37th AAAI Conference on Artificial Intelligence, Washington Feb.7-14, 2023 **VIRTUAL CONFERENCE** 

# **Thanks for your listening!** For more details, please refer to our paper!

### Reporter: Jiayu Liu jy251198@mail.ustc.edu.cn



