

Federated Deep Knowledge Tracing

Jinze Wu¹, Zhenya Huang¹, Qi Liu^{1,*}, Defu Lian¹, Hao Wang¹, Enhong Chen¹ Haiping Ma², Shijin Wang³

¹Anhui Province Key Laboratory of Big Data Analysis and Application,

School of Computer Science and Technology, University of Science and Technology of China ²Anhui University

³iFLYTEK Research & State Key Laboratory of Cognitive Intelligence, iFLYTEK Co., Ltd, {hxwjz,wanghao3}@mail.ustc.edu.cn,{huangzhy,qiliuql,liandefu,cheneh}@ustc.edu.cn, hpma2020@163.com,sjwang3@iflytek.com

Reporter: Jinze Wu

1	Background
2	Problem Definition
3	Framework
4	Experiment
5	Conclusion & Future work

Background

- Knowledge Tracing
 - > A fundamental task in **intelligent education**.
 - > Aim to trace knowledge states of students based on their historical learning trajectories
 - Deep knowledge tracing (DKT) leverage recurrent neural networks to capture the changes of students' knowledge states
 - > Traditionally, researchers process a central training to learn DKT models.

Background

> Problems and Challenges

- learn high-quality DKT models for isolated silos (e.g., different schools) while avoiding data isolation problem
- > Data scarcity: distributed learning data is difficult to be collected
- > Different data quality: different teaching arrangements lead to different data quality
- > Data incomparability: the information mined in different scenes is incomparable
- > In this paper, we adopt federated learning to overcome the challenges

k1:Proportion k2:Range k3:Mode k4:Median k5:Equivalent Fractions

Problem Definition

- > Problem Definition
 - > Given:
 - > S : set of schools
 - > Q_s : set of exercises
 - > N_s : set of students
 - > r = { $(q_0, g_0), (q_1, g_1), \dots, (q_l, g_l)$ } : learning records of a certain student > $q_l \in Q_s, g_l \in \{0, 1\}$
 - Goal: train |S| local DKT models, where the s-th DKT model can trace the students in school s of knowledge states (represent the students' mastery of concepts).

FDKT Framework

FDKT Framework

- > Server
 - receive and aggregate local DKTs delivered
 - > compose and updating the models for local clients.

> Client

- > train an independent DKT with the private data
- > evaluate the data quality with confidence measurements

FDKT Framework

Client

Local DKT modeling

> given the learning records of a certain student, DKT uses a RNN to model her knowledge presentations $\{h_1, h_2, ..., h_l\}$ and output her knowledge states (mastery levels) $\{y_1, y_2, ..., y_l\}$ on multiple concepts

$$\begin{split} h_l &= \tanh(\mathbf{W_{hx}} x_l + \mathbf{W_{hh}} h_{l-1} + \mathbf{b_h}), \\ y_l &= \mathrm{sigmoid}(\mathbf{W_{yh}} h_l + \mathbf{b_y}), \end{split}$$

- Data quality evaluation
 - > propose two data quality evaluation methods with confidence estimation for Q_s items following educational measurement theories, i.e., Classical Test Theory and Item Response Theory, respectively.
 - > CTT confidence: $\alpha_{CTT} = F(P(Q_s), D(Q_s), CR(Q_s))$
 - > IRT confidence: $\alpha_{IRT} = \max(\sum_{i=1}^{|Q_s|} \beta_i * I_i(\theta))$

FDKT Framework

> Server

- Model aggregation
 - > integrate all local DKT models to a global one based on the local confidences

$$\Theta^t = \sum_{s=1}^S \hat{\alpha_s^t} \times \Theta_s^t$$

- > Model update
 - > hierarchical model interpolation: obtain the new personalized model from both the global model and the local model

$$\Theta_s^t = \boldsymbol{\lambda} \cdot \Theta_s^t + (1 - \boldsymbol{\lambda}) \cdot \Theta^t$$

> Dataset

- MATH dataset
- > ASSIST
- Data analysis
 - Inconsistency between data scales and data quality
- Baseline methods
 - centrally training methods:
 BKT, DKT
 - Traditional federated methods: FedSGD, FedAvg, FedAtt, LoAdaboost
 - > Our methods:

FedInter, FedCTT, FedIRT

- Evaluation metrics
 - > ACC, AUC, RMSE, epoch, DOA

Statistics	MATH	ASSIST	
# of schools	7	38	
# of records	204,293	801,645	
# of students	3,830	7,395	
# of exercises	4,145	27,288	
<pre># of knowledge concepts</pre>	112	200	
Avg. records per student	53.34	108.40	
Avg. exercises per concept	37.01	136.44	

> Over performances

- > Task: student performance prediction
- > Observation
 - > Methods with federated learning settings perform better: harness more data
 - > FDKTIRT has the best performances: quality-oriented aggregation is beneficial
 - > FDKTCTT performs no most outstanding result: the limitations of CTT confidence

* *	-	•		
dataset	MATH			
method	epoch	RMSE	AUC	ACC
BKT	-	0.463	0.692	0.701
DKT	-	0.453	0.705	0.712
FedSGD	-	0.455	0.696	0.694
FedAvg	13	0.449	0.721	0.713
FedAtt	14	0.453	0.718	0.708
LoAdaboost	8	0.450	0.726	0.708
FedInter	8	0.449	0.733	0.719
FDKTCTT	4	0.448	0.735	0.717
FDKTIRT	4	0.446	0.739	0.721

(a) Results of student performance prediction on MATH

Table 2: Results of student performance prediction under four metrics.

(b) Results of student performance prediction on ASSIST

dataset	ASSIST			
method	epoch	RMSE	AUC	ACC
BKT	-	0.452	0.743	0.681
DKT	-	0.413	0.814	0.75
FedSGD	-	0.425	0.798	0.746
FedAvg	20	0.387	0.861	0.791
FedAtt	22	0.386	0.862	0.792
LoAdaboost	28	0.384	0.863	0.792
FedInter	11	0.376	0.875	0.796
FDKTCTT	17	0.379	0.872	0.795
FDKTIRT	11	0.375	0.877	0.802

- > Effectiveness of Data quality
 - > Task: report the performances of different methods on isolated schools
- Observation
 - > DKT performs significantly poorly: federated learning settings expand available data
 - FedInter achieves competitive results: effectiveness of model personalization
 - > FDKTIRT and FDKTCTT perform better: data quality is a more important factor

category	name	school 1	school 2	school 3	school 4	school 5	school 6
statistic	scales	114,627	42,899	10554	9,743	3103	1,163
	CTT confidence	0.043	0.048	0.041	0.049	0.034	0.012
	IRT confidence	0.157	0.041	0.022	0.016	0.011	0.010
method	DKT	0.871	0.830	0.838	0.809	0.798	0.535
	LoAdaboost	0.858(-1.3%)	0.816(-1.4%)	0.811(-2.7%)	0.796(-1.3%)	0.865(+6.7%)	0.737(+20.2%)
	FedInter	0.876(+0.5%)	0.843(+1.3%)	0.846(+0.8 %)	0.867(+5.8%)	0.927(+12.9%)	0.801(+26.6%)
	FDKTCTT	0.871(+0.0%)	0.844(+1.4%)	0.842(+0.4%)	0.871(+6.2%)	0.934(+13.6%)	0.801(+26.6%)
	FDKTIRT	0.879(+0.8 %)	0.848(+ 1.8 %)	0.846(+0.8 %)	0.875(+ 6.6 %)	0.937(+ 13.9 %)	0.805(+27.0%)

Table 3: Statistics of confidence, scale and results of student performance prediction with AUC of partial datasets.

> Performance on Comparability

- > Task: compute the comparability of students
- > Observation
 - > BKT and DKT perform worst: independent training on isolated schools is incomparable
 - Federated learning methods perform better: effective for federated learning strategies
 - FDKTIRT performs best: quality-oriented aggregation strategies with personalization update strategy are more effective at achieving comparable results

Figure 4: Left bar chart is DOA results of methods. Right radars are comparable examples of two students' knowledge states and true scores from isolated schools. (K1: Scatter Plot; K2: Proportion; K3: Point Plotting; K4: Graph shape; K5: Congruence;)

1	Background
2	Problem Definition
3	Framework
4	Experiment
5	Conclusion & Future work

Conclusion & Future work

> Overall results

- > Design a novel client-server architecture framework to solve data isolation problem
- > Combine federated learning to train DKT models while alleviating data scarcity
- In the client part, two implementations of quality-oriented aggregation strategies are provided; in the server part, hierarchical model interpolation is explored
- Future work
 - > Explore more applications of federated learning in the educational field,
 - > Extend FDKT to many other KT methods and develop a general platform
 - Explore ways to model item and user characteristics appropriately under federated settings

Thanks!

hxwjz@mail.ustc.edu.cn

Anhui Province Key Lab. of Big Data Analysis and Application