

Explore What LLM Does Not Know in Complex Question Answering

Xin Lin, Zhenya Huang, Zhiqiang Zhang, Jun Zhou, Enhong Chen Speaker: Zhiyuan Ma

University of Science and Technology of China State Key Laboratory of Cognitive Intelligence

KEQA Framework

Experiments

Conclusion

Complex question answering

- □ Answer questions based on related knowledge
- □ Requirements of QA system
 - Master multiple knowledge
 - Perform complex reasoning over knowledge

One promising solution

- □ Large language model (LLM)
- □ Retrieval-augmented generation (RAG)
 - First retrieve related knowledge and then perform reliable reasoning and generation

Question: What is the birth date of the person Richard Callaghan coached to Olympic, world, and national titles?

Required Knowledge

K₁: Who did Richard Callaghan coach to Olympic, world, and national titles?

LLM: Tara Lipinski

K₂: What is the birth date of Tara Lipinski? RAG: June 10, 1982

Answer: The person Richard Callaghan coached to Olympic, world, and national titles is Tara Lipinski. She was born in June 10, 1982. So the answer is June 10, 1982.

Motivations

How to effectively facilitate RAG in complex QA

□ Examine the knowledge boundary of LLM

- What the LLM does not know
- Only missing knowledge needs to be supplemented from external

Evaluate the utility of external knowledge

- How helpful the external knowledge is in QA
- Related knowledge may be helpless and even mislead reasoning in QA

coa	ached to Olympic, world, and national titles?
Re	quired Knowledge
K ₁ nat LL	: Who did Richard Callaghan coach to Olympic, world, and ional titles? M: Tara Lipinski (Known)
K ₂	What is the birth date of Tara Lipinski?

Answer: The person Richard Callaghan coached to Olympic, world, and national titles is Tara Lipinski. She was born in June 10, 1982. So the answer is June 10, 1982.

□ How to precisely examine the knowledge boundary of the LLM

- LLM contains tremendous uninterpretable parameters
- □ Self-evaluation with LLM: Tend to be over-confident on their knowledge states
- □ Probability-based methods: Focus on uncertain tokens rather than missing knowledge

□ How to identify utility of external knowledge in complex QA

- More than content or semantic relevancy between knowledge and question
- □ Reasoning logic: Whether knowledge is necessary in one reasoning step
- LLM ability: Whether LLM masters the knowledge, whether LLM is affected by the knowledge

KEQA Framework

Experiments

Conclusion

Complex question answering

- $\Box Q$: Question in natural language
- $\Box Y$: Answer inferred with an explanation E in natural language
- □ $\mathbb{K} = \{K_1, ..., K_n\}$: External knowledge source, each K_i is a passage in corpus (May also be a knowledge triple in KG or a webpage online depending on \mathbb{K})

🗆 Goal

 \Box Given knowledge source $\mathbb K$ and question Q

□ Retrieve necessary knowledge $\mathbb{K}^* = \{K_1^*, \dots, K_m^*\}$ from \mathbb{K} with a retriever \mathcal{R} , and generate one explanation E with a LLM \mathcal{L} to infer the answer Y to Q

Question Answer with Knowledge Evaluation (KEQA)

(a) Quiz-based Knowledge Evaluation (QKE)

Question Answer with Knowledge Evaluation (KEQA)

□ Knowledge boundary: Quiz-based Knowledge Evaluation

- Output-oriented: Whether LLM could answer knowledge-related quizzes
- Retrieval-on-demand: Only retrieve missing knowledge that LLM fails the quiz

□ Knowledge utility: Utility-guided Knowledge Picking

- Result-oriented: Whether external knowledge helps LLM improve QA accuracy
- Knowledge picking: Only pick helpful knowledge with positive utility

Quiz-based Knowledge Evaluation

- □ Whether LLM masters knowledge: Examine whether LLM could answer related question
- Quiz Generation
 - Hard to detect missing knowledge: Complex QA involves multiple knowledge and causes of failure
 - Solution: Generate simple quiz related to single knowledge by decomposing the complex question

Quiz generation by question decomposition $\{q_1, \dots, q_s\} \leftarrow GenQ(Q, \mathcal{L})$

Quiz-based Knowledge Evaluation

- □ Whether LLM masters knowledge: Examine whether LLM could answer related question
- Quiz Assessment

11

- Hard to assess LLM's answer: No ground truth for the quiz
- Consistency-based assessment: Whether LLM gives consistent answer based on knowledge or randomly guess in multiple tries
- Answer semantic discrimination: Consistent answers may be different in words for open quiz

Quiz answer discrimination $a_i \leftarrow Quiz(q, \mathcal{L})$ $same \leftarrow Sim(q, a_i, a_j, \mathcal{D}_s)$ Consistency assessment $T_c \ge \alpha$ T_c : proportion of consistent answer

Utility-guided Knowledge Picking

- \Box Missing knowledge that LLM fails in quiz: Retrieve from external $\mathbb{K}' \leftarrow \mathcal{R}(q, \mathbb{K})$
- Another problem: Whether external knowledge helps in QA reasoning

Utility Reference

- Knowledge utility: Whether adding knowledge increases accuracy of LLM's answer
- Compute utility label with ground truth answer in training data as reference

Utility-guided Knowledge Picking

- \Box Missing knowledge that LLM fails in quiz: Retrieve from external $\mathbb{K}' \leftarrow \mathcal{R}(q, \mathbb{K})$
- Another problem: Whether external knowledge helps in QA reasoning

Utility Evaluation

- Inference: Utility evaluation with smaller LLM and similar in-context examples from references
- Only pick external knowledge with positive utility for RAG

	Algorithm 2: KEQA inference			
Overall process of KEQA inference	Input : Question Q , LLM \mathcal{L} , knowledge source \mathbb{K} , utility			
•	reference \mathbb{R} , knowledge retriever \mathcal{R} , reference retriever \mathcal{R}_u ,			
	semantic discriminator \mathcal{D}_s , utility discriminator \mathcal{D}_u			
	Parameter: Number of tries N_c , consistency threshold α			
	Output: Explanation <i>E</i> , answer <i>Y</i>			
	1: $QS \leftarrow GenQ(Q, \mathcal{L})$			
Quiz-based Knowledge Evaluation	2: $QAS \leftarrow \emptyset$			
Quiz-based Kilowieuge Lvaluation	3: for $q \in QS$ do			
	4: $A_c, T_c \leftarrow Consist_assess(q, \mathcal{L}, \mathcal{D}_s, N_c)$			
	5: if $T_c \ge \alpha$ then			
	$6: QAS \leftarrow QAS \cup \{(q, A_c)\}$			
	7: else			
	8: $\mathbb{K}' \leftarrow \mathcal{R}(q, \mathbb{K})$			
	9: $\mathbb{K}^+ \leftarrow \emptyset$			
	10: IOF $K' \in \mathbb{R}'$ do			
Utility-guided Knowledge Picking	11: $\mathbb{K} \leftarrow \mathcal{K}_u(q, K^{\vee}, \mathbb{K})$			
, , , , , , , , , , , , , , , , , , , ,	12: If $Util(q, K^*) == 1$ then			
	$13: \qquad \mathbb{R}^* \leftarrow \mathbb{R}^* \cup \{K^*\}$			
	14: end li			
	15: end for 16			
	16: $a \leftarrow RAG(q, \mathbb{R}^+, \mathcal{L})$ 17: $OAG \leftarrow OAG \vdash \{(q, q)\}$			
DAC and Anourous Supermention	17: $QAS \leftarrow QAS \cup \{(q, a)\}$			
RAG and Answer Summarization	18: end fi			
	$20, E V \neq Summ(O O A S C)$			
	20: $E, I \leftarrow Summ(Q, QAS, L)$ 21: noture E, V			

KEQA Framework

Experiments

Conclusion

Experimental setup

Datasets

- One-hop QA: NaturalQuestions (NQ)
- Complex QA: StrategyQA, HotpotQA, 2WikiMultihopQA (2WMQA)

Baselines

- Non-RAG: Vanilla GPT-3.5, Zero-shot CoT, Few-shot CoT
- RAG: Vanilla RAG, ReAct, IRCoT, FLARE, Self-Rag, SearChain, Rowen, SlimPLM

RAG setup

- LLM backbone \mathcal{L} : GPT-3.5-turbo
- Retriever \mathcal{R} : BM25 (Elasticsearch)
- Knowledge source K: Wikipedia dump Dec 20, 2018

1	7	
Ц		

Overall results

Dataset	NQ		StrategyQA	HotpotQA		2WMQA	
Metric	F1	EM	ACC	F1	EM	F 1	EM
Vanilla GPT-3.5	0.427	0.294	0.468	0.380	0.264	0.313	0.224
Zero-shot CoT	0.454	0.296	0.510	0.353	0.260	0.320	0.218
Few-shot CoT	0.445	0.292	0.620	0.373	0.254	0.360	0.224
Vanilla RAG	0.385	0.258	0.516	0.387	0.254	0.314	0.244
ReAct	0.335	0.212	0.554	0.390	0.270	0.305	0.204
IRCoT	0.344	0.216	0.622	0.361	0.232	0.318	0.202
FLARE	0.455	0.318	0.662	0.391	0.268	0.364	0.246
Self-Rag	0.387	0.270	0.632	0.357	0.220	0.311	0.210
SearChain	0.337	0.214	0.616	0.349	0.216	0.313	0.222
Rowen	0.452	0.286	0.666	0.382	0.240	0.307	0.212
SlimPLM	0.442	0.280	0.566	0.393	0.266	0.368	0.242
KEQA	0.483*	0.352*	0.680*	0.400*	0.278*	0.405*	0.326*
KEQA w/o QKE	0.409	0.284	0.644	0.352	0.232	0.396	0.258
KEQA w/o UKP	0.453	0.302	0.678	0.350	0.250	0.398	0.314
KEQA w∕o ℝ	0.456	0.316	0.676	0.356	0.252	0.398	0.302
KEQA <i>w</i> random \mathbb{R}'	0.474	0.324	0.666	0.375	0.262	0.385	0.288
KEQA w SE	0.475	0.342	0.678	0.388	0.272	0.397	0.316

- KEQA outperforms all baselines, demonstrating its effectiveness
- RAG methods do not always outperform non-RAG methods especially on simple tasks due to noises
- Adaptive RAG methods perform better, showing the superiority of retrieval-on-demand

Quiz analysis

The consistency is correlated positively with the average generation probability, showing its rationality in detecting knowledge state

- Lower consistency threshold might mistakenly treat random guess as knowledge
- Too high consistency threshold might conduct unnecessary retrieval on known information

19

Generalizability analysis

KEQA could promote RAG on LLMs and retrievers with different abilities, showing its generalizability

Efficiency analysis

- KEQA conducts much less retrieval, and consumes less tokens than baselines
- KEQA has higher latency, but it can be greatly reduced if optimized in parallel

	Dataset	NQ	StrategyQA
	KEQA w GPT-4	4 0.515	0.760
	RAG w GPT-4	0.496	0.733
	KEQA w LLaM	A 0.315	0.486
1	KAG W LLaMA	A 0.293	0.440
	Dataset	NQ	StrategyQA
k	KEQA w DPR	0.491	0.690

Dataset	NQ				StrategyQA			
Cost	\mathcal{R}	\mathcal{L}	token	time	$\mid \mathcal{R}$	${\cal L}$	token	time
KEQA	0.138	5.08	239	6.28	0.212	16.44	1016	17.21
IRCoT	1.46	1.46	2024	2.67	1.88	1.88	2374	3.15
FLARE	0.81	1.81	1367	2.45	1.22	2.22	1742	3.45

Case study

- KEQA could detect what the LLM knows and what the LLM does not know
- KEQA could refer to external knowledge only when necessary, to promote both accuracy and efficiency

- Question Which film has the director who was born earlier, The Assassination Of Trotsky or My Life Is Hell?
- **KEQA** The director of The Assassination Of Trotsky, Joseph Losey, was born on January 14, 1909. The director of My Life Is Hell, *Josiane Balasko*, was born on April 15, 1950. Joseph Losey was born earlier than Josiane Balasko. So the answer is The Assassination Of Trotsky.
- q_1 : Who is the director of The Assassination Of Trotsky?
- a_1 : Joseph Losey
- q_2 : When was Joseph Losey born?
- a2: January 14, 1909
- q_3 : Who is the director of My Life Is Hell?
- a₃: Josiane Balasko
- Retrieval: My Life Is Hell is a 1991 French comedy film directed by Josiane Balasko ...
- q_4 : When was the director of Josiane Balasko born? a_4 : April 15, 1950
- q_5 : Is January 14, 1909 earlier than April 15, 1950?
- a_5 : Yes

KEQA Framework

Experiments

□ Conclusion

Conclusion

Summary

22

- □ KEQA framework to improve RAG in complex QA
- Quiz-based knowledge evaluation to examine knowledge boundary of LLM
- □ Utility-guided knowledge picking to evaluate helpfulness of external knowledge in QA

Future work

How to detect outdated internal knowledge in rapidly evolving world
How to adapt to tasks without clear reasoning logic such as writing

Thanks for Listening!

linx@mail.ustc.edu.cn https://github.com/l-xin/KEQA