

Fine-Grained Similarity Measurement of Educational Videos and Exercises

Xin Wang¹, Wei Huang¹, Qi Liu^{1*}, Yu Yin¹, Zhenya Huang¹, Le Wu², Jianhui Ma¹, Xue Wang³

¹University of Science and Technology of China ²Hefei University of Technology ³Nankai University

O1 Introduction

Introduction

> Related Content Recommendation

Related content recommendation on Khan Academy

Introduction

> Partial Similar

An example from Khan Academy

 E_1 Find the zeros of the function: $f(x) = \frac{1}{2}(-x-2)(2x-3)$ E_2 Graph the function: $f(x) = \frac{2}{3}(x+1)(x-5)$

E₃
Graph a parabola whose x intercepts are at x=-3 and x=5 and whose minimum value is y=-4.

Q1: Are they similar?

Q2: Which segments are similar to this exercise? (fine-grained)

Introduction

> Fine-Grained Similarity Measurement

Anhui Province Key Lab. of Big Data Analysis and Application, University of S&T of China

12 Research Contents

- ➤ How to model the multimodal segment?
 - Captions
 - Keyframes
- > Spatial and Temporal Information

Segment Representation Network

Semantic Associations among Video Segments

$$E_1$$

Find the zeros of the function:

$$f(x) = \frac{1}{2}(-x-2)(2x-3)$$

$$E_2$$

Graph the function:

$$f(x) = \frac{2}{3}(x+1)(x-5)$$

E_3

Graph a parabola whose x intercepts are at x=-3 and x=5 and whose minimum value is y=-4.

> How to model the semantic associations between adjacent video segments?

Multiscale Perceptual Fusion

Figure 3: The VENet model architecture consists of three main parts: 1) Multimodal Representing Layer (MRL), 2) Multiscale Perceptual Fusion (MPF), and 3) Similarity Score Layer (SSL). VENet takes a video-exercise pair (V, E) as input and outputs the similarity score $S(Seg_i, E)$, $i \in \{1, \dots, m\}$ and S(V, E).

- How to learn the fine-grained similarity by just exploiting the video-level labeled data?
 - The segment-level labeled data is scarce and costly.
 - The video-level labeled data is much easier to obtain.

$$\begin{split} \mathcal{L}\left(V, E_s, E_{ds}; \Theta\right) &= \sum_{Seg_i \in V} \sum_{Seg_j \in V} \max\left(0, \mu - \left(S_s\left(Seg_i, E_s\right)\right)\right. \\ &\left. -S_s\left(Seg_j, E_{ds}\right)\right)\right) + \lambda \|\Theta\|^2, \end{split}$$

 E_s similar exercise E_{ds} dissimilar exercise μ margin distance λ regularization hyperparameter

03 Experiments

Table 1: The statistics of the dataset

Data	Statistics	Values
Exercise	Num of exercises Avg. words per exercise Avg. similar videos per exercise	17,116 34.95 1.67
Video & Captions	Num of videos Avg. length per video Total length Total size Avg. words per closed captions Avg. similar exercises per video	1,053 383.79s 404,130s 22.6GB 831.78 17.04
Label	Num of similar pairs Num of dissimilar pairs (negative sampling)	10,679 10,679

All the data were crawled from the Khan Academy's math domain (https://www.khanacademy.org/math)

Table 2: Characteristics of the comparison methods

Table 3: Performance of comparison methods

Model	In	put	Task		
	Text	Frame	Video-Level	Segment-Level	
MaLSTM	✓	×	✓	×	
DeepLSTM	✓	×	✓	×	
ABCNN	✓	×	✓	×	
TextCNN	\checkmark	×	✓	×	
DeepLSTM (Seg)	✓	×	✓	✓	
TextCNN (Seg)	✓	×	✓	✓	
TextualVENet	\checkmark	×	✓	✓	
3DCNN	√	✓	✓	×	
JSFusion	\checkmark	✓	✓	×	
EarlyFusion	✓	✓	✓	✓	
VENet	✓	✓	✓	✓	

Model	Video-Level Auc NDCG		Segment-Level Auc NDCG	
	Tiuc	NDCG	7140	
MaLSTM	0.591	0.635	-	-
DeepLSTM	0.778	0.7503	-	-
ABCNN	0.764	0.7448	-	-
TextCNN	0.792	0.771	-	-
DeepLSTM (Seg)	0.844	0.7728	0.754	0.7437
TextCNN (Seg)	0.806	0.7658	0.7418	0.7415
TextualVENet	0.876	0.832	0.768	0.781
3DCNN	0.654	0.742	-	-
JSFusion	0.826	0.788	-	-
EarlyFusion	0.854	0.7806	0.7863	0.7494
VENet	0.942	0.879	0.871	0.823

Ablation Experiments

Table 4: Ablation Experiments

Model	Video-Level		Segment-Level	
Model	Auc	NDCG	Auc	NDCG
TextualVENet	0.876	0.832	0.768	0.781
VisualVENet	0.624	0.7328	0.6324	0.6931
VENet	0.942	0.879	0.871	0.823
VENet-F2C	0.9	0.855	0.8284	0.8198
VENet-S2E	0.91	0.851	0.846	0.8137
VENet-HVLSTM	0.89	0.802	0.803	0.795
VENet-MPF	0.866	0.815	0.789	0.7616

- Visual Information is helpful
- > Textual Information is more important
- > All the key modules are eddective

Case Study

Figure 6: A case study of the similarity measurement for an educational video and three exercises.

Thanks for Listening!

ACM MM 2020 QA Session

Fine-Grained Similarity Measurement of Educational Videos and Exercises

Any Questions?

Just be free to let me know!