

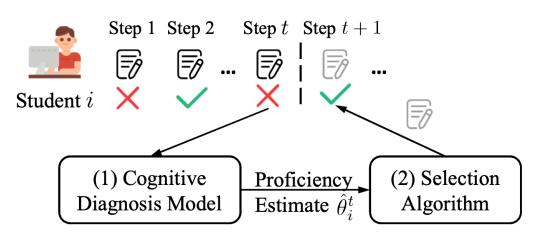
36th AAAI Conference on Artificial Intelligence (AAAI-22), February 22-March 1, 2022, VIRTUAL CONFERENCE

Fully Adaptive Framework: Neural Computerized Adaptive Testing for Online Education

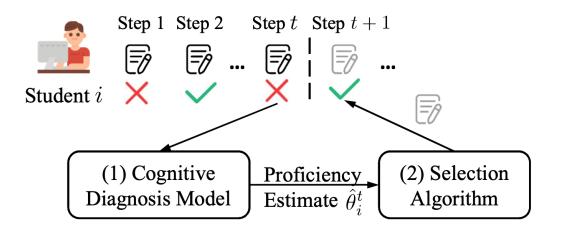
Yan Zhuang¹, Qi Liu^{1*}, Zhenya Huang¹, Zhi Li¹, Shuanghong Shen¹, Haiping Ma² ¹Anhui Province Key Laboratory of Big Data Analysis and Application, School of Data Science & School of Computer Science and Technology, University of Science and Technology of China (USTC); ²Anhui University;

Reporter: Yan Zhuang

AAAI-2022



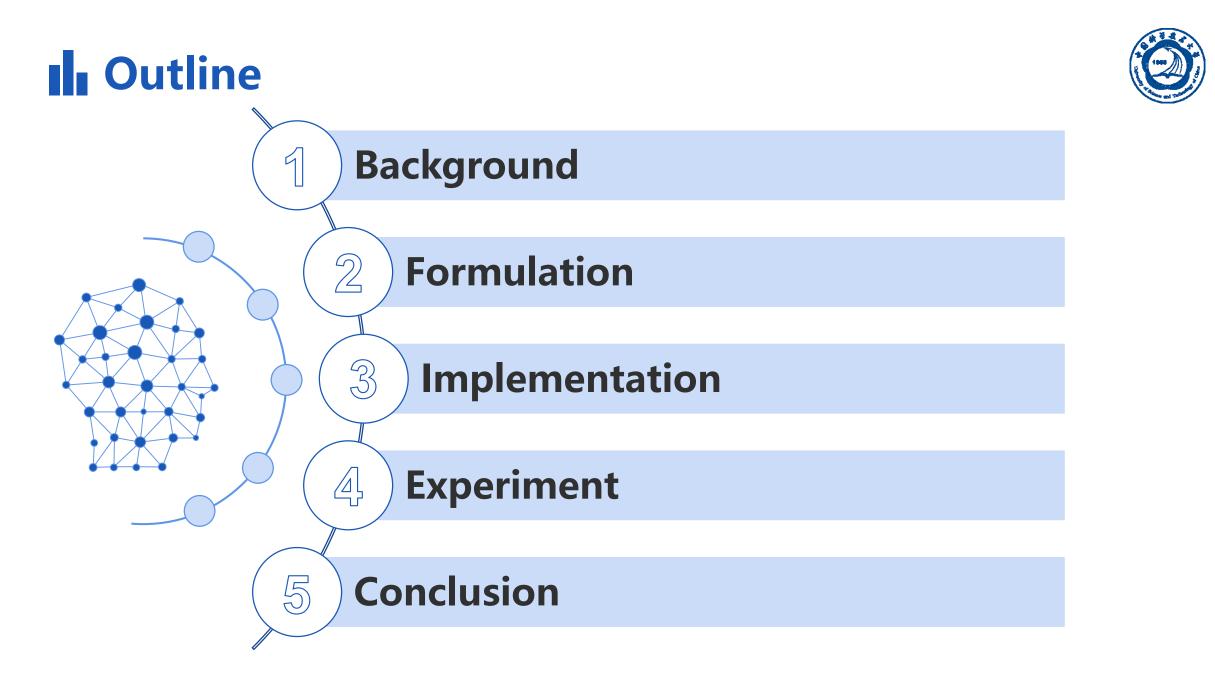
Typical CAT procedure.

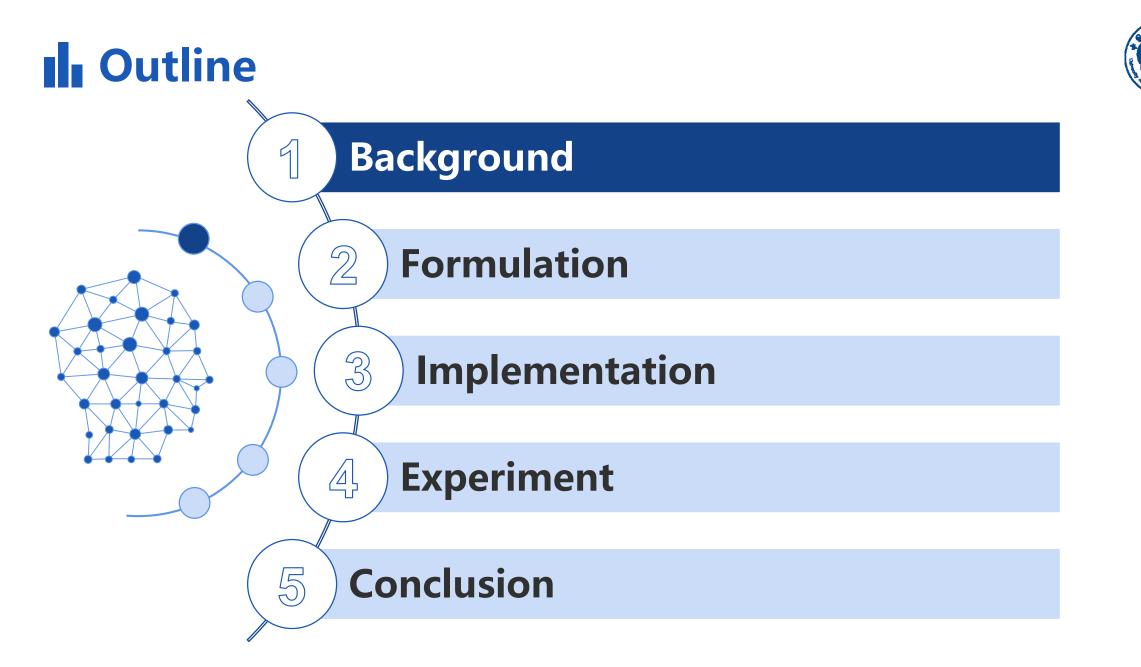


Goal:

- Measuring student's proficiency accurately
- Reducing test length

- (1) Cognitive Diagnosis Model (CDM), which first estimates the student's current proficiency $\hat{\theta}^t$ based on previous *t* responses. The representative models are IRT and NCDM.
- (2) The Selection Algorithm then selects the next question, guided by his/her current proficiency estimate θ^t above. Most algorithms are model-specific, which are specially designed by experts according to different CDMs' characteristics.





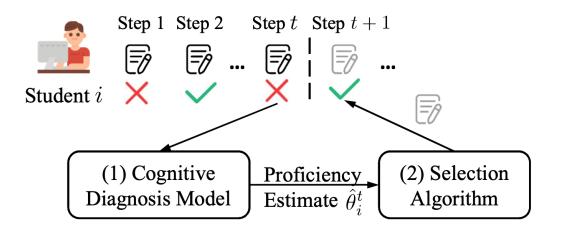
Too many questions - inefficient and boring Fixed time/place - inflexible

• Paper-and-pencil Examination

- Computerized Adaptive Testing (CAT)
 - Personalization and reduce test length
 - Flexible time/place

How to accurately and efficiently measure student's ability/proficiency?

Typical CAT procedure.

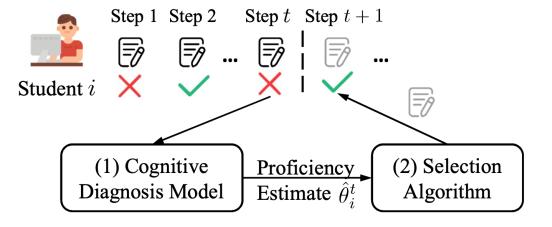


Goal:

- Measuring student's proficiency accurately
- Reducing test length

- (1) Cognitive Diagnosis Model (CDM), which first estimates the student's current proficiency $\hat{\theta}^t$ based on previous *t* responses. The representative models are IRT and NCDM.
- (2) The Selection Algorithm then selects the next question, guided by his/her current proficiency estimate θ^t above. Most algorithms are model-specific, which are specially designed by experts according to different CDMs' characteristics.

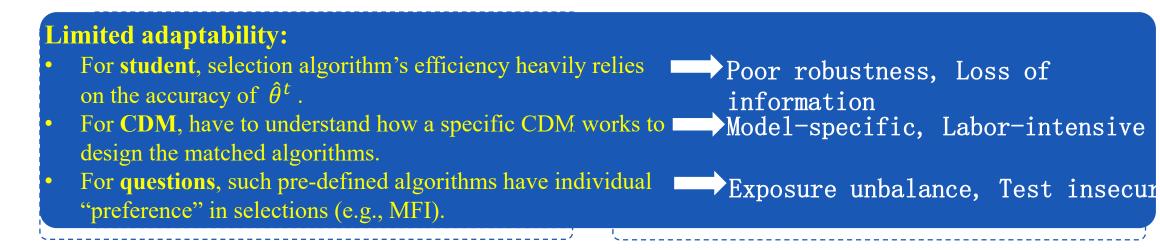
Background

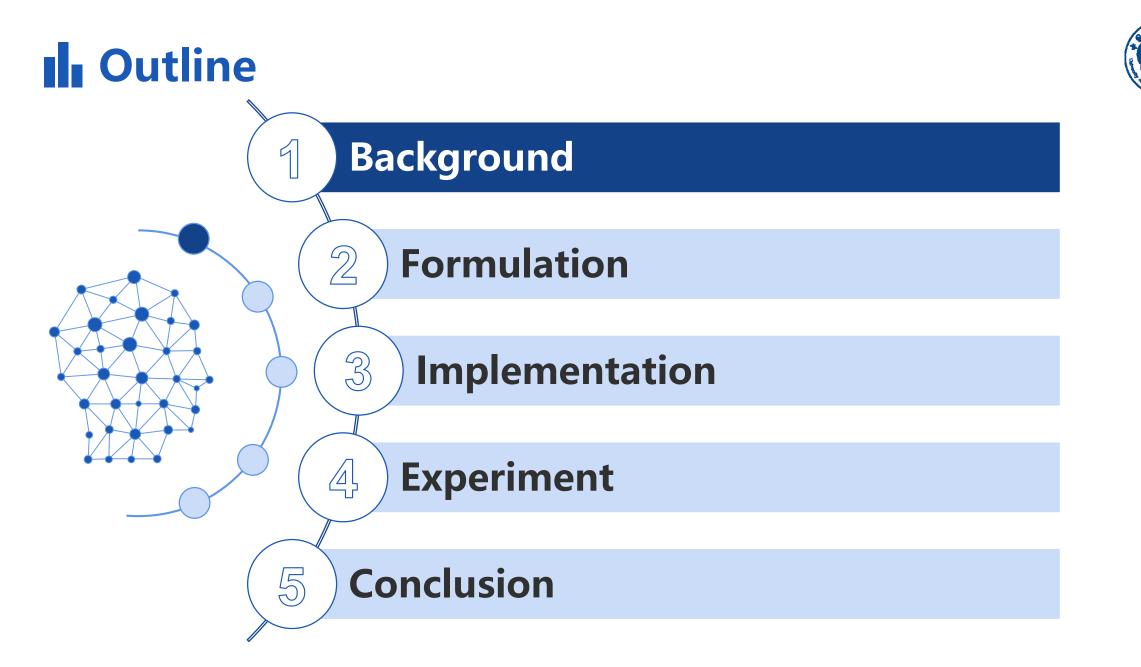


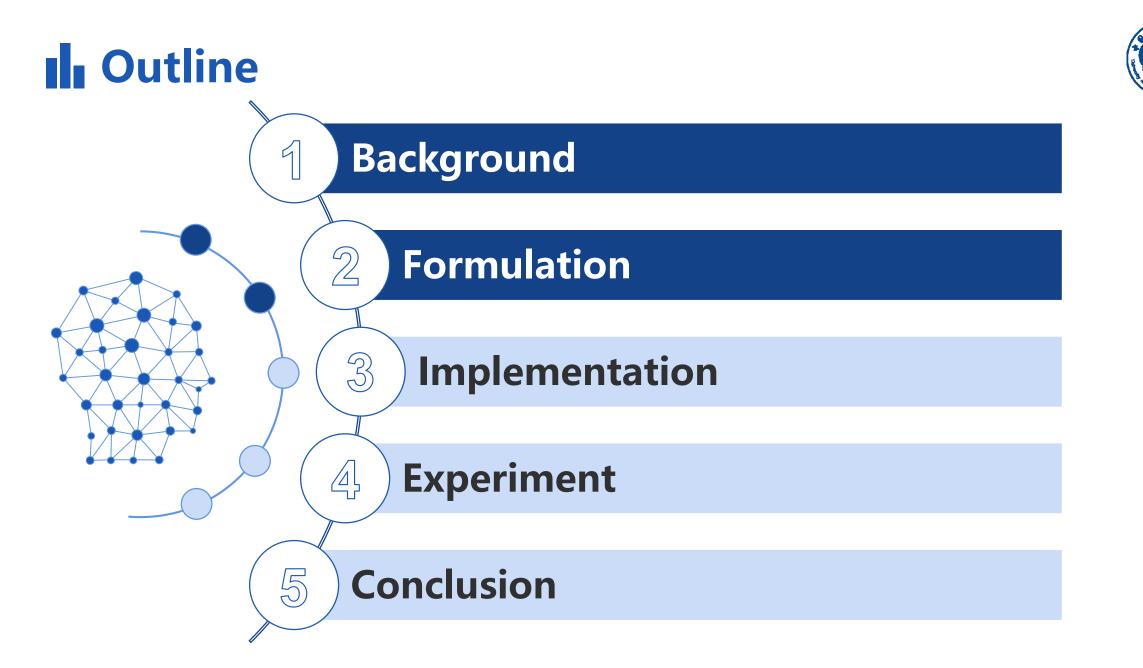
Goal:

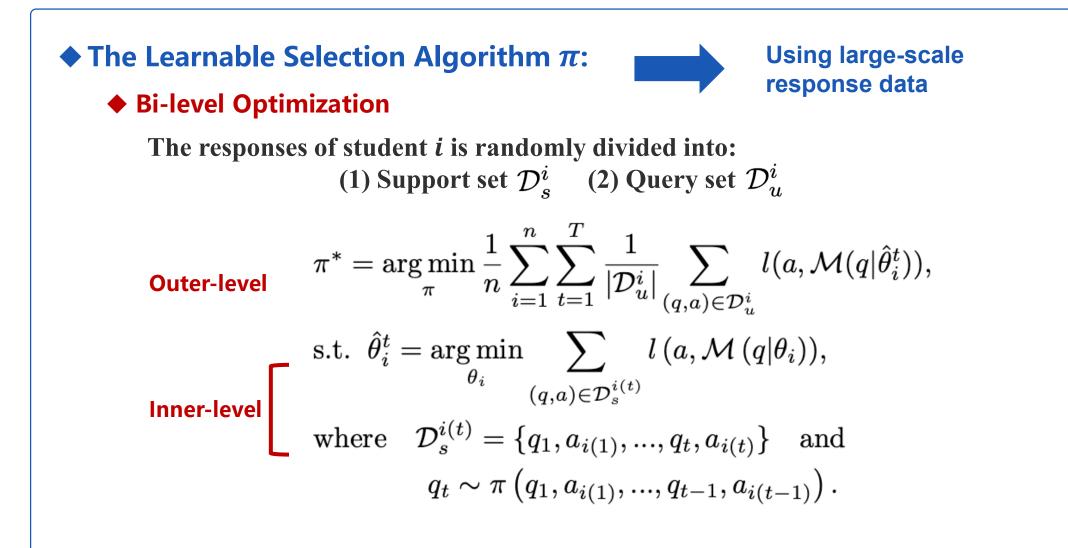
Typical CAT procedure.

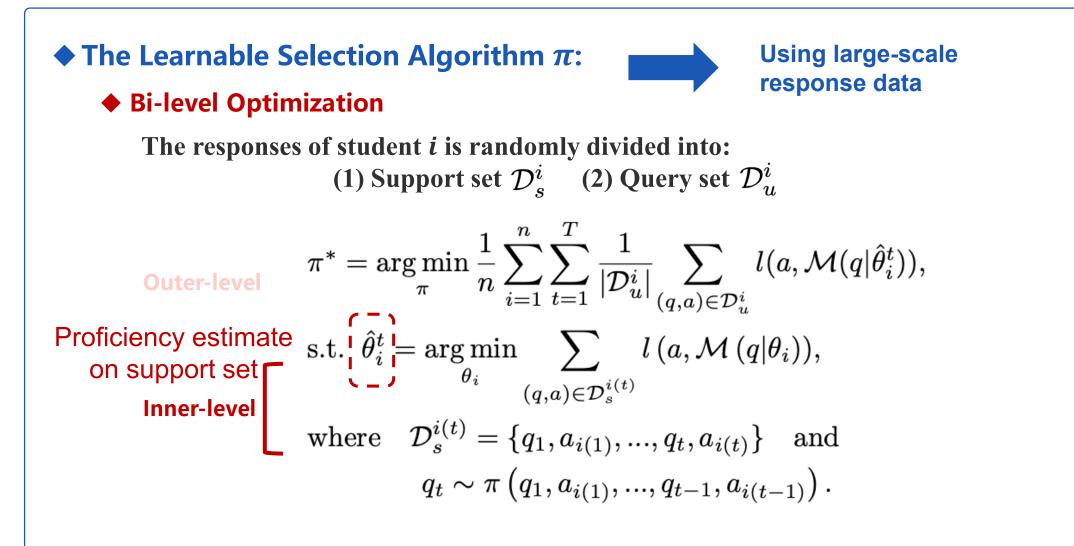
- Measuring student's proficiency accurately
- Reducing test length

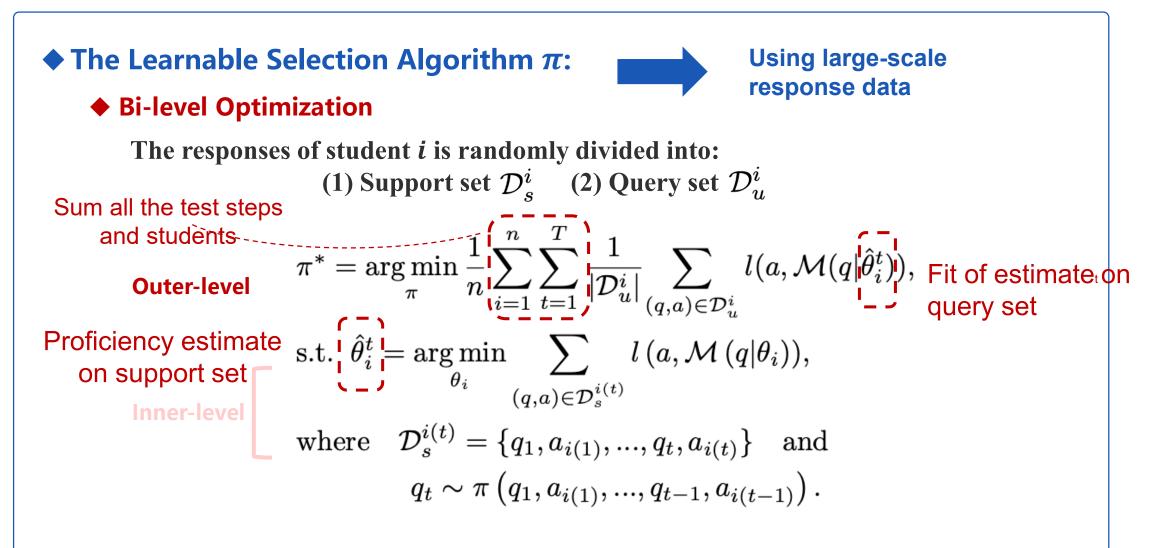












• The Learnable Selection Algorithm π :

Formulation

Reinforcement Learning Formulation

$$\begin{split} \min_{\pi} \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{T} \frac{1}{|\mathcal{D}_{u}^{i}|} \sum_{(q,a) \in \mathcal{D}_{u}^{i}} l(a, \mathcal{M}(q|\hat{\theta}_{i}^{t})) \\ &\triangleq \max_{\pi} \mathbb{E}_{i \sim \pi} \left[\sum_{t=1}^{T} -\frac{1}{|\mathcal{D}_{u}^{i}|} \sum_{(q,a) \in \mathcal{D}_{u}^{i}} l(a, \mathcal{M}(q|\hat{\theta}_{i}^{t})) \right] \\ &= \max_{\pi} \mathbb{E}_{i \sim \pi} \left[\sum_{t=1}^{T} -\mathcal{L}_{\mathcal{M}}(\mathcal{D}_{u}^{i}, \hat{\theta}_{i}^{t}) \right], \end{split}$$

• The Learnable Selection Algorithm π :

Reinforcement Learning Formulation

$$\begin{split} & \min_{\pi} \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{T} \frac{1}{|\mathcal{D}_{u}^{i}|} \sum_{(q,a) \in \mathcal{D}_{u}^{i}} l(a, \mathcal{M}(q|\hat{\theta}_{i}^{t})) \\ & \triangleq & \max_{\pi} \mathbb{E}_{i \sim \pi} \left[\sum_{t=1}^{T} -\frac{1}{|\mathcal{D}_{u}^{i}|} \sum_{(q,a) \in \mathcal{D}_{u}^{i}} l(a, \mathcal{M}(q|\hat{\theta}_{i}^{t})) \right] \\ & = & \max_{\pi} \mathbb{E}_{i \sim \pi} \left[\sum_{t=1}^{T} \frac{-\mathcal{L}_{\mathcal{M}}(\mathcal{D}_{u}^{i}, \hat{\theta}_{i}^{t})}{\mathbf{Reward}} \right], \end{split}$$

• State: previous t responses

$$s_t = \{q_1, a_{i(1)}, ..., q_{t-1}, a_{i(t-1)}\}.$$

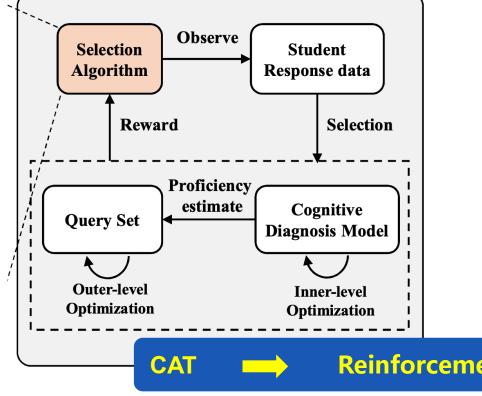
- Action: selection of next question: q_t
- Transition: the uncertainty comes from next question's correction $a_{i(t)}$

 $P(s_{t+1}|s_t, q_t)$

• **Reward:** negative loss of the estimated proficiency of on query set

 $-\mathcal{L}_{\mathcal{M}}(\mathcal{D}_{u}^{i},\hat{ heta}_{i}^{t})$

• The Learnable Selection Algorithm π :



• State: previous t responses

 $s_t = \{q_1, a_{i(1)}, ..., q_{t-1}, a_{i(t-1)}\}.$

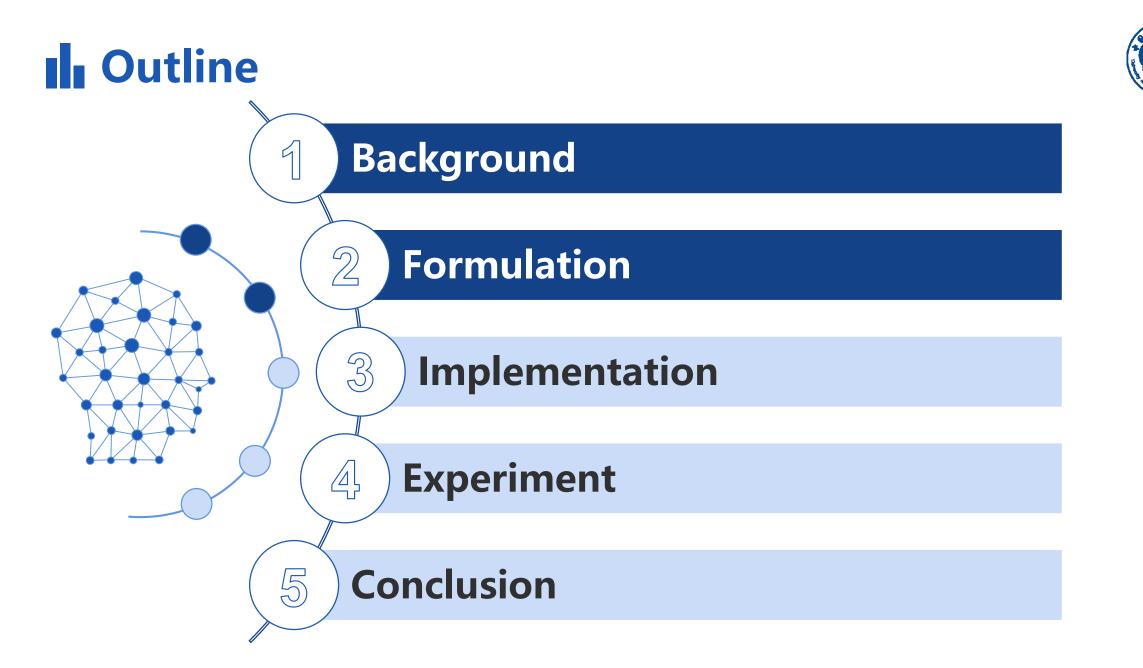
- Action: selection of next question: q_t
- Transition: the uncertainty comes from next question's correction $a_{i(t)}$

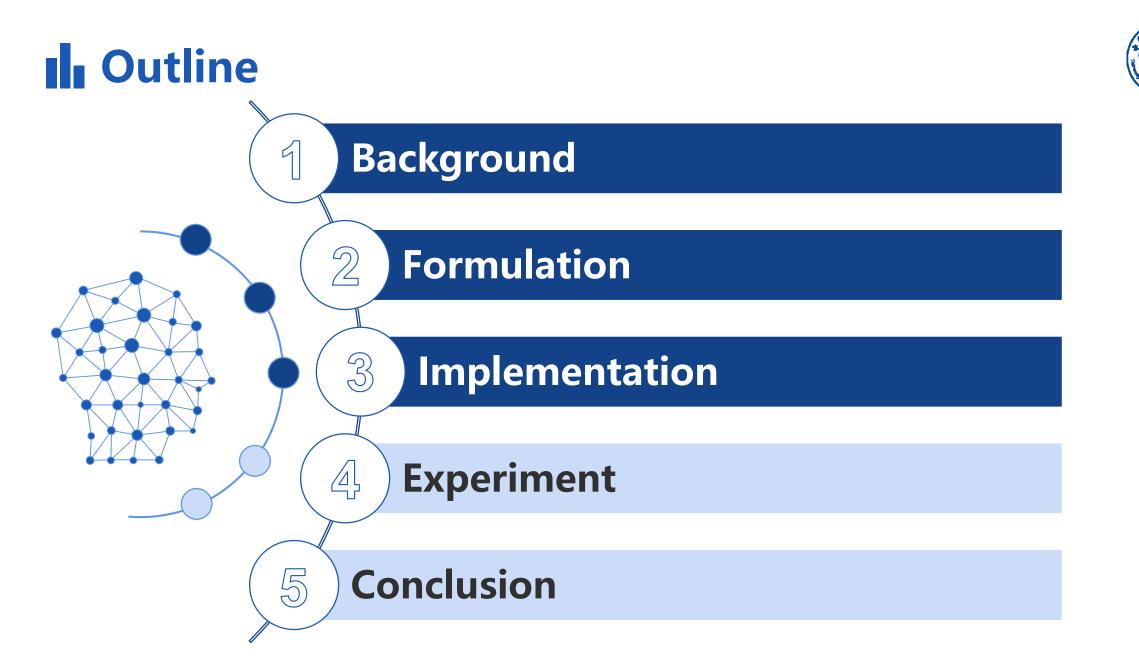
 $P(s_{t+1}|s_t, q_t)$

• **Reward:** negative loss of the estimated proficiency of on query set

 $-\mathcal{L}_{\mathcal{M}}(\mathcal{D}_{u}^{i},\hat{ heta}_{i}^{t})$

Reinforcement Learning problem

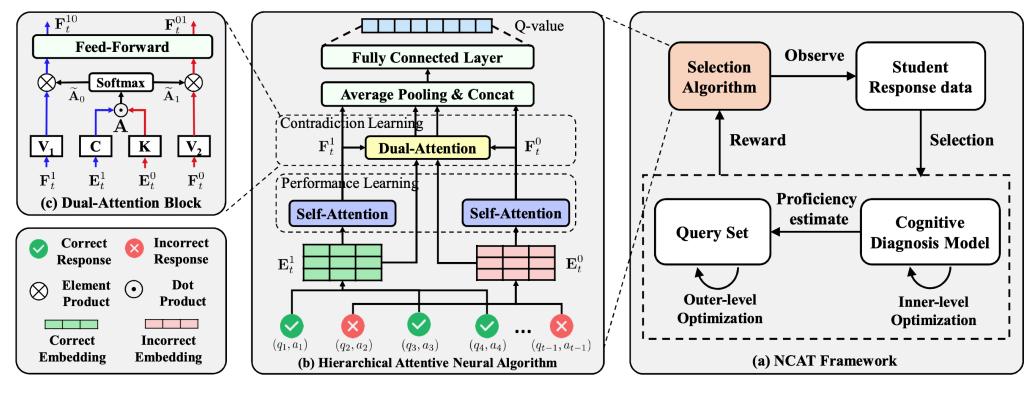


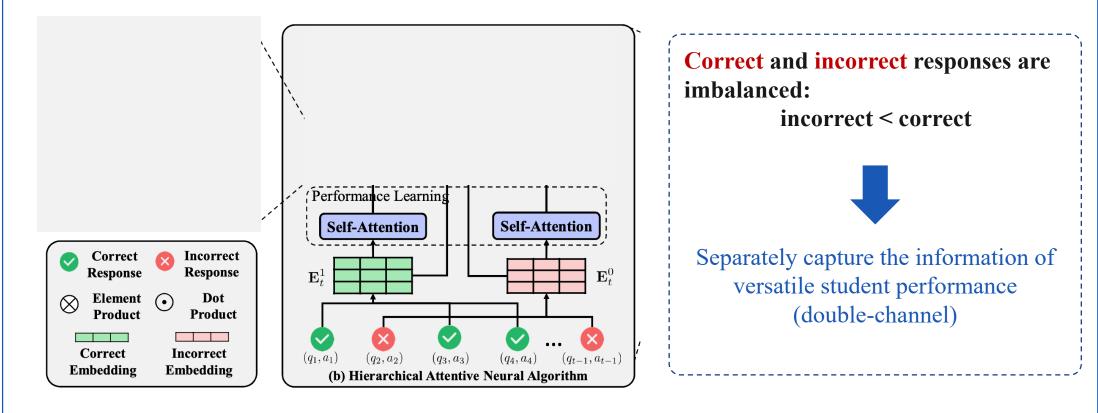


Methodology

Selection algorithm in our NCAT framework:

- Double-Channel Performance Learning
- Contradiction Learning

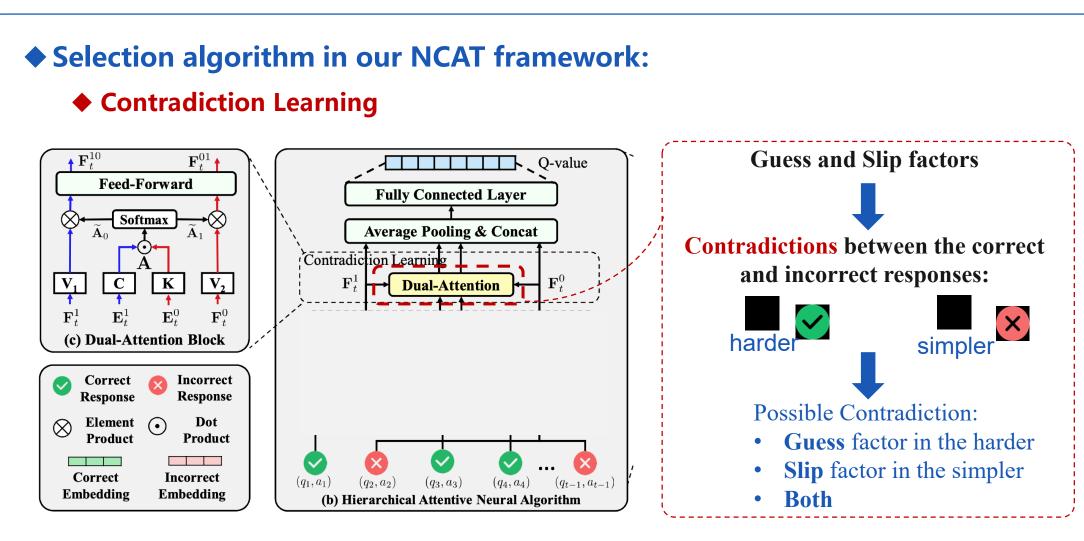




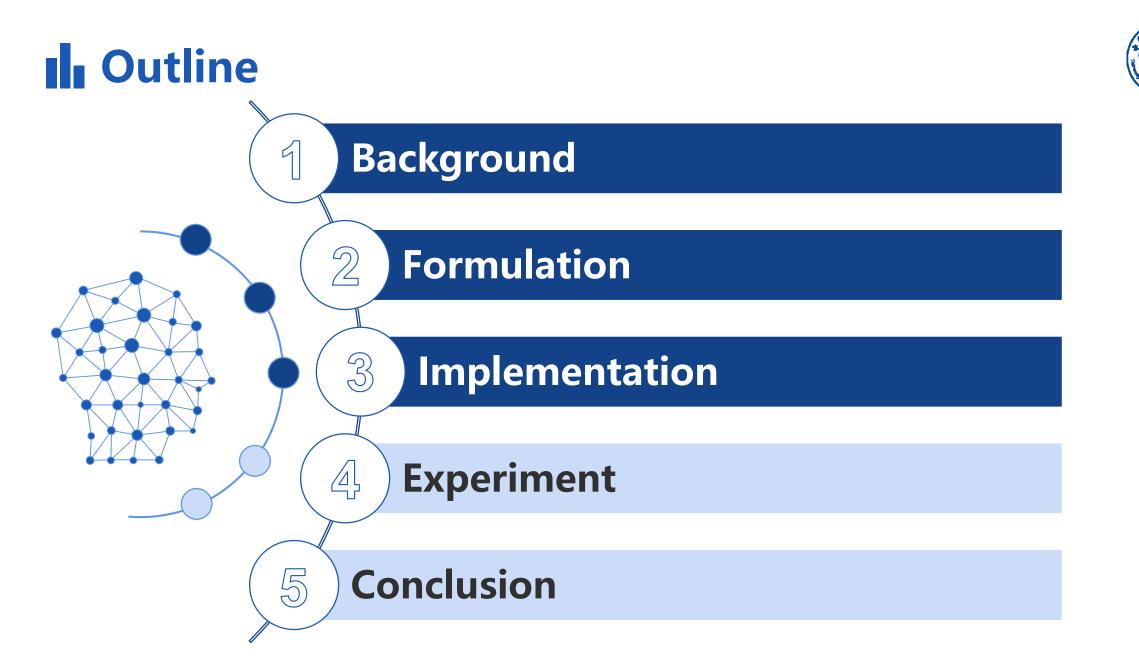
Selection algorithm in our NCAT framework:

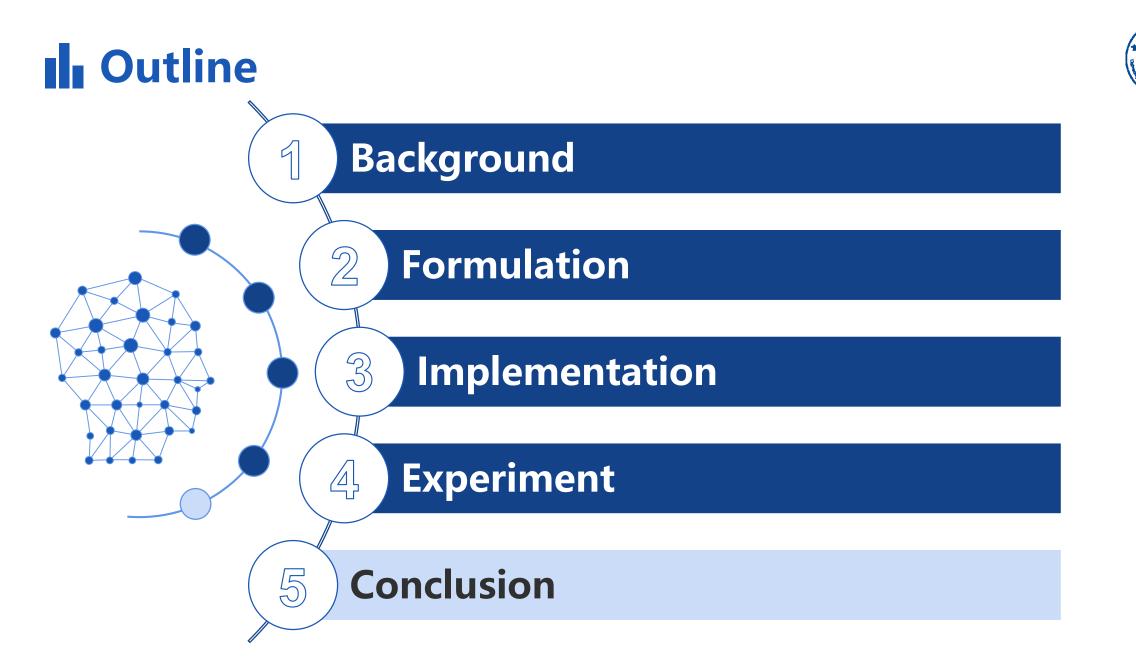
Double-Channel Performance Learning

Methodology



Methodology





Experiment

Setups

Dataset

- Real-world datasets from three online tutoring system
- Involving two classic CDM: IRT and NCDM

Comparison Methods

- ◆ Traditional information/uncertainty-based:
 - ♦ MFI, KLI
 - ◆ MAAT (active learning)
- ◆ Meta Learning :
 - BOBCAT
- ◆ Evaluation Metrics: AUC, ACC, MSE

Experiment

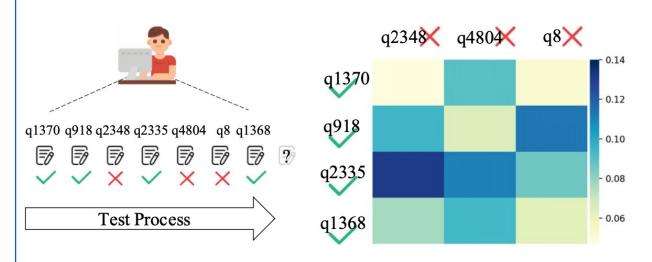
Results

Our proposed NCAT achieves the best performance on all datasets and all types of CDMs.

Dataset	ASSIST				NIPS-EDU					EXAM								
CDM	IRT NCDM			IRT			NCDM			IRT			NCDM					
Metric	ACC				ACC					ACC								
Step	5	10	20	5	10	20	5	10	20	5	10	20	5	10	20	5	10	20
RAND	0.7099	0.7168	0.7241	0.7036	0.7096	0.7205	0.6290	0.6583	0.6868	0.6212	0.6632	0.6921	0.7212	0.7540	0.8100	0.7230	0.7618	0.8144
MFI	0.7224	0.7296	0.7412	_	_	_	0.6464	0.6765	0.7056	_	_	_	0.7495	0.7753	0.8382	_	_	_
KLI	0.7230	0.7298	0.7418	_	_	_	0.6456	0.6719	0.7016	-	_	_	0.7556	0.7841	0.8431	-	_	_
MAAT	0.7233	0.7291	0.7422	0.7268	0.7314	0.7487	0.6481	0.6742	0.7134	0.6432	0.6811	0.7180	0.7590	0.7972	0.8450	0.7623	0.8003	0.8455
BOBCAT	0.7262	0.7328	0.7488	0.7298	0.7409	0.7492	0.6559	0.6812	0.7225	0.6630	0.6952	0.7236	0.7663	0.7991	0.8444	0.7712	0.8100	0.8442
NCAT	0.7330	0.7478	0.7562	0.7354	0.7539	0.7564	0.6606	0.7032	0.7321	0.6742	0.7159	0.7334	0.7813	0.8165	0.8516	0.7837	0.8235	0.8546
Metric	AUC				AUC					AUC								
Step	5	10	20	5	10	20	5	10	20	5	10	20	5	10	20	5	10	20
RAND	0.6884	0.6978	0.7102	0.6891	0.6971	0.7191	0.6550	0.6872	0.7229	0.6591	0.6988	0.7260	0.6714	0.6923	0.7683	0.6791	0.7021	0.7795
MFI	0.6992	0.7100	0.7297	_	_	_	0.6728	0.7066	0.7458	-	_	_	0.6950	0.7188	0.7834	_	_	_
KLI	0.7004	0.7104	0.7316	_	_	_	0.6706	0.7026	0.7390	-	_	_	0.7056	0.7293	0.7869	-	_	_
MAAT	0.7112	0.7122	0.7350	0.7135	0.7211	0.7444	0.6729	0.7034	0.7481	0.6713	0.7139	0.7473	0.7013	0.7345	0.7910	0.7023	0.7376	0.7984
BOBCAT	0.7155	0.7200	0.7423	0.7181	0.7356	0.7463	0.6841	0.7100	0.7571	0.6910	0.7204	0.7622	0.7067	0.7374	0.7908	0.7107	0.7421	0.7921
NCAT	0.7187	0.7318	0.7546	0.7208	0.7391	0.7525	0.6889	0.7307	0.7600	0.7043	0.7394	0.7661	0.7124	0.7489	0.8022	0.7131	0.7589	0.8152

L Experiment

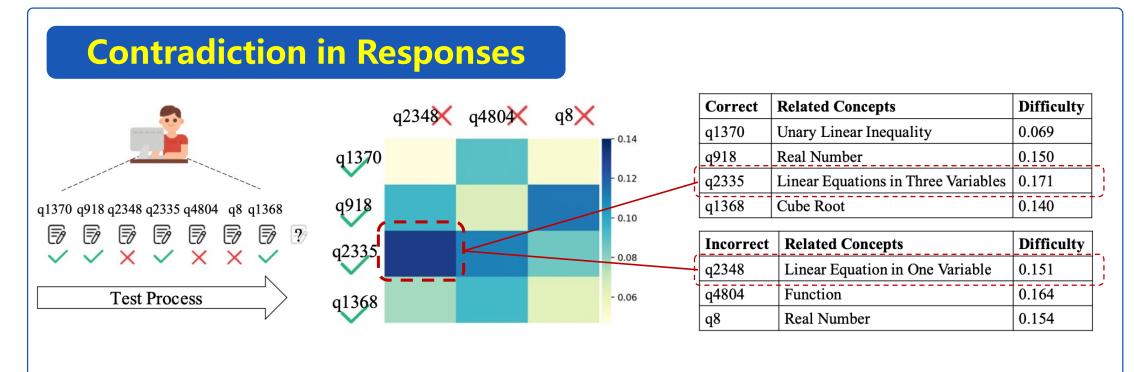
Contradiction in Responses



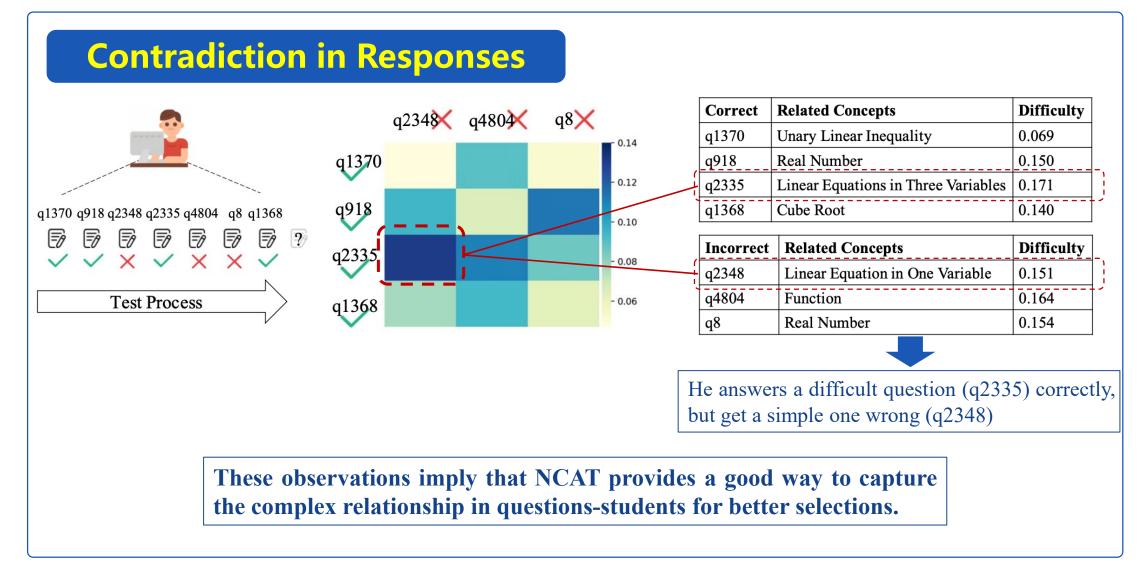
Correct	Related Concepts	Difficulty
q1370	Unary Linear Inequality	0.069
q918	Real Number	0.150
q2335	Linear Equations in Three Variables	0.171
q1368	Cube Root	0.140

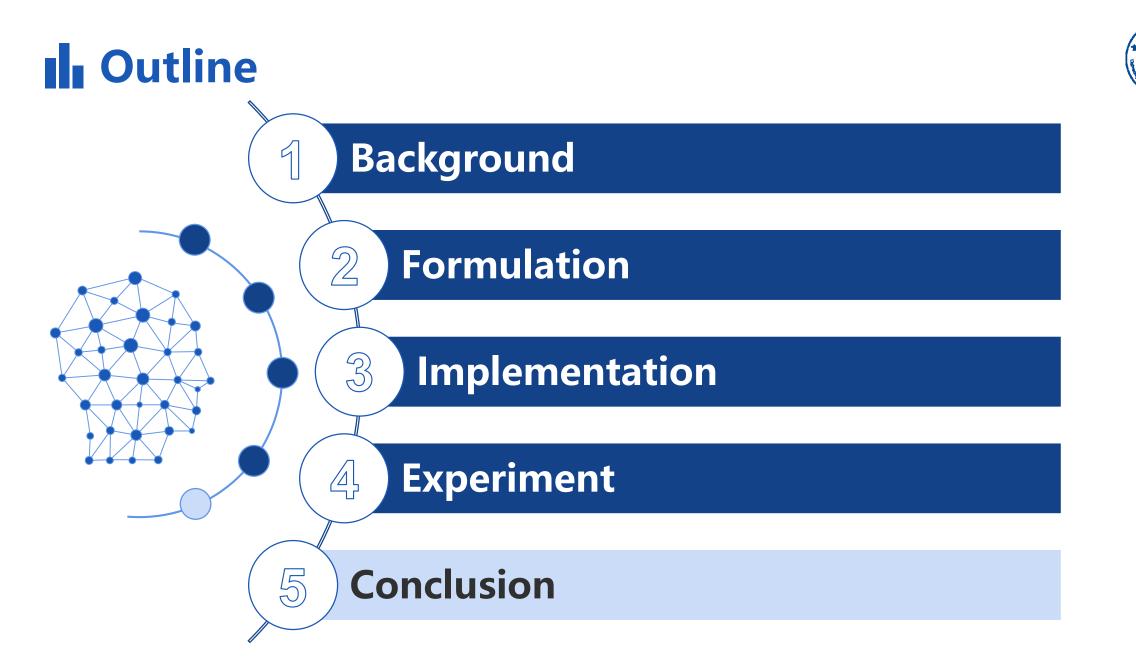
Incorrect	Related Concepts	Difficulty
q2348	Linear Equation in One Variable	0.151
q4804	Function	0.164
q8	Real Number	0.154

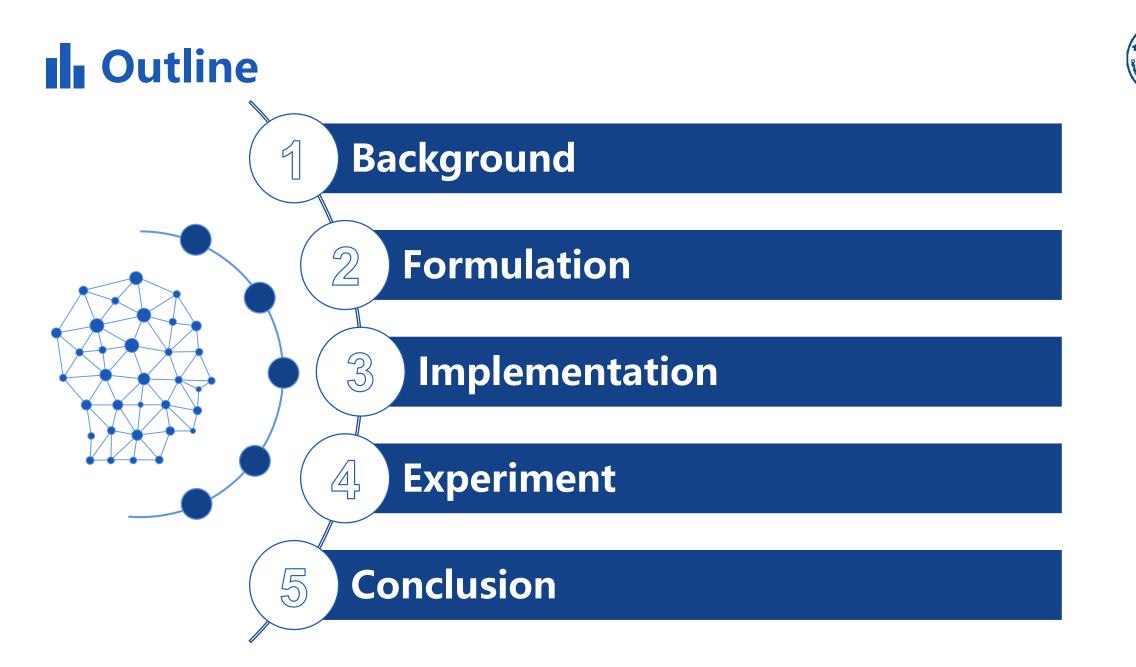
Experiment



Experiment







Conclusion

Conclusion

- Formally redefine CAT as the Reinforcement Learning problem.
 - ◆ No need to design the selection algorithm manually
- Propose a novel Contradiction Learning module to model complex interactions
 - ◆ Capture the Guess and Slip factors
- Conduct extensive experiments with real-world educational datasets
 - ◆ Efficiency, Robustness, Diversity, Exposure Rate

36th AAAI Conference on Artificial Intelligence (AAAI-22), February 22-March 1, 2022, **VIRTUAL CONFERENCE**

Thanks for your listening! For more details, please refer to our paper!

Reporter: Yan Zhuang zykb@mail.ustc.edu.cn

