Fully Adaptive Framework: Neural Computerized Adaptive Testing for Online Education

Yan Zhuang¹, Qi Liu¹*, Zhenya Huang¹, Zhi Li¹, Shuanghong Shen¹, Haiping Ma²

¹Anhui Province Key Laboratory of Big Data Analysis and Application, School of Data Science & School of Computer Science and Technology, University of Science and Technology of China (USTC); ²Anhui University;

Reporter: Yan Zhuang

AAAI-2022
Background

Typical CAT procedure.

1. **Cognitive Diagnosis Model (CDM)**, which first estimates the student’s current proficiency $\hat{\theta}_t$ based on previous t responses. The representative models are IRT and NCDM.

2. **Selection Algorithm** then selects the next question, guided by his/her current proficiency estimate $\hat{\theta}_t$ above. Most algorithms are **model-specific**, which are specially designed by experts according to different CDMs’ characteristics.

Goal:
- Measuring student’s proficiency accurately
- Reducing test length
Background

How to **accurately** and **efficiently** measure student’s ability/proficiency?

- Paper-and-pencil Examination
 - Too many questions - inefficient and boring
 - Fixed time/place - inflexible

- Computerized Adaptive Testing (CAT)
 - Personalization and reduce test length
 - Flexible time/place
Background

Typical CAT procedure.

Goal:
- Measuring student's proficiency accurately
- Reducing test length

(1) Cognitive Diagnosis Model (CDM), which first estimates the student’s current proficiency $\hat{\theta}^t$ based on previous t responses. The representative models are IRT and NCDM.

(2) The Selection Algorithm then selects the next question, guided by his/her current proficiency estimate $\hat{\theta}^t$ above. Most algorithms are model-specific, which are specially designed by experts according to different CDMs’ characteristics.
Background

Typical CAT procedure.

Goal:
- Measuring student's proficiency accurately
- Reducing test length

Limited adaptability:
- For student, selection algorithm’s efficiency heavily relies on the accuracy of $\hat{\theta}^t$.
- For CDM, have to understand how a specific CDM works to design the matched algorithms.
- For questions, such pre-defined algorithms have individual “preference” in selections (e.g., MFI).

→ Poor robustness, Loss of information
→ Model-specific, Labor-intensive
→ Exposure unbalance, Test insecurity
Outline

1. Background
2. Formulation
3. Implementation
4. Experiment
5. Conclusion
The Learnable Selection Algorithm π: Bi-level Optimization

The responses of student i is randomly divided into:

1. Support set D_s^i
2. Query set D_u^i

Outer-level

$$\pi^* = \arg \min \pi \, \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{T} \frac{1}{|D_u^i|} \sum_{(q,a) \in D_u^i} l(a, \mathcal{M}(q|\hat{\theta}_i^t)), $$

s.t. $\hat{\theta}_i^t = \arg \min \theta_i \sum_{(q,a) \in D_s^{i(t)}} l(a, \mathcal{M}(q|\theta_i)),$

Inner-level

where $D_s^{i(t)} = \{q_1, a_{i(1)}, \ldots, q_t, a_{i(t)}\}$ and

$q_t \sim \pi \left(q_1, a_{i(1)}, \ldots, q_{t-1}, a_{i(t-1)} \right).$
Formulation

The Learnable Selection Algorithm π:

Bi-level Optimization

The responses of student i is randomly divided into:

1. Support set D_s^i
2. Query set D_u^i

Outer-level

$$\pi^* = \arg\min_{\pi} \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{T} \frac{1}{|D_u^i|} \sum_{(q,a) \in D_u^i} l(a, M(q|\hat{\theta}_i^t)),$$

s.t. $\hat{\theta}_i^t = \arg\min_{\theta_i} \sum_{(q,a) \in D_s^i(t)} l(a, M(q|\theta_i))$,

where $D_s^i(t) = \{q_1, a_{i(1)}, \ldots, q_t, a_{i(t)}\}$ and $q_t \sim \pi(q_1, a_{i(1)}, \ldots, q_{t-1}, a_{i(t-1)}).$

Using large-scale response data
The Learnable Selection Algorithm π: Using large-scale response data

Bi-level Optimization

The responses of student i is randomly divided into:

(1) Support set D_s^i (2) Query set D_u^i

Outer-level

Fit of estimate on query set

Proficiency estimate on support set

Inner-level

Sum all the test steps and students

$\pi^* = \arg\min_{\pi} \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{T} \frac{1}{|D_u^i|} \sum_{(q,a) \in D_u^i} l(a, \mathcal{M}(q|\hat{\theta}_i^t)),

\text{s.t.} \left\{ \hat{\theta}_i^t = \arg\min_{\theta_i} \sum_{(q,a) \in D_s^{i(t)}} l(a, \mathcal{M}(q|\theta_i)), \right\}

where $D_s^{i(t)} = \{q_1, a_{i(1)}, \ldots, q_t, a_{i(t)}\}$ and $q_t \sim \pi (q_1, a_{i(1)}, \ldots, q_{t-1}, a_{i(t-1)}).$
Formulation

◆ The Learnable Selection Algorithm π:

◆ Reinforcement Learning Formulation

$$
\min_{\pi} \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{T} \frac{1}{|\mathcal{D}_i^u|} \sum_{(q,a) \in \mathcal{D}_i^u} l(a, \mathcal{M}(q|\hat{\theta}_i^t)) \\
\triangleq \max_{\pi} \mathbb{E}_{i \sim \pi} \left[\sum_{t=1}^{T} \frac{1}{|\mathcal{D}_u^i|} \sum_{(q,a) \in \mathcal{D}_u^i} l(a, \mathcal{M}(q|\hat{\theta}_i^t)) \right] \\
= \max_{\pi} \mathbb{E}_{i \sim \pi} \left[\sum_{t=1}^{T} -\mathcal{L} \mathcal{M}(\mathcal{D}_u^i, \hat{\theta}_i^t) \right],
$$
The Learnable Selection Algorithm π:

Reinforcement Learning Formulation

\[
\min_\pi \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{T} \frac{1}{|\mathcal{D}_u^i|} \sum_{(q,a) \in \mathcal{D}_u^i} l(a, \mathcal{M}(q|\hat{\theta}_i^t))
\]

\[
\triangleq \max_\pi \mathbb{E}_{i \sim \pi} \left[\sum_{t=1}^{T} -\frac{1}{|\mathcal{D}_u^i|} \sum_{(q,a) \in \mathcal{D}_u^i} l(a, \mathcal{M}(q|\hat{\theta}_i^t)) \right]
\]

\[
= \max_\pi \mathbb{E}_{i \sim \pi} \left[\sum_{t=1}^{T} \frac{-\mathcal{L}_\mathcal{M}(\mathcal{D}_u^i, \hat{\theta}_i^t)}{\text{Reward}} \right]
\]

- **State**: previous t responses

 \[s_t = \{q_1, a_{i(1)}, ..., q_{t-1}, a_{i(t-1)}\} \].

- **Action**: selection of next question: q_t

- **Transition**: the uncertainty comes from next question’s correction $a_{i(t)}$

 \[P(s_{t+1}|s_t, q_t) \]

- **Reward**: negative loss of the estimated proficiency of on query set

 \[-\mathcal{L}_\mathcal{M}(\mathcal{D}_u^i, \hat{\theta}_i^t) \]
The Learnable Selection Algorithm π:

Reinforcement Learning Formulation

- **State**: previous t responses

 $$s_t = \{q_1, a_{i(1)}, \ldots, q_{t-1}, a_{i(t-1)}\}.$$

- **Action**: selection of next question: q_t

- **Transition**: the uncertainty comes from next question’s correction $a_{i(t)}$

 $$P(s_{t+1} | s_t, q_t)$$

- **Reward**: negative loss of the estimated proficiency of on query set

 $$-\mathcal{L}_M(D_u^i, \hat{\theta}_i^t)$$

Diagram:

- Selection Algorithm
 - Observe
 - Student Response data
 - Reward
 - Selection
 - Query Set
 - Proficiency estimate
 - Outer-level Optimization
 - Cognitive Diagnosis Model
 - Inner-level Optimization
- CAT ➔ Reinforcement Learning problem
Outline

1. Background
2. Formulation
3. Implementation
4. Experiment
5. Conclusion
Outline

1. Background
2. Formulation
3. Implementation
4. Experiment
5. Conclusion
Methodology

◆ Selection algorithm in our NCAT framework:
 ◆ Double-Channel Performance Learning
 ◆ Contradiction Learning
◆ Selection algorithm in our NCAT framework:

◆ Double-Channel Performance Learning

Correct and incorrect responses are imbalanced: incorrect < correct

Separately capture the information of versatile student performance (double-channel)
Methodology

Selection algorithm in our NCAT framework:

Contradiction Learning

Contradictions between the correct and incorrect responses:

- Guess factor in the harder
- Slip factor in the simpler
- Both

Possible Contradiction:
- Guess factor in the harder
- Slip factor in the simpler
- Both
Outline

1. Background
2. Formulation
3. Implementation
4. Experiment
5. Conclusion
Outline

1. Background
2. Formulation
3. Implementation
4. Experiment
5. Conclusion
Experiment

Setups

- **Dataset**
 - Real-world datasets from three **online tutoring system**
 - Involving two classic CDM: **IRT** and **NCDM**

- **Comparison Methods**
 - **Traditional information/uncertainty-based:**
 - MFI, KLI
 - MAAT (active learning)
 - **Meta Learning:**
 - BOBCAT

- **Evaluation Metrics:** AUC, ACC, MSE
Our proposed NCAT achieves the best performance on all datasets and all types of CDMs.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>ASSIST</th>
<th>NIPS-EDU</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDM</td>
<td>IRT</td>
<td>NCDM</td>
<td>IRT</td>
</tr>
<tr>
<td>Step</td>
<td>ACC</td>
<td>NCDM</td>
<td>ACC</td>
</tr>
<tr>
<td>RAND</td>
<td>0.7099</td>
<td>0.7168</td>
<td>0.7241</td>
</tr>
<tr>
<td>MFI</td>
<td>0.7224</td>
<td>0.7296</td>
<td>0.7412</td>
</tr>
<tr>
<td>KLI</td>
<td>0.7230</td>
<td>0.7298</td>
<td>0.7418</td>
</tr>
<tr>
<td>MAAT</td>
<td>0.7233</td>
<td>0.7291</td>
<td>0.7422</td>
</tr>
<tr>
<td>BOBCAT</td>
<td>0.7262</td>
<td>0.7328</td>
<td>0.7488</td>
</tr>
<tr>
<td>NCAT</td>
<td>0.7330</td>
<td>0.7478</td>
<td>0.7562</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric</th>
<th>AUC</th>
<th>NCDM</th>
<th>AUC</th>
<th>NCDM</th>
<th>AUC</th>
<th>NCDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>ACC</td>
<td>NCDM</td>
<td>ACC</td>
<td>NCDM</td>
<td>ACC</td>
<td>NCDM</td>
</tr>
<tr>
<td>RAND</td>
<td>0.6884</td>
<td>0.6978</td>
<td>0.7102</td>
<td>0.6891</td>
<td>0.6971</td>
<td>0.7191</td>
</tr>
<tr>
<td>MFI</td>
<td>0.6992</td>
<td>0.7100</td>
<td>0.7297</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>KLI</td>
<td>0.7004</td>
<td>0.7104</td>
<td>0.7316</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>MAAT</td>
<td>0.7112</td>
<td>0.7122</td>
<td>0.7350</td>
<td>0.7135</td>
<td>0.7211</td>
<td>0.7444</td>
</tr>
<tr>
<td>BOBCAT</td>
<td>0.7155</td>
<td>0.7200</td>
<td>0.7423</td>
<td>0.7181</td>
<td>0.7356</td>
<td>0.7463</td>
</tr>
<tr>
<td>NCAT</td>
<td>0.7187</td>
<td>0.7318</td>
<td>0.7546</td>
<td>0.7208</td>
<td>0.7391</td>
<td>0.7525</td>
</tr>
</tbody>
</table>
Experiment

Contradiction in Responses

Correct	Related Concepts	Difficulty
q1370 | Unary Linear Inequality | 0.069
qu918 | Real Number | 0.150
qu2335 | Linear Equations in Three Variables| 0.171
qu1368 | Cube Root | 0.140

Incorrect	Related Concepts	Difficulty
q2348 | Linear Equation in One Variable | 0.151
qu4804 | Function | 0.164
qu8 | Real Number | 0.154

Test Process
Experiment

Contradiction in Responses

Test Process

Correct	Related Concepts	Difficulty
q1370 | Unary Linear Inequality | 0.069
q918 | Real Number | 0.150
q2335 | Linear Equations in Three Variables | 0.171
q1368 | Cube Root | 0.140

Incorrect	Related Concepts	Difficulty
q2348 | Linear Equation in One Variable | 0.151
q4804 | Function | 0.164
q8 | Real Number | 0.154
Experiment

Contradiction in Responses

He answers a difficult question (q2335) correctly, but get a simple one wrong (q2348)

These observations imply that NCAT provides a good way to capture the complex relationship in questions-students for better selections.
Outline

1. Background
2. Formulation
3. Implementation
4. Experiment
5. Conclusion
Formally redefine CAT as the Reinforcement Learning problem.
- No need to design the selection algorithm manually

Propose a novel Contradiction Learning module to model complex interactions
- Capture the Guess and Slip factors

Conduct extensive experiments with real-world educational datasets
- Efficiency, Robustness, Diversity, Exposure Rate
Thanks for your listening!

For more details, please refer to our paper!

Reporter: Yan Zhuang
zykb@mail.ustc.edu.cn