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Background

 (1) Cognitive Diagnosis Model (CDM),

which first estimates the student’s current

proficiency መ𝜃𝑡 based on previous

𝑡 responses. The representative models are

IRT and NCDM.

Typical CAT procedure.

 (2) The Selection Algorithm then selects the

next question, guided by his/her current

proficiency estimate መ𝜃𝑡 above. Most

algorithms are model-specific, which are

specially designed by experts according to

different CDMs’ characteristics.

Goal:

• Measuring student's proficiency accurately 

• Reducing test length
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Background

 Paper-and-pencil Examination

 Too many questions - inefficient and boring

 Fixed time/place - inflexible

How to accurately and efficiently measure student’s ability/proficiency? 

 Computerized Adaptive Testing (CAT)

 Personalization and reduce test length

 Flexible time/place
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Background

 (1) Cognitive Diagnosis Model, which

first estimates the student’s current

proficiency መ𝜃𝑡 based on previous

𝑡 responses. The representative models

are IRT and NCDM.

Typical CAT procedure.

 (2) The selection algorithm then selects the

next question, guided by his/her current

proficiency estimate መ𝜃𝑡 above. Most algorithms

are model-specific, which are specially

designed by experts according to different

CDMs’ characteristics.

Poor robustness, Loss of 
information 

Exposure unbalance, Test insecurity

Model-specific, Labor-intensive 

Limited adaptability:
• For student, selection algorithm’s efficiency heavily relies 

on the accuracy of መ𝜃𝑡 .

• For CDM, have to understand how a specific CDM works to 

design the matched algorithms. 

• For questions, such pre-defined algorithms have individual

“preference” in selections (e.g., MFI).

Goal:

• Measuring student's proficiency accurately 

• Reducing test length
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Formulation

The Learnable Selection Algorithm 𝝅:

 Bi-level Optimization

Outer-level

Using large-scale 

response data 

Inner-level

The responses of student 𝒊 is randomly divided into: 

(1) Support set            (2) Query set  
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on support set 
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Formulation

The Learnable Selection Algorithm 𝝅:

 Bi-level Optimization

Outer-level

Using large-scale 

response data 

Inner-level

The responses of student 𝒊 is randomly divided into: 

(1) Support set            (2) Query set  
Sum all the test steps

and students

Fit of estimatet on 

query set 

Proficiency estimate

on support set 
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The Learnable Selection Algorithm 𝝅:

 Reinforcement Learning Formulation
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Formulation

The Learnable Selection Algorithm 𝝅:

 Reinforcement Learning Formulation

Reward

 State: previous t responses

 Action: selection of next question:

 Transition: the uncertainty comes from

next question’s correction

 Reward: negative loss of the estimated

proficiency of on query set
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Formulation

The Learnable Selection Algorithm 𝝅:

 Reinforcement Learning Formulation
 State: previous t responses

 Action: selection of next question:

 Transition: the uncertainty comes from

next question’s correction

 Reward: negative loss of the estimated

proficiency of on query set

CAT                     Reinforcement Learning problem
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Methodology

Selection algorithm in our NCAT framework:

 Double-Channel Performance Learning

Correct and incorrect responses are

imbalanced: 

incorrect < correct

Separately capture the information of 

versatile student performance 

(double-channel)
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Methodology

Selection algorithm in our NCAT framework:

 Contradiction Learning

Guess and Slip factors

Contradictions between the correct 

and incorrect responses: 

harder simpler

Possible Contradiction: 

• Guess factor in the harder

• Slip factor in the simpler

• Both
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Experiment

Dataset

 Real-world datasets from three online tutoring system

 Involving two classic CDM: IRT and NCDM

Comparison Methods

 Traditional information/uncertainty-based:

 MFI, KLI

 MAAT (active learning)

 Meta Learning :

 BOBCAT

Evaluation Metrics:  AUC, ACC, MSE

Setups
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Experiment

Results
Our proposed NCAT achieves the best performance

on all datasets and all types of CDMs.

When compared with the BOBCAT, our proposed

MSKT achieves over 15.7% improvement in F1 score,

which clearly demonstrates the importance of domain

adaption for our cross-oilfield reservoir classification

task.

Compare all the methods which do not have transfer

learning strategy, we find our proposed MSE+KG

model has achieved the best performance. One

possible reason is that the knowledge graph brings

the power of extensive geological information cross

two different oilfields via the unified KG embedding.
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Experiment

Contradiction in Responses

He answers a difficult question (q2335) correctly,

but get a simple one wrong (q2348)

These observations imply that NCAT provides a good way to capture

the complex relationship in questions-students for better selections.
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Conclusion

Conclusion

 Formally redefine CAT as the Reinforcement Learning problem.

 No need to design the selection algorithm manually

 Propose a novel Contradiction Learning module to model complex interactions

 Capture the Guess and Slip factors

 Conduct extensive experiments with real-world educational datasets

 Efficiency, Robustness, Diversity, Exposure Rate
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Thanks for your listening!

For more details, please refer to our paper!


