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Computerized Adaptive Testing (CAT):

How to efficiently measure student’s ability?

Traditional Paper-and-pencil Test Computerized Adaptive Testing
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Too many questions: Providing students the least number
low-efficiency and heavy burden of questions to accurately measure
for students their ability (e.g. GRE)



Computerized Adaptive Testing (CAT):

* CAT’s Goal: Accurately assess student true ability 8, with
as few questions as possible (accuracy and efficiency)

* (1) Cognitive Diagnosis Model: estimates the student’s current
ability 8t based on previous t responses.

* (2) The Selection Algorithm: find the next valuable or best-fitting
question from the bank, guided by his/her 6°¢.
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Our Work

* Problem:

min ||§7 — 6|

|S|=T A
The exact true ability 8, of student is unknown, thus it is impossible to
find such ground truth in datasets to directly optimize/design the
selection algorithm. (Existing methods are implicit)

* Solution:
* 1. Find s theoretical approximation 8* as the new target (6* = 6,)

e 2. Design a selection algorithm: select questions set S such that the
estimate can best approximates this new target.

min || — 6*|| = min max V1 (0) — Vi (0)].
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Our Work

* Problem transformation and optimization:

min [|#7 — 6*|| = min max V1:(0) = VI(0)].
ISI=TH | |S|=T 6€© HJZE.:S‘% i(9) % Ol
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This is equivalent to selecting the most ':(”) :/ { o
representative items to form the subset § g L.




Our Work

* The above algorithm is impractical: The responses to the bank

Q are unavailable (gradient difference ||Vll-(9) — Vlj(H)” in
w(i,j) can not be calculated without labels)

* Solution: we propose an expected gradient difference
approximation method to replace the original to calculate their
similarity w(i, j):

w(i, j) = d —max [ V:(0) = VI;(0)]
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Soft Pseudo-Labels



Our Work

* Theoretical guarantees for ability estimation: Upper-bound of
expected estimation error (Theorem 1):

2¢Da+ o7 + 20 s DaH (6, 6*)
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* Experiments:

CDM IRT NeuralCDM
Metric@Step ACC/AUC@5 ACC/AUC@10 ACC/AUC@20 ACC/AUC@5 ACC/AUCe10 ACC/AUC@20
Random 66.45/69.05 68.23/71.66 70.23/74.82 67.19/69.32 68.44/71.56 70.57/74.99
FSI 67.70/70.60 69.62/73.62 71.03/76.24 — — —
KLI 67.09/69.79 69.27/73.30 70.42/75.73 - - -
MAAT 66.70/70.32 69.13/72.41 69.07/74.46 67.86/70.12 70.07/72.58 70.66/75.83
BOBCAT 69.51/74.42 70.94/75.73 71.73/76.58 71.13/76.00 72.52/77.87 73.47/79.00
NCAT 67.30/72.11 70.68/75.80 71.91/76.66 70.47/74.10 72.81/77.99 73.47/79.12
BECAT 66.98/73.15 71.61/75.87 72.00/76.82 71.33/76.30 73.09/78.34 73.58/79.36

It surpasses the data-driven methods,
which requires training on large-scale data.
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