

NeuralAC: Learning Cooperation and Competition Effects for Match Outcome Prediction

Yin Gu, Qi Liu, Kai Zhang, Zhenya Huang, Runze Wu, Jianrong Tao

AAAI2021

Anhui Province Key Laboratory of Big Data Analysis and Application, USTC

Outline

- Background
- Problem Definition
- □ Related Work
- NeuralAC Model
- □ Experiments
- Conclusion and Future Work

Background

3

Match outcome prediction in group comparison setting

□ Two teams involved

Goal: predict the match outcome before the start of the match

Fundamental task

- Rating individual ability
- □ Creating fair matches for players
- Increasing the teams' probability of winning

Figure 1: An example of group comparisons.

Background

- 4
- Usually multiple interactions involved, including intra-team interactions and inter-team interactions.
- Intra-team interactions (cooperation effects): □ The shield soldier A protects teammates Cooperation --> Competition □ The healer A cures teammates Archer A Inter-team interactions (competition effects): Archer B □ archer A shoot swordsman B □ shield soldiers A resist swordsman Shield A Swordsman B B's attack Archer
 - □ Fail to modeling Cooperation and Competition Effects may lead to suboptimal prediction performance.

Healer

Challenge

5

How to model cooperation effects?
The shield soldier protects teammates
The healer cures teammates

How to model intra-team attention? Which on
Key persons play a more important role
Key persons receive more attention from teammates
Interacting with different characters has different importance

Challenge

6

How to model competition effects?
Archer on the left shoot archer in blue
Archer on the left shoot swordsman in blue

□ How to model inter-team attention?

- Key persons receive more attention from opponents
- Interacting with different opponents has different importance

Problem Definition

Lance and Technology

□ Preliminary:

- □ Suppose there are n individuals $\{1,2,...,n\}$.
- □ Each match involves two teams T_A and T_B , and each team is a subset of {1,2,...,n}.

□ Given:

7

 \Box Two teams T_A and T_B

□ Goal:

 \Box Predict the probability of T_A beats T_B

Related Work

□ Traditional method

8

- □ TrueSkill [Herbrich et al. 2007]
- □ Generalized Bradly-Terry [Huang et al. 2008]

$$P(A \text{ beats } B) = \frac{\exp(S_A)}{\exp(S_A) + \exp(S_B)} \qquad S_A = \left| \sum_{i \in T_A} w_i \right| \quad \text{individual effects}$$

□ HOI [Li et al. 2018]

$$S_A = \sum_{i \in T_A} w_i + \sum_{i \in T_A} \sum_{j \in T_A, i \neq j} \mathbf{v}_i^T \mathbf{v}_j$$

cooperation effects

Neural network based method

Aggregate players' representations to obtain the team representation, then predict the outcome based on the team representation.

- □ BalanceNet [Delalleau et al. 2012]
- □ Optmatch [Gong et al. 2020]

Model Overview

9

□ We assume that each team has an underlying score *S*, which represents the overall ability of the team.

□ The probability of T_A defeating T_B :

$$P(A \text{ beats } B) = \frac{\exp(S_A)}{\exp(S_A) + \exp(S_B)}$$
$$= \frac{1}{1 + \exp(-(S_A - S_B))}$$

□ Overall ability of the team T_A :

$$S_A = \sum_{i \in T_A} w_i + F_{\text{coop}}(T_A) + F_{\text{comp}}(T_A, T_B)$$

individual effects cooperation effects competition effects

NeuralAC Model

10

□ Motivation:

□ The cooperation characteristics of two teammates

Modeling Cooperation Effects

- □ Input two teammates' cooperation vectors
- \square DNNs f_2 as the interaction function
- \Box Output a cooperation score between *i* and *j*

NeuralAC Model

11

United States and Technological

□ Motivation:

- □ The offensive's strengths and the defensive's weaknesses
- Modeling Competition Effects:
 - □ Input one's strength vector and opponent's weakness vector
 - \square DNNs f_2 as the interaction function.
 - \Box Output a competition score when *i* against *j*

Attention module

12

□ Motivation:

- □ The key person has a greater influence on the match outcome
- Not all interactions should share the same weight as they contribute differently to the final game outcome.

Cooperation attention module:

- □ Input two teammates' cooperation vectors
- □ Output a cooperation attention score

$$r_{ij}^{\text{coop}} = \mathbf{v}_i^T \mathbf{W}_{\text{coop}} \mathbf{v}_j,$$
$$a_{ij}^{\text{coop}} = \frac{\exp(r_{ij}^{\text{coop}})}{\sum_{j \in T_A, j \neq i} \exp(r_{ij}^{\text{coop}})}$$

attention is asymmetry

- □ Competition attention module:
 - □ Input one's strength vector and his opponent's weakness vector

(

□ Output a cooperation attention score

$$r_{ij}^{\text{comp}} = \mathbf{p}_i^T \mathbf{W}_{\text{comp}} \mathbf{c}_j,$$
$$a_{ij}^{\text{comp}} = \frac{\exp(r_{ij}^{\text{comp}})}{\sum_{j \in T_B} \exp(r_{ij}^{\text{comp}})}$$

NeuralAC Model

□ To summarize:

Generality of NeuralAC

- NeuralAC is general and can cover some traditional models.
- Generalized Bradly-Terry:
 - Considering individual effects

$$S_A = \sum_{i \in T_A} w_i$$

- HOI:
 - Considering individual effects and cooperation effects
 - The cooperation effect is modeled by inner product of two latent vectors

$$S_A = \sum_{i \in T_A} w_i + \sum_{i \in T_A} \sum_{j \in T_A, i \neq j} \mathbf{v}_i^T \mathbf{v}_j$$

Generality of NeuralAC

15

- Blade-Chest-Inner [Chen et al. 2016] :
 - Considering competition effects, and designed for one vs one case.
 - If player a's blade (strength vector p) is closer to player b's chest (weakness vector c) than vice versa, then player a has more edges when against player b.

$$S_a = w_a + \mathbf{p}_a^T \mathbf{c}_b$$

individual effect competition effect

• If set team size of both sides to 1, NeuralAC can be reduced to:

$$S_A = \sum_{i \in \{a\}} w_i + 0 + \sum_{i \in \{a\}} \sum_{j \in \{b\}} \mathbf{p}_i^T \mathbf{c}_j$$

Experiments Setup

Laver and Technology

16

Datasets

- □ Each hero is treated as an individual
- □ We filter out matches that played less than 15 minutes

Dataset	Matches	#Heroes	Mode
Dota2015	800,000	110	5v5
Dota2018	580,270	116	5v5
LoL	754,700	148	5v5
TFT	800,000	188	N1vN2

DOTA2

Experiments Setup

17

1958 Longenerative

Baselines

- □ Logistic Regression (LR): A linear classifier with L2 regularization
- Generalized Bradly-Terry (BT): Another linear model.
- □ TrueSkill: An algorithm based on probability graph.
- □ LightGBM (LGB): a state of the art machine learning algorithm.
- □ HOI: A FM based model that takes pair-wise interaction of teammates into account.
- □ OptMatch: A method that based on multi-head self-attention.

Model Variants

no-coop: A variant of NeuralAC that does not consider the cooperation effect.
no-comp: A variant of NeuralAC that does not consider the competition effect.
no-att: A variant of NeuralAC that all attention modules are removed

Experimental Results

	Model	Dota2015		Dota2018		LoL		TFT	
		AUC	Acc	AUC	Acc	AUC	Acc	AUC	Acc
Individual effects	BT	0.6330	0.5955	0.6116	0.5784	0.6347	0.5969	0.7634	0.6935
	LR	0.6330	0.5956	0.6116	0.5784	0.6347	0.5969	0.7634	0.6935
	TrueSkill	0.6110	0.5789	0.5805	0.5577	0.6129	0.5811	0.7506	0.6832
intra-team interaction	LGB	0.6445	0.6035	0.6224	0.5929	0.6411	0.6028	0.8015*	0.7234*
	on HOI	0.6373	0.5989	0.6144	0.5821	0.6337	0.5965	0.7728	0.6989
	OptMatch	0.6325	0.5961	0.6173	0.5851	0.6523	0.6101	-	-
	NeuralAC	0.6615	0.6156	0.6411	0.6012	0.6663	0.6209	0.8082	0.7279
	no-coop	0.6525	0.6086	0.6333	0.5951	0.6531	0.6110	0.7992	0.7215
	no-comp	0.6444	0.6051	0.6203	0.5841	0.6546*	0.6115*	0.7740	0.7000
	no-att	0.6606*	0.6150*	0.6396*	0.5991*	0.6480	0.6070	0.7780	0.7037

- □ NeuralAC outperforms all the other baselines on all datasets.
- Compared with other variants, NeuralAC performs better, which proves the importance of incorporating comprehensive interactions, and attention mechanisms.
- no-comp performs better than HOI, which indicates that the inner product may fail to model complex interactions.

19

- We choose the most 10 popular heroes in Dota2018, then calculate their pair-wise cooperation scores, competition scores, and attention values separately.
- □ The most 10 popular heroes:

Jugg and FV are melee Damage Per Second (DPS) heroes. Lion, Rubick, and Shaman are ranged wizards with stun spells.

- □ If two individuals *i* and *j* perform better when they play together, they are more likely to get a higher cooperation score.
- Jugg or FV get a high score when they play with Lion, Rubick, or Shaman (red box).
- The Cooperation score between Jugg and FV is extremely low (green box).

- Similarly, if *i* suppress *j* more when *j* is *i*'s opponent, *i* is more likely to get a higher competition score over *j*.
- □ Pudge almost immune from SF, Zeus, Invoker, Lion (green box).
- Zeus gets high competition scores when he against SF and Windranger (red box).

- Recall that the important ones receive more attention from teammates and opponents.
- □ Jugg and FV get relatively high attention values in two figures.
- Invoker get low attention from teammates, but high attention from opponents.

Impact of embedding size

23

 Our model consistently performs the best under all parameter settings.
HOI performs slightly worse when embedding size increases.
OptMatch performs unstable.

Figure 4: Test Acc and AUC w.r.t. embedding size k.

Conclusion

24

- We proposed a novel model: Neural Attentional Cooperation-competition (NeuralAC), which models both attentional cooperation effects and attentional competition effects with deep neural networks.
- □ Several previous methods can be seen as special cases of NeuralAC.
- □ Extensive experiments showed the effectiveness of NeuralAC.
- NeuralAC can provide meaningful and reasonable relationships between individuals. The intermediate results can be further used in team formations, online game hero recommendation, MOBA game balance detection.

□ Future work

- □ Explore higher order interactions
- Consider human factor
- Consider real world scenarios

Thank you for listening!

Codes: https://github.com/alphanumericmax/NAC