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Background

Educational context features

Context features related to student learning progress:
Person: learning habit. self efficiency. test anxiety...
Home: learning environment. parents’ education. wealthy. parents support...
School: teaching method. learning time+ school climate...

Government: education policy...

Government School

o 6
o.. ..

Educational Context

Person



Background
_4

o Cognitive diagnosis
Diagnosing the cognitive states (e.g. knowledge proficiency) of student :

» the problem of how educational contexts affect student’s knowledge proficiency is
still underexplored in cognitive diagnosis.

m Meanwhile, influence of educational contexts are widely discussed in traditional
education field.
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Background

Challenge

Educational contexts involve content from various aspects and are not
concerned with specific knowledge concept

Influence from the same educational context can be personalized

Educational contexts may interact with others
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o Challenge

Educational contexts involve content from various aspects and are not
concerned with specific knowledge concept

Influence from the same educational context can be personalized

Educational contexts may interact with others
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o Context-aware modeling

An important role in information retrieval (IR) related tasks, ranging from
web search , recommendation to online advertising

eg: recommendation

N
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= Probabilistic graphical models
Latent Dirichlet Allocation (LDA)
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Related work

Educational context analysis

Mainly discussed in traditional education domain from the empirical
research perspective

Propose assumptions->Collect data->Analyze with traditional method(e.g.
cluster, linear regression) -> Conclusion.

Get educational contexts with well-designed questionnaire
The relationship between educational contexts and student performance:
Measure of performance (e.g. grade) is not flexible.

It’s hard to analyze complex influence of different contexts
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o Cognitive diagnosis

= Diagnosing the cognitive states(e.g. knowledge proficiency) of student
=1 Focus on exercise related information:

= Raw response records
= IRT. PMF

= Q-matrix(knowledge concept of exercise)
= MIRT. DINA. FuzzyCDF

= Exercise material

= NeuralCD. DIRT
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0 Problem Definition

o1 Educational context-aware cognitive diagnosis:

= Given students’logs R = {Rq, Re }, our goal is to infer students’ proficiency on

knowledge concepts (e.g., student states in Figure) through student performance
(e.g., exercise answering) prediction
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o Educational context-aware Cognitive Diagnosis(ECD)

o An two-stage architecture:
= Educational context modeling r = F(0, ge),

[ Diagnosis enhancement 0 = G(Ocontext> Yinner), Where Ocontext = H(C)
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o Educational context modeling
o Embedding layer

= student s; -> latent character vector x;

= Context feature c-> influencekey -

vector c¥ and influence value vector ¢ nool w ’;‘ :Hﬁm'
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o Educational context modeling

o1 Context interaction layer

w; = Softmax(sim(k;, k)),i € {1,...,U},
where k = (k1 k2;...;ky),
gconrext
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o Diagnosis enhancement

0 Student state representation

, A AN
0 = dt * Ocontext + (1 —dt) * Oinner,
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0 Dataset

01 Programme for International Student Assessment(PISA)
= honored as Olympic Games in testing project
= 15-year-olds’

ST00S5 What is the <highest level of schooling> completed by
ST005Q01TA your mother?

o PISA 2015:

= Student questionnaire for educational

If you are not sure which box to choose, please ask the <test
administrator> for help.

(Please select one response.)

context <ISCED level 3A> O,

= Response records of exercise <ISCED level 3B, 3C> 0O,
<ISCED level 2> O,

<ISCED level 1> O,

She did not complete <ISCED level 1> O

Programme for International Student Assessment @) OECD
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o Preprocess

=1 Extract three datasets from PISA 2015 by area, namely Asia,
Europe, America.

~1 Filter out the students whose records are less than 20
~1 Statics:

Table 3: The statistics of datasets from PISA.

Datasets Students Educational Context Exercise  Exercise

contexts records records
Asia 76,609 300 14,586,482 260 2,172,516
Europe 69,016 300 18,127,964 260 1,952,577

America 62,091 300 14,205,515 260 1,746,899
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o Baseline:

0 Existing cognitive diagnosis methods:
= IRT, MIRT, Neural CD

o Different network in educational context modeling stage:
® DeepFM, NFM
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o Student performance prediction

Table 2: Results on student performance prediction.

Asia Europe America
Model AUC RMSE ACC | AUC RMSE ACC | AUC RMSE ACC
Random ‘ 0.499 0578  0.499 I 0.500 0.577 0.501 ] 0.502 0.577 0.501
NeuralCD 0.714  0.490 0.658 | 0.718 0.476 0.659 | 0.712 0.495 0.665

DeepFM-NeuralCD | 0.728  0.488  0.660 | 0.745 0.455 0.688 | 0.743 0.472 0.661
NFM-NeuralCD 0.722 0483  0.660 | 0.718 0.494 0.667 | 0.717 0.486 0.652
ECD-NeuralCD 0.745 0.468 0.677 | 0.770 0.443 0.700 | 0.764 0.445 0.699

IRT 0.734 0460  0.675 | 0.741 0.456 0.687 | 0.736 0.455 0.678
DeepFM-IRT 0.736  0.459  0.673 | 0.753 0.450 0.689 | 0.768 0.443 0.701
M-IRT 0.724 0464  0.670 | 0.752 0.452 0.679 | 0.771 0.441 0.703
ECD-IRT 0.757 0.449 0.689 | 0.760 0.447 0.699 | 0.773 0.439 0.703
MIRT 0.669  0.484  0.622 | 0.696 0.493 0.650 | 0.691 0.475 0.655
DeepFM-MIRT 0.744 0460 0.676 | 0.741 0.454 0.684 | 0.738 0.459 0.678
M-MIRT 0.736  0.463  0.665 | 0.757 0.452 0.692 | 0.755 0.449 0.688

ECD-MIRT 0.786 0.435 0.704 | 0.790 0.432 0.710 | 0.795 0.427 0.715

O Ablaﬁon

Table 4: Results of ablation experiment.

Asia Europe America
Model AUC RMSE ACC | AUC RMSIIE ACC | AUC RMSE ACC
ECD-NeuralCD | 0.745 0.468 0.677 | 0.770 0.443 0.700 | 0.764 0.445 0.699
- Filtering 0.743  0.469  0.669 | 0.764 0.445 0.699 | 0.762 0.445 0.699
- Interaction 0.736  0.471  0.665 | 0.752 0.451 0.687 | 0.746 0.463 0.684
- Aggregation 0.738 0.465 0.668 0.747 0.456 0.678 0.747 0.450 0.690
ECD-IRT 0.757 0.449 0.689 | 0.760 0.447 0.699 | 0.773 0.439 0.703
- Filtering 0.745 0.456 0.680 0.752 0.451 0.695 0.757 0.447 0.694
- Interaction 0.745 0455 0.677 | 0.756 0.449 0.694 | 0.768 0.442 0.699
- Aggregation 0.739 0.456 0.680 0.755 0.450 0.688 0.754 0.448 0.687
ECD-MIRT 0.786 0.435 0.704 | 0.790 0.432 0.710 | 0.795 0.427 0.715
- Filtering 0.781 0.440 0.695 0.787 0.433 0.706 0.788 0.434 0.709
- Interaction 0.779  0.443  0.695 | 0.787 0.433 0.708 | 0.788 0.433 0.704
- Agoregation 0.773 0.443  0.698 | 0.777 0.438 0.700 | 0.763 0.442 0.692
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o Parameter Analysis

0 Distribution of d;
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0 Visualization
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o Cognitive States Visualization

00 Distribution of average knowledge proficiency
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o Discussion

1 Record the 3 most important context for O

econtext

’

Wi i
each student by w;’ Attention H
. . 171' vi’ Vu' kll kll lkul
[0 Summarize the important context by 8 80 @
. . I
regions L Self-attention
Uy Vi Vi k, ki ky Xt
Table 5: Important educational contexts in different regions.
Regions Context
Uinted States “Home ESCS”, “School learning”, “Teacher Attitude”, “Self-efficacy”
Uinted Kindom “Home ESCS”, “School learning”, “Teacher Attitude”, “School ICT”, “ICT Usage”, “Self-efficacy”
France “Home ESCS”, “School learning”, “Teacher Attitude”, “School ICT”, “ICT Usage”
Germany “Home ESCS”, “School learning”, “Teacher Attitude”, “School ICT”, “ICT Usage”
Italy “Home ESCS”, “School learning”, “Teacher Attitude”, “School ICT”, “ICT Usage”
Singapore “Home ESCS”, “School ICT”, “ICT Usage”, “Interest on science”, “Self-efficacy”
Japan “Home ESCS”, “School ICT”, “ICT Usage”, “Self-efficacy”
Korea “Parent education”, “Home ESCS”, “School ICT”, “ICT Usage”

China

“Parent education”, “Home ESCS”, “School ICT”, “ICT Usage”
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o Conclusion

00 presented a novel framework ECD for students’ cognitive diagnosis, which is
also a quantitive perspective for educational context understanding

m We designed a two-stage solution with a hierarchical attentive network modeling the
influence of educational contexts and an adaptive optimization for student traits
aggregation

= We implemented three specific models with different existing methods under the
framework, (i.e., ECD-IRT, ECD-MIRT, ECD-NeuralCD) and conducted extensive
experiments on real-world datasets to demonstrate the effectiveness as well as
interpretability of ECD framework

m We analyzed and discussed the difference of influencial context features for students
from different regions with our ECD framework



Thanks!




