

The 26th ACM International Conference on Information and Knowledge Management (CIKM) 2017/11/06-2017/11/10, Singapore, Singapore

Tracking Knowledge Proficiency of Students with Educational Priors

Yuying Chen¹, Qi Liu¹, Zhenya Huang¹, Le Wu², Enhong Chen^{1*}, Runze Wu¹, Yu Su³, Guoping Hu⁴

¹ University of Science and Technology of China
 ² Hefei University of Technology
 ³Anhui University ⁴iFLYTEK Research

- Backgroud and Related Work
- Problem Statement
- Methodology
- Experiments
- Conclusion

Traditional teaching method

- Classroom Teaching
 - The teacher's energy is limited.
 - The same learning strategy, same exercises, impersonality.
- Extracurricular Tutorials
 - Teaching quality is difficult to guarantee
 - A higher cost

E-Learning(Online learning)

- □ Knewton
- Cognitive Tutor
- □ etc

Global Education Expenditure Forecast by Subsectors

Education Service Systems

Various online tutoring systems allow students to learn and do exercises individually.

Common "Adaptive" Design

Related work-static

6

IRT

$$P(X_{ij} = 1 | \theta_j) = c_i + \frac{1 - c_i}{1 + \exp[-1.7a_i(\theta_j - b_i)]}$$

DINA

$$P_j(\boldsymbol{\alpha}_i) = P(X_{ij} = 1 | \boldsymbol{\alpha}_i) = g_j^{1 - \eta_{ij}} (1 - s_j)^{\eta_{ij}}.$$

 \square PMF

$$p(R|U, V, \sigma^2) = \prod_{i=1}^{N} \prod_{j=1}^{M} \left[\mathcal{N}(R_{ij}|U_i^T V_j, \sigma^2) \right]^{I_{ij}}$$

they are only good at predicting student's proficiency from a *static perspective.*

 $\Box \text{ LFA - one-dimensional}$ $m(i, j \in KCs, n) = \alpha_i + \sum_{j \in KCs} (\beta_j + \gamma_j n_{i,j})$

$$p(m) = \frac{1}{1 + e^{-m}}$$

□ BKT- binary entities

- 8
- Backgroud and Related Work
- Problem Statement
- Methodology
- Experiments
- Conclusion

- Problem: How to track students' knowledge proficiency over time. (TKP task)?
- Opportunity
 - □ Widely use of **Intelligent tutoring system**
 - Record exercises logs and Q-matrix
 - Educational Priors
- Focus on Math problem

Problem Statement

- 10
- Given the students' response tensor R and Qmatrix labelled by educational experts
- □ our goal is two-fold:
 - modeling the change of students' knowledge proficiency from time 1 to T.
 - predicting students' knowledge proficiency and responses in time T + 1.
- □ Challenge:
 - 1. How to get a student's knowledge proficiency?
 - I 2. How to explain the change of knowledge proficiency over time?

 A showcase of KPD task on mathematical exercises related to the knowledge points of Function and Inequality

- Backgroud and Related Work
- Problem Statement
- Methodology
 - Probabilistic Modeling with Priors
 - Model Learning and Prediction
- Experiments
- Conclusion

Framework

- KPT: a supervised way
 - Modeling Stage
 - Partial order
 - □ Forget
 - Learn
 - Predicting Stage
 Input: U^{1-T} , VOutput: U^{T+1} , R^{T+1}

Probabilistic Modeling with Priors

for each student and each exercise, we model the response tensor *R* as:

$$p(R|U, V, b) = \prod_{t=1}^{T} \prod_{i=1}^{N} \prod_{j=1}^{M} \left[\mathcal{N}(R_{ij}^{t} | \langle U_{i}^{t}, V_{j} \rangle - b_{j}, \sigma_{R}^{2}) \right]^{I_{ij}^{t}}, \quad (1)$$

- □ $U_i^t \in \mathbb{R}^{K \times 1}$ is the knowledge proficiency of student i
- □ $V \in \mathbb{R}^{M \times K}$ denotes the relationship between exercises and knowledge points
- How to establish the corresponding relationship between students, exercises and knowledge points?

Modeling V with the Q-matrix prior

- 15
- Q-matrix
 - depicts the knowledge points of the exercises
 - each row denotes an exercise
 - each column stands for a knowledge point.

	Function	Solid Geometry	Arithmetic Progression	Inequation
exercise 1	1	0	0	0
exercise2	1	1	0	1
exercise3	1	0	1	0
exercise4	0	1	0	0

The sparsity with the binary entities does not fit probabilistic modeling well.

University of Science and Technologia

Modeling V with the Q-matrix prior

- 16
 - □ for exercise j, if a knowledge point q is marked as 1, then we assume that q is more relevant to exercise j than p with mark 0 $q >_i^+ p$, if $Q_{jq} = 1$ and $Q_{jp} = 0$.
 - □ After that, we can transform the original Q-matrix into a set of comparability $D_T \in \mathbb{R}^{M \times K \times K}$ by: $D_T = \{(j, q, p) | q >_j^+ p\}$.

we define the probability that exercise *j* is more relevant to knowledge point *q* than knowledge point *p* as:

$$p(q >_{j}^{+} p | V_{j}) = \frac{1}{1 + e^{-(V_{jq} - V_{jp})}}.$$
 (6)

the log of the posterior distribution

$$\ln p(V|D_T) = \ln \prod_{(j,q,p)\in D_T} p(>_j^+ |V)p(V)$$

= $\sum_{j=1}^M \sum_{q=1}^K \sum_{p=1}^K I\left(q>_j^+ p\right) \ln \frac{1}{1 + e^{-(V_{jq} - V_{jp})}}$
 $- \frac{1}{2\sigma_V^2} ||V||_F^2.$ (7)

Modeling U with learning theories.

- we assume a student's current knowledge proficiency is mainly influenced by two underlying reasons:
 - □ She forgets her previous knowledge proficiency over time.
 - The more exercises she does, the higher level of related knowledge proficiency she will get.
 - We model the two effects of each student's knowledge proficiency in time window t = 2; 3; :::; T as:

$$p(U_{i}^{t}) = \mathcal{N}(U_{i}^{t} | \bar{U}_{i}^{t}, \sigma_{U}^{2} \mathbf{I}), \text{ where } \bar{U}_{i}^{t} = \{\bar{U}_{i1}^{t}, \bar{U}_{i2}^{t} \dots \bar{U}_{iK}^{t}\}$$

$$\bar{U}_{ik}^{t} = (1 - \alpha_{i}) \int f^{t}(*) + \alpha_{i} l^{t}(*), s.t. \quad 0 \le \alpha_{i} \le 1, \qquad (8)$$
forgetting learning

Modeling U with learning theories.

19

□ $f^t(*)$ depicts the decline of knowledge over time:

$$f^t(*) = U_{ik}^{t-1} \mathrm{e}^{-\frac{\Delta t}{S}}$$

 $\Box \Delta t$ is the time interval

□ S denotes the strength of memory.

□ $l^t(*)$ captures the growth of knowledge with exercises:

$$\tilde{l}^{t}(*) = U_{ik}^{t-1} \frac{Df_{k}^{t}}{f_{k}^{t} + r}$$

- \Box f_k^t denotes the frequency of knowledge k
- r and D control the magnitude and multiplie of growth respectively.

Model Learning and Prediction

20

graphical representation of the proposed latent model

Figure 3: Graphical representation of KPT.

Model Learning and Prediction

- our goal is to learn the parameters $\Phi = [U, V, \alpha, b]$ • Particularly, the posterior distribution over Φ is: $p(U, V, \alpha, b | R, D_T) \propto p(R | U, V, \alpha, b) \times p(U | \sigma_U^2, \sigma_{U1}^2) \times p(V | D_T).$
 - Maximizing the log posterior of the above equation is equivalent to minimize the following objective:

$$\begin{split} \min_{\Phi} \mathcal{E}(\Phi) &= \frac{1}{2} \sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{j=1}^{M} I_{ij}^{t} [\hat{R}_{ij}^{t} - R_{ij}^{t}]^{2} \\ &- \lambda_{P} \sum_{j=1}^{M} \sum_{q=1}^{K} \sum_{p=1}^{K} I\left(q >_{j}^{+} p\right) \ln \frac{1}{1 + e^{-(V_{jq} - V_{jp})}} + \frac{\lambda_{V}}{2} \sum_{i=1}^{M} ||V_{i}||_{F}^{2} \\ &+ \frac{\lambda_{U}}{2} \sum_{t=2}^{T} \sum_{i=1}^{N} ||\overline{U_{i}^{t}} - U_{i}^{t}||_{F}^{2}}{2} + \frac{\lambda_{U1}}{2} \sum_{i=1}^{N} ||U_{i}^{1}||_{F}^{2}, \end{split}$$
(13)

■ With students' knowledge proficiency*U*¹, *U*², ..., *U*^T and related parameters, students' responses and knowledge proficiency in the next time can be calculated as:

$$\begin{split} U_i^{(T+1)} = & \left\{ U_{i1}^{(T+1)}, U_{i2}^{(T+1)}, \dots, U_{iK}^{(T+1)} \right\}, \\ U_{ik}^{(T+1)} \approx (1 - \alpha_i) U_{ik}^T \mathrm{e}^{-\frac{\Delta(T)}{S}} + \alpha_i U_{ik}^T \frac{M f_k^{T+1}}{f_k^{T+1} + r}, \\ \hat{R}_{ij}^{(T+1)} \approx \langle U_i^{(T+1)}, V_j \rangle - b_j. \end{split}$$

- 23
- Backgroud and Related Work
- Problem Statement
- Methodology
- **Experiments**
- Conclusion

Dataset

Two private datasets which are collected from daily exercise records of high school students

□ *ASSIST* is a public dataset *Assistments*¹ 2009-2010 "Non-skill builder"

Dataset	Math1	Math2	ASSIST
Training scores logs	521,248	347,424	13,443
Testing scores logs	74,464	18,312	1,822
Students	9,308	1,306	215
Exercises	64	280	71
Time windows	4	10	4
Knowledge points	12	13	7
Average knowledge points	1.15	1.3215	1.02
of each exercise			

Table 4: The statistics of the three datasets.

□ Two evaluations:

- evaluate on Students' Responses Prediction.
 - proved the rationality of three priors for prediction accuracy
- evaluate on Knowledge Proficiency Diagnosis.
 proved that the effectiveness of associating each exercise and student with a knowledge vector in the same knowledge space .

Evaluations on Students' Responses Prediction.

- Evaluation Metrics
 - □ For Scores prediction task performance

For Knowledge Proficiency Diagnosis

DOA-of each specific knowledge point k

$$DOA(k) = \sum_{j=1}^{M} I\left(Q_{jk} = 1\right) \sum_{u1=1}^{N} \sum_{u2=1}^{N} \frac{\delta\left(U_{u1k}^{T} - U_{u2k}^{T}\right) \cap \delta\left(R_{u2j}^{T} - R_{u1j}^{T}\right)}{\delta\left(U_{u1k}^{T} - U_{u1k}^{T}\right)},$$

DOA-average of all knowledge points

$$DOA - Avg = \frac{1}{K} \sum_{k=1}^{K} DOA(k)$$
 baselines:

DINA

BKT

- *QMIRT* (MIRT+partial order)
- *QPMF* (PMF+Partial order)

Evaluations on Knowledge Proficiency Diagnosis

KPT performs best on KPD task for all knowledge points, followed by QPMF and QIRT, which indicates that the educational prior of Q-matrix does effectively.

 $(c) \Delta SSIST$

к	Baselines									
	KPT	QPMF	QMIRT	DINA	BKT					
K1	0.798	0.565	0.595	0.524	0.558					
K2	0.733	0.576	0.621	0.473	0.623					
K3	0.827	0.614	0.629	0.497	0.523					
K4	0.752	0.581	0.675	0.486	0.565					
K5	0.791	0.559	0.723	0.476	0.578					
K6	0.838	0.730	0.766	0.485	0.628					
K7	0.842	0.697	0.634	0.520	0.697					
K8	0.784	0.699	0.657	0.498	0.617					
K9	0.771	0.609	0.712	0.501	0.645					
K10	0.834	0.597	0.515	0.489	0.503					
K11	0.786	0.608	0.631	0.478	0.617					
K12	0.842	0.532	0.641	0.523	0.645					
			•	(h)	Math2					
(b) Math2										

(a) Math1

	(0) 1100101				(b) Math2									
		Baselines						к		Baselines				
K	Κ		Dascilles				r	KPT	QPMF	QMIRT	DINA	BKT		
		KPT	QPMF	QMIRT	DIN	JA	BKT		K1	0.804	0.743	0.754	0.517	0.568
									K2	0.757	0.632	0.659	0.534	0.753
	K1	K1 0.793	0.747	0.716	0.60	05	0.592		K3	0.818	0.761	0.723	0.510	0.669
	K2	0.823	0.653	0.673	0.59	93	3 0.672		K4	0.688	0.733	0.734	0.534	0.711
	112	0.020	0.000	0.010	0.0.			K5	0.891	0.703	0.668	0.474	0.553	
	K3	0.887	0.852	0.671	0.63	31	0.577		K6	0.699	0.547	0.653	0.489	0.644
							0.569	K7	0.791	0.677	0.722	0.483	0.730	
	K4	0.792	0.598	0.755	0.52	25		K8	0.726	0.722	0.659	0.523	0.668	
	K5	0.801	0.576	0.672	0.51		0.624		K9	0.736	0.558	0.541	0.507	0.567
	КJ	0.091	0.570	0.072	0.5			K10	0.652	0.639	0.650	0.511	0.614	
	K6	0.871	0.647	0.657	0.65	28	0.604		K11	0.888	0.836	0.692	0.522	0.630
						K12	0.798	0.737	0.794	0.498	0.528			
	K7	0.901	0.793	0.654	0.57	73	0.796		K13	0.813	0.797	0.804	0.453	0.633

- The diagnosis results of a student on six knowledge points at three particular time in Math2
- It clearly demonstrated the explanatory power of our proposed KPT model

- Backgroud and Related Work
- Problem Statement
- Methodology
- Experiments
- **Conclusion**

- 31
- Problem: track students' knowledge proficiency mastery over time
- Method: probabilistic model with three educational priors
- **Contributions**:
 - We designed an *explanatory* probabilistic KPT model for solving the TKP task
 - □ We associated each exercise with a knowledge vector with the *Q*-*matrix* prior.
 - we embedded the Learning curve and Forgetting curve as priors to capture the change of each student's proficiency over time.

- First, we will consider to combine more kinds' of users' behaviors (e.g., reading records) for the TKP task.
- Second, as students may learn difficult knowledge points (e.g., Function) after some basic ones (e.g., Set), it is interesting to take this kind of knowledge relationship into account for TKP

□ We thanks for:

- □ the SIGIR Travel Award
 - url: <u>http://sigir.org/general-information/travel-grants/</u>

- □ the SIGWEB and US NSF Travel Award
 - url: <u>https://cmt3.research.microsoft.com/CIKMTA2017</u>

Thanks !

Reporter: Yuying Chen cyy33222@mail.ustc.edu.cn