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Background

Traditional teaching method

Classroom Teaching
The teacher’s energy is limited.
The same learning strategy, same exercises,
impersonality.

Extracurricular Tutorials
Teaching quality is difficult to guarantee
A higher cost



Background

Fast Growing Segments (2012-2017 CAGR)
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Background

o Education Service Systems

0 Various online tutoring systems allow students to learn

and do exercises individually.

Dependent
Practice,
“Worksheet"
Problems

A

dynamic loop

Common “Adaptive” Design




Related work-static
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Related work-dynamic
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Motivation

Problem: How to track students” knowledge
proficiency over time. (TKP task)?

Opportunity
Widely use of Intelligent tutoring system
Record exercises logs and Q-matrix

Educational Priors A
//0
Z%
Focus on Math problem / . %
B 0 C
AB=3cm AC=4cm

Sshadow =? cm?




Problem Statement

Given the students’ response tensor R and O-
matrix labelled by educational experts

our goal is two-fold:

modeling the change of students” knowledge
proficiency from time 1to T .

predicting students” knowledge proficiency and
responses in time T + 1.

Challenge:

1. How to get a student’s knowledge proficiency?

2. How to explain the change of knowledge proficiency
over time?



A toy example

71 A showcase of KPD task on mathematical exercises
related to the knowledge points of Function and

Explanations
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KPT model

Probabilistic Modeling with Priors

for each student and each exercise, we model

the response tensor R as:
T N M

p(RIU,V,b) = [T TT TTW (R, I(UE Vi) = b o))", (D)

t=1:1=1j7=1

Uf eR**! is the knowledge proficiency of
student i

V eRM*® denotes the relationship between
exercises and knowledge points
How to establish the corresponding
relationship between students, exercises and
knowledge points?



Modehng V with the Q-matrix prior

(Q-matrix
depicts the knowledge points of the exercises
each row denotes an exercise

each column stands for a knowledge point.

exercise |

exercise?2

- O — O
o —- O O

1 o)
1 1
exercise3 1 o)
o) o)

exercise4

The sparsity with the binary entities does not fit
probabilistic modeling well.



Modelmg V with the Q-matrix prior

0 for exercise j, if a knowledge point q is marked as 1,
then we assume that q is more relevant to exercise j
than p with mark O —— Partial order

q>Fp ifQjq=1and Q;, =0.

o After that, we can transform the original Q-matrix
into a set of comparability p, ¢ r¥<xxx by: Dr = {(j.a.p)la >} p}.

e (E1,K1,K2)
(E1,K1,K4)
(E1,K3,K2)
(E1,K3,K2)

(E3,K4,K1)
(E3,K4,K2)

Q-matrix \__A (E3,K4,K3)




Modehng V with the Q-matrix prior

- we define the probability that exercise j is more
relevant to knowledge point g than knowledge point

as:
P 1
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Modelmg U with learning theories.

0 we assume a student’s current knowledge proficiency
is mainly influenced by two underlying reasons:
She forgets her previous knowledge proficiency over time.

The more exercises she does, the higher level of related
knowledge proficiency she will get.

We model the two effects of each student’s knowledge
proficiency in time window t=2; 3; ::;; T as:

p(Uf) :,/\/'(Uﬂ ,O'UI) where Ut—{ I .U}K}
=1 — ) |ff(6) Headl (%), 5.t 0 < s < 1, (8)
forgetting learning




Modelmg U with learning theories.

o ft(x)depicts the decline of knowledge over time:

fix) = UL e

Memory Retention (%)

0 At is the time interval

0 S denotes the strength of memory. | 777 5 v

o lt(¥)captures the growth of knowledge with exercises:
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Figure 3: Graphical representation of KPT.



Model Learning and Prediction

o our goal is to learn the parameters ®=[U,V, «, b]

o Particularly, the posterior distribution over @ is:
p(U,V,a,b|R, D7) x p(R|U,V,a,b) x p(Ulot,051) X p(V|Dr).

o Maximizing the log posterior of the above equation is
equivalent to minimize the following objective:
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Model Learning and Prediction

o With students” knowledge proficiencyU?, U%, ..., U and
related parameters, students” responses and knowledge
proficiency in the next time can be calculated as:

yT+D ={Uz-(1T+1), uT+y | uZ+D

T+1
(T+1) _Ss_l A Mf,
~ (- al; h

R(T+1) (U(T+1) V ) . b
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Experlments

1 Dataset

Two private datasets which are collected from daily
exercise records of high school students

ASSIST is a public dataset Assistments! 2009-2010

“Non-skill builder”

Table 4: The statistics of the three datasets.

Dataset Mathl | Math2 | ASSIST
Training scores logs 521,248 | 347,424 | 13,443
Testing scores logs 74,464 18,312 1,822
Students 9,308 1,306 215
Exercises 64 280 71
Time windows 4 10 4
Knowledge points 12 13 7
Average knowledge points 1.15 1.3215 1.02

of each exercise




Evaluations

Two evaluations:

evaluate on Students” Responses Prediction.

proved the rationality of three priors for prediction
accuracy

evaluate on Knowledge Proficiency Diagnosis.

proved that the effectiveness of associating each
exercise and student with a knowledge vector in the
same knowledge space .



Evaluations on Students” Responses
Prediction.

o Evaluation Metrics
For Scores prediction task performance
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‘(-)Y) Evaluations on Knowledge Proficiency
= Diagnosis

For Knowledge Proficiency Diagnosis
= DOA-of each specific knowledge point k
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y\ Evaluations on Knowledge Proficiency
Diagnosis

(a) Mathl
K Baselines
KPT || QPMF| QMIR]T DINA| BKT
- KPT performs beSt on KPD K1 0.798|] 0.565 0.595 0.524 | 0.558
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0 The diagnosis results of a student on six knowledge
points at three particular time in Math2

0 It clearly demonstrated the explanatory power of our
proposed KPT model
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Conclusion

Problem: track students” knowledge proficiency mastery
over time

Method: probabilistic model with three educational priors

Contributions:

We designed an explanatory probabilistic KPT
model for solving the TKP task

We associated each exercise with a knowledge vector
with the O-matrix prior.

we embedded the Learning curve and Forgetting curve as
priors to capture the change of each student’s
proficiency over time.



Future Work

First, we will consider to combine more kinds’ of
users’ behaviors (e.g., reading records) for the TKP
task.

Second, as students may learn difficult knowledge
points (e.g., Function) after some basic ones (e.g., Set),
it is interesting to take this kind of knowledge
relationship into account for TKP
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