The 28th ACM International Conference on Information and Knowledge Management (CIKM 2019)



### Exploring Multi-Objective Exercise Recommendations in Online Education Systems

Zhenya Huang<sup>1</sup>, Qi Liu<sup>1</sup>, Chengxiang Zhai<sup>2,\*</sup>, Yu Yin<sup>1</sup>, Enhong Chen<sup>1,\*</sup>, Weibo Gao<sup>1</sup>, Guoping Hu<sup>3</sup> <sup>1</sup>Anhui Province Key Laboratory of Big Data Analysis and Application, School of Computer Science and Technology & School of Data Science, University of Science and Technology of China, {huangzhy,yxonic}@mail.ustc.edu.cn; {qiliuql,cheneh}@ustc.edu.cn; iamwebgao@gmail.com <sup>2</sup>University of Illinois at Urbana-Champaign, czhai@illinois.edu; <sup>3</sup>iFLYTEK Research, gphu@iflytek.com

> Reporter: Zhenya Huang Date: 2019.11.04

### Outline

| 1 | Background                          |
|---|-------------------------------------|
| 2 | <b>Problem Definition</b>           |
| 3 | Framework                           |
| 4 | Experiment                          |
| 5 | <b>Conclusion &amp; Future work</b> |

# Background

#### > Online Education Systems become more and more popular

- Abundant learning materials
  - E.g., exercise, course, video
- Personalized learning service
  - > Students can learn on their own pace
- Various platforms
  - ➤ MOOC
  - Intelligent Tutoring System
  - Online Judging System









## Recommendation

#### Recommender systems

- Suggest suitable exercises instead of letting students self-seeking
- Interactive systems between agent vs. student

### ≻ Key problem

Design an optimal strategy (algorithm) that can recommend the best exercise for each student at the right time



## Related work

- Traditional recommendation for online learning
  - ➢ Basic idea:
    - $\succ$  Try to discover the weakness of students
    - Recommend the exercises that students may not learned well
- Existing methods
  - Educational psychology
    - Cognitive diagnosis studies
    - Traditional Q learning algorithm
  - Data-driven algorithm
    - Content-based methods
    - Collaborative filtering
    - Deep neural networks

## Related work

### ➤ Limitation

- Single objective
  - > Target at specific concepts with repeating exercising
- Recommending non-mastered exercises
  - Always too hard
- Student lose learning interests



What kinds of objectives should we concern in exercise recommendation?

### **Exercise Recommendation**

### Multiple Objectives

- Review & Explore
  - Review non-mastered concept vs. Seek new knowledge
- Smoothness

> Continuous recommendations on difficulty levels can not vary dramatically

- Engagement
  - ➢ Keep learning

➢ Some are challenging but some are "gifts"



Anhui Province Key Laboratory of Big Data Analysis and Application

### **Exercise Recommendation**

#### ➤ Challenges

- ≻ How to define multiple objectives?
  - ≻ Review & Explore
  - Smoothness
  - Engagement
- How to enable flexible recommendations with considering above objectives simultaneously?
  - ➢ How to track students' learning states
  - ➢ How to quantify the objectives
- Large space of exercise candidates

### Outline



## Problem Definition

≻ Given:

- > Student: exercising record  $u = \{(e_1, p_1), (e_2, p_2), \cdots, (e_T, p_T)\},\$
- Exercise: triplet  $e = \{c, k, d\}$ 
  - > Content: c is word sequence,  $e = \{w_1, w_2, \dots, w_M\}$
  - ▶ Knowledge (concept):  $k \in K$ (e.g., Function)
  - Difficulty level: d is the error rate, i.e., the percentage of students who answer exercise e wrong

### Markov Decision Process (MDP)

- > State  $s_t$ : the exercising history of the student
- → Action  $a_t$ : recommend an exercise  $e_{t+1}$  based on State  $s_t$
- $\blacktriangleright$  Reward r( $s_t, a_t$ ): consider multiple objectives based on the performance feedback
- ➤ Transition T: function:  $S \times A \rightarrow S$ , mapping state  $s_t$  to state  $s_{t+1}$

### ≻ Goal:

Find an optimal policy π: S → A of recommending exercises to students, which maximizes the multi-objective rewards.



### Outline



## DRE framework

### ≻ At a glance

- Deep reinforcement learning (Q-learning) framework
- Exercise Q-network (EQN)
  - Estimate Q-values, generate exercise recommendation (taking action)
  - Track student learning states
  - Extract exercise semantics
  - Two Implementations
    - ➢ EQNM with Markov property
    - > EQNR with Recurrent manner
- Multi-objective Rewards
  - ≻ Review & Explore
  - Smoothness
  - Engagement
- Off-policy training

### DRE framework

Optimization Objective

Future rewards  $R_t$  of state-action pair (s, a):  $R_t = \sum_{t'=t}^T \gamma^{t'-t} r_{t'}$ 

Optimal action-value function

$$Q^*(s, a) = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q^*(s', a')|s, a].$$

 $\succ$  Compute the Q-values for all a'  $\in$  A is infeasible

- Estimate and store all state-action pairs (large exercise candidates)
- Update all Q-values (student practices very few exercises)
- ➤ Solution
  - $\blacktriangleright$  Exercise Q-Network: as a network approximator  $\theta$

 $Q^*(s,a) \approx Q(s,a;\theta)$ 

Minimize the objective function to estimate this network.

$$L_t(\theta_t) = \mathbb{E}_{s, a, r, s'}[(y - Q(s, a; \theta_t))^2],$$
  
$$y = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q(s', a'; \theta_{t'})|s, a]$$

## DRE framework

#### Exercise Q-Network

- $\blacktriangleright$  Goal: estimate the action Q-value Q (s, a) of taking an action a at state s
  - Implement network approximator
- > Key points:
  - Learn the semantics of each exercise

Exercise Module

- $\succ$  Learn the student knowledge states at each step
  - EQNM: Markov property
  - EQNR: Recurrent manner

## Exercise Q-Network

#### Exercise Module

- ➢ Goal: learn the semantics of each exercise
- Combination with knowledge, content and difficulty



## Exercise Q-Network

#### ➤ Two implements

- ➢ Goal: Learn the student knowledge states at each step
- $\succ$  Estimate Q value Q(s, a): taking action at step t
  - EQNM: only observe current state  $s_t = (e_t, p_t)$
  - EQNR: consider historical state trajectories:  $s_t = \{(e_1, p_1), \dots, (e_t, p_t)\}$



## Multi-objective rewards

#### Review & Explore

- ➤ Intuition: review non-mastered concept vs. seek new knowledge
- > Review factor: review what they learned not well: punishment ( $\beta_1 < 0$ )
- Explore factor: suggest to seek diverse concepts: stimulation ( $\beta_2 > 0$ )

$$r_1 = \begin{cases} \beta_1 & \text{if } p_t = 0 \quad \text{and} \quad k_{t+1} \cap k_t = \emptyset, \\ \beta_2 & \text{if } k_{t+1} \setminus \{k_1 \cup k_2 \cup \cdots \cup k_t\} \neq \emptyset, \\ 0 & \text{else.} \end{cases}$$

- Smoothness
  - Intuition: two continuous recommendations on difficulty levels should not vary dramatically
  - Negative squared loss

$$r_2 = \mathcal{L}(d_{t+1}, d_t) = -(d_{t+1} - d_t)^2,$$

## Multi-objective rewards

- Engagement
  - Intuition: keep learning (interests), avoiding too hard or easy exercises all the time
  - > Makes some recommendations are challenging but others seem "gifts"
    - Learning goal g
    - > N historical performance  $\varphi$  on average

$$r_3 = 1 - |g - \varphi(u, N)|, \quad \varphi(u, N) = \frac{1}{N} \sum_{i=t-N}^{t} p_i,$$

Balance multi-objective rewards

$$r = \alpha_1 \times r_1 + \alpha_2 \times r_2 + \alpha_3 \times r_3, \quad \{\alpha_1, \alpha_2, \alpha_3\} \in [0, 1].$$

# Off-policy training



### Outline



#### > Datasets

- ➤ MATH dataset (high school level)
- PROGRAM dataset (oj platform)

#### Table 1: The statistics of the datasets.

| Dataset | Num.     | Num.      | Num.    | Num.      | Avg. records |
|---------|----------|-----------|---------|-----------|--------------|
|         | Students | Exercises | Conceps | records   | per student  |
| MATH    | 52,010   | 2,464     | 37      | 1,272,264 | 24.5         |
| PROGRAM | 40,013   | 2,900     | 18      | 3,455,067 | 86.3         |

#### Data analysis

- Learning session
  - Interval timestamps last more than 24 (10) hours, split them into two sessions
- Longer sessions have larger concept coverage
- Longer sessions contain more samples with smaller difficulty differences
- Longer sessions have exercises with medium difficulty on average
- https://base.ustc.edu.cn/data/DRE/



### Offline Evaluation (Point-wise recommendation)

- ➢ We evaluate methods on logged data
  - Static
  - > Only contained pairs of student-exercise performance that had been recorded
  - Just know students' final scores on exercise
- Ranking problem
  - ➢ For student: rank an exercise list at a particular time
  - ➢ Based on performance: from bad to good
- ▶ Data partition: for each sequence, 70% training, 30% testing
- DRE framework:

 $r (\alpha_1=0, \alpha_2=0, \alpha_3=1)$  (Eq. (10));  $r_3 (g=0, N=5)$  (Eq. (9))

 $r = \alpha_1 \times r_1 + \alpha_2 \times r_2 + \alpha_3 \times r_3, \quad \{\alpha_1, \alpha_2, \alpha_3\} \in [0, 1]. \quad r_3 = 1 - |g - \varphi(u, N)|, \quad \varphi(u, N) = \frac{1}{N} \sum_{i=t-N}^{t} p_i,$ 

➤ Baseline:

- Cognitive diagnosis: IRT
- Recommender system: PMF, FM
- Deep learning: DKT, DKVMN
- Reinforcement learning: DQN

#### Offline Evaluation (Point-wise recommendation)

Table 2: The overall accuracy results of exercise recommendation in offline evaluation.

(b) **DDOCDAM** 

| (a) M/111 |         |         |        |        | (b) TROORAM |        |         |         |         |        |        |        |        |
|-----------|---------|---------|--------|--------|-------------|--------|---------|---------|---------|--------|--------|--------|--------|
| Methods   | NDCG@10 | NDCG@15 | MAP@10 | MAP@15 | F1@10       | F1@15  | Methods | NDCG@10 | NDCG@15 | MAP@10 | MAP@15 | F1@10  | F1@15  |
| IRT       | 0.5065  | 0.6235  | 0.3373 | 0.4463 | 0.2100      | 0.3464 | IRT     | 0.3369  | 0.4231  | 0.1852 | 0.2430 | 0.0879 | 0.1530 |
| PMF       | 0.4900  | 0.5986  | 0.3155 | 0.4163 | 0.2016      | 0.3347 | PMF     | 0.3330  | 0.4152  | 0.1810 | 0.2336 | 0.0842 | 0.1467 |
| FM        | 0.5123  | 0.6279  | 0.3419 | 0.4507 | 0.2123      | 0.3489 | FM      | 0.3664  | 0.4456  | 0.2081 | 0.2617 | 0.0921 | 0.1567 |
| DKT       | 0.5587  | 0.7033  | 0.3959 | 0.5486 | 0.2797      | 0.4634 | DKT     | 0.3893  | 0.4924  | 0.2361 | 0.3197 | 0.1451 | 0.2445 |
| DKVMN     | 0.5657  | 0.7112  | 0.4021 | 0.5581 | 0.2895      | 0.4747 | DKVMN   | 0.3853  | 0.4889  | 0.2351 | 0.3226 | 0.1555 | 0.2620 |
| DQN       | 0.5031  | 0.7001  | 0.3191 | 0.5296 | 0.2912      | 0.5178 | DQN     | 0.3422  | 0.4901  | 0.1851 | 0.3095 | 0.1781 | 0.3266 |
| DREM      | 0.6114  | 0.7773  | 0.4355 | 0.6353 | 0.3559      | 0.6033 | DREM    | 0.4446  | 0.5638  | 0.2753 | 0.3834 | 0.1683 | 0.3325 |
| DRER      | 0.6129  | 0.7813  | 0.4337 | 0.6435 | 0.3676      | 0.6099 | DRER    | 0.4538  | 0.5907  | 0.2802 | 0.4059 | 0.2091 | 0.3655 |

> DRER and DREM generate accurate recommendations

EQN > DQN: EQN well capture the state presentations of students

DRER > DREM: EQNR can track the long-term dependency

(a) MATH

### > Online Evaluation (Sequence-wise recommendation)

- ➤ We evaluate methods in a simulated environment
  - Implement a student simulator
  - Real-time interaction
- Sequential recommendation scenario
  - For student: provide the best exercise step by step
  - Evaluate the effectiveness on three rewards (multiple objectives)
- > Preliminaries
  - Student simulator: EERNN (state-of-the-art)
  - ➤ Data partition: 50% for training simulator, 50% for training DRE framework

#### > Online Evaluation (Sequence-wise recommendation)

#### Review & Explore



Figure 6: Results of Review & Explore reward.

#### Smoothness vs. Engagement



$$\beta_1 \quad \text{if} \quad p_t = 0 \quad \text{and} \quad k_{t+1} \cap k_t = \emptyset, \\ \beta_2 \quad \text{if} \quad k_{t+1} \setminus \{k_1 \cup k_2 \cup \cdots \cup k_t\} \neq \emptyset, \\ 0 \quad \text{else.}$$

10

✓ DRE with larger  $\beta_2$  value has faster coverage growth speed

- ✓ The difficulty levels of recommendations do not vary dramatically in most cases
- ✓ If we set learning goal g with lower value (0.2), DRE would recommend more difficult exercises

Figure 7: Results of Smoothness vs. Engagement rewards.

### Outline



### Conclusion

- Deep Reinforcement learning framework for Exercise recommendation
- Two Exercise Q-Networks (EQN) to select exercise recommendations following different mechanisms (Markov, Recurrent)
- > Design three domain-specific rewards to find the optimal recommendation strategy
  - Review & Explore, Smoothness and Engagement

### ≻ Future work

- Seek more ways to learn the reward settings automatically
  - > Behaviors: if the student solves exercises very quickly, set g with a lower value
- Develop a system and apply DRE framework online
  - ➢ Get and test real-world feedback
  - ➢ Find more direct method to evaluate the students' satisfaction.
- $\succ$  Extend to more general domains
  - Online shopping, e-commerce, POI service etc

The 28th ACM International Conference on Information and Knowledge Management (CIKM 2019)



### Thanks for your listening!

huangzhy@mail.ustc.edu.cn

Welcome to our poster for more details tonight

Anhui Province Key Laboratory of Big Data Analysis and Application