Exploring Multi-Objective Exercise Recommendations in Online Education Systems

Zhenya Huang¹, Qi Liu¹, Chengxiang Zhai²,*, Yu Yin¹, Enhong Chen¹,*, Weibo Gao¹, Guoping Hu³
¹Anhui Province Key Laboratory of Big Data Analysis and Application, School of Computer Science and Technology & School of Data Science, University of Science and Technology of China,
{huangzhy,yxonic}@mail.ustc.edu.cn; {qiliuql,cheneh}@ustc.edu.cn; iamwebgao@gmail.com
²University of Illinois at Urbana-Champaign, czhai@illinois.edu; ³iFLYTEK Research, gphu@iflytek.com

Reporter: Zhenya Huang
Date: 2019.11.04
Outline

1 Background
2 Problem Definition
3 Framework
4 Experiment
5 Conclusion & Future work
Online Education Systems become more and more popular
- Abundant learning materials
 - E.g., exercise, course, video
- Personalized learning service
 - Students can learn on their own pace
- Various platforms
 - MOOC
 - Intelligent Tutoring System
 - Online Judging System
Recommender systems

- Suggest suitable exercises instead of letting students self-seeking
- Interactive systems between agent vs. student

Key problem

- Design an optimal strategy (algorithm) that can recommend the best exercise for each student at the right time
Related work

- Traditional recommendation for online learning
 - Basic idea:
 - Try to discover the weakness of students
 - Recommend the exercises that students may not learned well

- Existing methods
 - Educational psychology
 - Cognitive diagnosis studies
 - Traditional Q learning algorithm
 - Data-driven algorithm
 - Content-based methods
 - Collaborative filtering
 - Deep neural networks
Related work

- **Limitation**
 - Single objective
 - Target at specific concepts with repeating exercising
 - Recommending non-mastered exercises
 - Always too hard
 - Student lose learning interests

What kinds of objectives should we concern in exercise recommendation?
Exercise Recommendation

- Multiple Objectives
 - Review & Explore
 - Review non-mastered concept vs. Seek new knowledge
 - Smoothness
 - Continuous recommendations on difficulty levels cannot vary dramatically
 - Engagement
 - Keep learning
 - Some are challenging but some are “gifts”
Exercise Recommendation

- Challenges
 - How to define multiple objectives?
 - Review & Explore
 - Smoothness
 - Engagement
 - How to enable flexible recommendations with considering above objectives simultaneously?
 - How to track students’ learning states
 - How to quantify the objectives

- Large space of exercise candidates
Problem Definition

Given:
- Student: exercising record $u = \{(e_1, p_1), (e_2, p_2), \ldots, (e_T, p_T)\}$
- Exercise: triplet $e = \{c, k, d\}$
 - Content: c is word sequence, $e = \{w_1, w_2, \ldots, w_M\}$
 - Knowledge (concept): $k \in K$ (e.g., Function)
 - Difficulty level: d is the error rate, i.e., the percentage of students who answer exercise e wrong

Markov Decision Process (MDP)
- State s_t: the exercising history of the student
- Action a_t: recommend an exercise e_{t+1} based on State s_t
- Reward $r(s_t, a_t)$: consider multiple objectives based on the performance feedback
- Transition T: function: $S \times A \rightarrow S$, mapping state s_t to state s_{t+1}

Goal:
- Find an optimal policy $\pi: S \rightarrow A$ of recommending exercises to students, which maximizes the multi-objective rewards.
Outline

1. Background
2. Problem Definition
3. Framework
4. Experiment
5. Conclusion & Future work
DRE framework

At a glance

- Deep reinforcement learning (Q-learning) framework
- Exercise Q-network (EQN)
 - Estimate Q-values, generate exercise recommendation (taking action)
 - Track student learning states
 - Extract exercise semantics
- Two Implementations
 - EQNM with Markov property
 - EQNR with Recurrent manner
- Multi-objective Rewards
 - Review & Explore
 - Smoothness
 - Engagement
- Off-policy training
DRE framework

- **Optimization Objective**
 - Future rewards R_t of state-action pair (s, a): $R_t = \sum_{t'=t}^{T} \gamma^{t'-t} r_{t'}$
 - Optimal action-value function
 \[Q^*(s, a) = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q^*(s', a') | s, a]. \]

- Compute the Q-values for all $a' \in A$ is infeasible
 - Estimate and store all state-action pairs (large exercise candidates)
 - Update all Q-values (student practices very few exercises)

- **Solution**
 - **Exercise Q-Network**: as a network approximator θ
 \[Q^*(s, a) \approx Q(s, a; \theta) \]
 - Minimize the objective function to estimate this network.
 \[L_t(\theta_t) = \mathbb{E}_{s,a,r,s'}[(y - Q(s, a; \theta_t))^2], \]
 \[y = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q(s', a'; \theta_{t'}) | s, a] \]
Exercise Q-Network
- Goal: estimate the action Q-value $Q(s, a)$ of taking an action a at state s
 - Implement network approximator
- Key points:
 - Learn the semantics of each exercise
 - Exercise Module
 - Learn the student knowledge states at each step
 - EQNM: Markov property
 - EQNR: Recurrent manner
Exercise Q-Network

- **Exercise Module**
 - Goal: learn the semantics of each exercise
 - Combination with knowledge, content and difficulty

\[
x = v_k \oplus v_c \oplus d.
\]

Knowledge embedding

\[v_k = W_k^T k.
\]

Content embedding

\[
\overrightarrow{v}_i = \text{LSTM}(w_i, \overrightarrow{v}_{i-1}; \theta_{\overrightarrow{v}}), \quad \overleftarrow{v}_i = \text{LSTM}(w_i, \overleftarrow{v}_{i-1}; \theta_{\overleftarrow{v}}),
\]

\[v_i = \overrightarrow{v}_i \oplus \overleftarrow{v}_i,
\]
Exercise Q-Network

- Two implements
 - Goal: Learn the student knowledge states at each step
 - Estimate Q value $Q(s, a)$: taking action at step t
 - EQNM: only observe current state $s_t = (e_t, p_t)$
 - EQNR: consider historical state trajectories: $s_t = \{(e_1, p_1), \ldots, (e_t, p_t)\}$

$$Q(s_t, a_i) = \frac{1}{\exp(-h_t^n)}.$$
Multi-objective rewards

- **Review & Explore**
 - **Intuition:** review non-mastered concept vs. seek new knowledge
 - **Review factor:** review what they learned not well: punishment \((\beta_1 < 0)\)
 - **Explore factor:** suggest to seek diverse concepts: stimulation \((\beta_2 > 0)\)

\[
 r_1 = \begin{cases}
 \beta_1 & \text{if } \quad p_t = 0 \quad \text{and} \quad k_{t+1} \cap k_t = \emptyset, \\
 \beta_2 & \text{if } \quad k_{t+1} \setminus \{k_1 \cup k_2 \cup \cdots \cup k_t\} \neq \emptyset, \\
 0 & \text{else.}
 \end{cases}
\]

- **Smoothness**
 - **Intuition:** two continuous recommendations on difficulty levels should not vary dramatically
 - **Negative squared loss**

\[
 r_2 = \mathcal{L}(d_{t+1}, d_t) = -(d_{t+1} - d_t)^2,
\]
Multi-objective rewards

- Engagement
 - Intuition: keep learning (interests), avoiding too hard or easy exercises all the time
 - Makes some recommendations are challenging but others seem “gifts”
 - Learning goal g
 - N historical performance φ on average

\[
 r_3 = 1 - |g - \varphi(u, N)|, \quad \varphi(u, N) = \frac{1}{N} \sum_{i=t-N}^{t} p_i,
\]

- Balance multi-objective rewards

\[
 r = \alpha_1 \times r_1 + \alpha_2 \times r_2 + \alpha_3 \times r_3, \quad \{\alpha_1, \alpha_2, \alpha_3\} \in [0, 1].
\]
Off-policy training

- Training with offline logs

Learn from other agent policy

Experience reply

Two separate networks

Algorithm 1: DRE Learning with Off-Policy Training

1. Initialize replay memory D with capacity Z;
2. Initialize action-value function Q with random weights;
3. for $u = 1, 2, \ldots, |U|$ do
 a. Randomly initialize state s_0;
 b. for $t = 1, 2, \ldots, T$ do
 i. Observe state $s_t = (e_t, p_t)$ in EQNM or $s_t = \{(e_1, p_1), \ldots, (e_t, p_t)\}$ in EQNR;
 ii. Execute action $a_t (e_{t+1})$ from off-policy $\pi_o(s_t)$;
 iii. Compute reward r_t according to p_{t+1} by Eq. (10);
 iv. Set state $s_{t+1} = (e_{t+1}, p_{t+1})$ in EQNM or $s_{t+1} = \{(e_1, p_1), \ldots, (e_t, p_t), (e_{t+1}, p_{t+1})\}$ in EQNR;
 v. Store transition (s_t, a_t, r_t, s_{t+1}) in D;
 vi. Sample minibatch of transition (s, a, r, s') from D;
 vii. $y = \begin{cases} r & \text{terminal } s' \\ r + \gamma \max_{a'}(Q(s', a'); \theta) & \text{non-terminal } s' \end{cases}$
 viii. Minimize $(y - Q(s, a; \theta))^2$ by Eq. (3);
 c. end
4. end
Experiment

- **Datasets**
 - MATH dataset (high school level)
 - PROGRAM dataset (oj platform)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Num. Students</th>
<th>Num. Exercises</th>
<th>Num. Concepts</th>
<th>Num. records</th>
<th>Avg. records per student</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH</td>
<td>52,010</td>
<td>2,464</td>
<td>37</td>
<td>1,272,264</td>
<td>24.5</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>40,013</td>
<td>2,900</td>
<td>18</td>
<td>3,455,067</td>
<td>86.3</td>
</tr>
</tbody>
</table>

- **Data analysis**
 - Learning session
 - Interval timestamps last more than 24 (10) hours, split them into two sessions
 - Longer sessions have larger concept coverage
 - Longer sessions contain more samples with smaller difficulty differences
 - Longer sessions have exercises with medium difficulty on average
 - https://base.ustc.edu.cn/data/DRE/
Experiment

- Offline Evaluation (Point-wise recommendation)
 - We evaluate methods on logged data
 - Static
 - Only contained pairs of student-exercise performance that had been recorded
 - Just know students’ final scores on exercise
 - Ranking problem
 - For student: rank an exercise list at a particular time
 - Based on performance: from bad to good
 - Data partition: for each sequence, 70% training, 30% testing
 - DRE framework:
 \[
 r (\alpha_1=0, \alpha_2=0, \alpha_3=1) \text{ (Eq. (10))};
 r_3 (g=0, N=5) \text{ (Eq. (9))}
 \]
 \[
 r = \alpha_1 \times r_1 + \alpha_2 \times r_2 + \alpha_3 \times r_3, \quad \{\alpha_1, \alpha_2, \alpha_3\} \in [0, 1]. \\
 r_3 = 1 - |g - \varphi(u, N)|, \quad \varphi(u, N) = \frac{1}{N} \sum_{i=t-N}^{t} p_i,
 \]
 - Baseline:
 - Cognitive diagnosis: IRT
 - Recommender system: PMF, FM
 - Deep learning: DKT, DKVMN
 - Reinforcement learning: DQN
Experiment

- Offline Evaluation (Point-wise recommendation)

- DRER and DREM generate accurate recommendations
- EQN > DQN: EQN well capture the state presentations of students
- DRER > DREM: EQNR can track the long-term dependency

<table>
<thead>
<tr>
<th>Methods</th>
<th>NDCG@10</th>
<th>NDCG@15</th>
<th>MAP@10</th>
<th>MAP@15</th>
<th>F1@10</th>
<th>F1@15</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRT</td>
<td>0.5065</td>
<td>0.6235</td>
<td>0.3733</td>
<td>0.4463</td>
<td>0.2100</td>
<td>0.3464</td>
</tr>
<tr>
<td>PMF</td>
<td>0.4900</td>
<td>0.5986</td>
<td>0.3155</td>
<td>0.4163</td>
<td>0.2016</td>
<td>0.3347</td>
</tr>
<tr>
<td>FM</td>
<td>0.5123</td>
<td>0.6279</td>
<td>0.3419</td>
<td>0.4507</td>
<td>0.2123</td>
<td>0.3489</td>
</tr>
<tr>
<td>DKT</td>
<td>0.5587</td>
<td>0.7033</td>
<td>0.3959</td>
<td>0.5486</td>
<td>0.2797</td>
<td>0.4634</td>
</tr>
<tr>
<td>DKVMN</td>
<td>0.5657</td>
<td>0.7112</td>
<td>0.4021</td>
<td>0.5581</td>
<td>0.2895</td>
<td>0.4747</td>
</tr>
<tr>
<td>DQN</td>
<td>0.5031</td>
<td>0.7001</td>
<td>0.3191</td>
<td>0.5296</td>
<td>0.2912</td>
<td>0.5178</td>
</tr>
<tr>
<td>DREM</td>
<td>0.6114</td>
<td>0.7773</td>
<td>0.4355</td>
<td>0.6353</td>
<td>0.3559</td>
<td>0.6033</td>
</tr>
<tr>
<td>DRER</td>
<td>0.6129</td>
<td>0.7813</td>
<td>0.4337</td>
<td>0.6435</td>
<td>0.3676</td>
<td>0.6099</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods</th>
<th>NDCG@10</th>
<th>NDCG@15</th>
<th>MAP@10</th>
<th>MAP@15</th>
<th>F1@10</th>
<th>F1@15</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRT</td>
<td>0.3369</td>
<td>0.4231</td>
<td>0.1852</td>
<td>0.2430</td>
<td>0.0879</td>
<td>0.1530</td>
</tr>
<tr>
<td>PMF</td>
<td>0.3330</td>
<td>0.4152</td>
<td>0.1810</td>
<td>0.2336</td>
<td>0.0842</td>
<td>0.1467</td>
</tr>
<tr>
<td>FM</td>
<td>0.3664</td>
<td>0.4456</td>
<td>0.2081</td>
<td>0.2617</td>
<td>0.0921</td>
<td>0.1567</td>
</tr>
<tr>
<td>DKT</td>
<td>0.3893</td>
<td>0.4924</td>
<td>0.2361</td>
<td>0.3197</td>
<td>0.1451</td>
<td>0.2445</td>
</tr>
<tr>
<td>DKVMN</td>
<td>0.3853</td>
<td>0.4889</td>
<td>0.2351</td>
<td>0.3226</td>
<td>0.1555</td>
<td>0.2620</td>
</tr>
<tr>
<td>DQN</td>
<td>0.3422</td>
<td>0.4901</td>
<td>0.1851</td>
<td>0.3095</td>
<td>0.1781</td>
<td>0.3266</td>
</tr>
<tr>
<td>DREM</td>
<td>0.4446</td>
<td>0.5638</td>
<td>0.2753</td>
<td>0.3834</td>
<td>0.1683</td>
<td>0.3325</td>
</tr>
<tr>
<td>DRER</td>
<td>0.4538</td>
<td>0.5907</td>
<td>0.2802</td>
<td>0.4059</td>
<td>0.2091</td>
<td>0.3655</td>
</tr>
</tbody>
</table>
Experiment

- **Online Evaluation (Sequence-wise recommendation)**
 - We evaluate methods in a simulated environment
 - Implement a student simulator
 - Real-time interaction
 - Sequential recommendation scenario
 - For student: provide the best exercise step by step
 - Evaluate the effectiveness on three rewards (multiple objectives)
- **Preliminaries**
 - Student simulator: EERNN (state-of-the-art)
 - Data partition: 50% for training simulator, 50% for training DRE framework
Experiment

- Online Evaluation (Sequence-wise recommendation)
 - Review & Explore

- Smoothness vs. Engagement

\[r_1 = \begin{cases}
\beta_1 & \text{if } p_t = 0 \text{ and } k_{t+1} \cap k_t = \emptyset, \\
\beta_2 & \text{if } k_{t+1} \setminus \{k_1 \cup k_2 \cup \cdots \cup k_t\} \neq \emptyset, \\
0 & \text{else.}
\end{cases} \]

- DRE with larger \(\beta_2 \) value has faster coverage growth speed
- The difficulty levels of recommendations do not vary dramatically in most cases
- If we set learning goal \(g \) with lower value (0.2), DRE would recommend more difficult exercises
Outline

1. Background
2. Problem Definition
3. Framework
4. Experiment
5. Conclusion & Future work
Experiment

Conclusion

- Deep Reinforcement learning framework for Exercise recommendation
- Two Exercise Q-Networks (EQN) to select exercise recommendations following different mechanisms (Markov, Recurrent)
- Design three domain-specific rewards to find the optimal recommendation strategy
 - Review & Explore, Smoothness and Engagement

Future work

- Seek more ways to learn the reward settings automatically
 - Behaviors: if the student solves exercises very quickly, set g with a lower value
- Develop a system and apply DRE framework online
 - Get and test real-world feedback
 - Find more direct method to evaluate the students’ satisfaction.
- Extend to more general domains
 - Online shopping, e-commerce, POI service etc
Thanks for your listening!

huangzhy@mail.ustc.edu.cn

Welcome to our poster for more details tonight