

<u>The 27th ACM SIGKDD Conference on Knowledge</u> <u>Discovery and Data Mining (KDD'2021)</u>

DisenQNet: Disentangled Representation Learning for Educational Questions

Zhenya Huang, Xin Lin, Hao Wang, Qi Liu, Enhong Chen*, Jianhui Ma, Yu Su, Wei Tong Unversity of Science and Technology of China, iFLYTEK Co., Ltd

Outline

2

□ Introduction

Preliminary

□ Our Method

□ Experiment

□ Conclusion

Introduction

Land to the and to the second second

3

Online learning systems

□ Collect millions of learning materials

Course, question, test, etc

- □ Provide intelligent services to improve learning experience
 - Students select suitable questions or courses to acquire knowledge
 - Systems provide personalized recommendations

C	e	
	Radians & degrees	
Question	Convert the angle $\theta = 180^\circ$ to radians. Express your answer exactly.	¢
	$\theta =$ radians	
	Show Calculator	E

Introduction

- Real world challenges with millions of learning materials
 - □ How to organize, search and recommend questions?
 - □ How to promote question-based applications?
 - Search questions to find similar ones
 - recommend questions with property difficulty (for students)

•••••

4

Fundamental topic in AI education
Question understanding (automatic)
Goal: learning informative representations of question

Related work

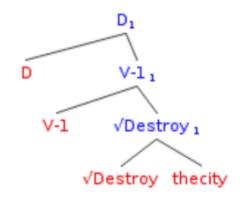
5

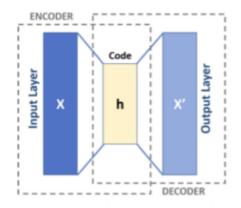
□ Traditional NLP work (earlier)

- Lexical analysis or Semantic analysis
 - Design fine-grained rules or grammars
- □ Representation: explicit trees or templates

□ NLP based work

- End-to-end frameworks
 - Understand question content
 - Learn from application tasks, e.g., difficulty estimation, similarity search
- Representation: latent semantic vector
- Recent Pre-training work
 - □ Pre-training with large question corpus
 - Enhance question semantics learning
 - □ Representation: latent semantic vector



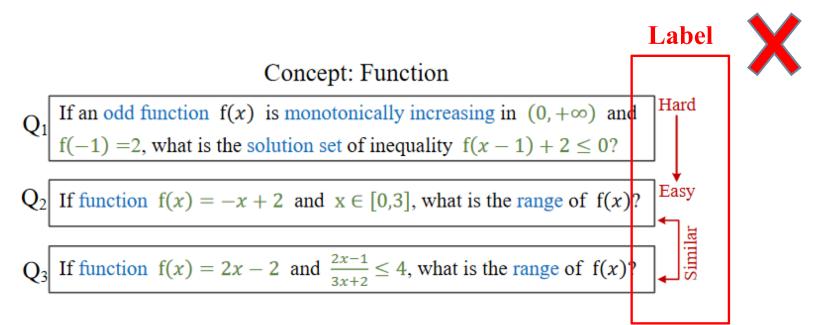


Related work—Limitations

Supervised manner

Requiring sufficient labeled data

- E.g., question difficulty, question pair similarity
- □ Scarcity of labels with high quality
 - E.g., difficulty is being examined in standard tests (GRE)

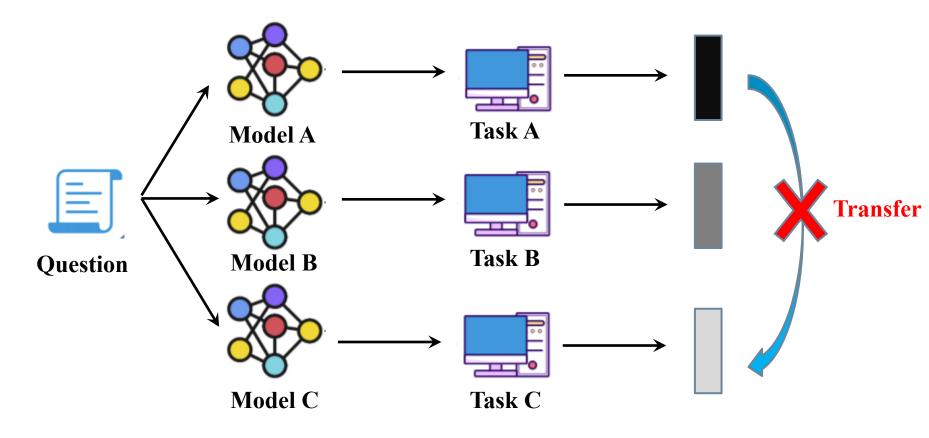


Related work—Limitations

Task-dependent representation

7

Different models for same questions in different application tasks
Poor transferability across tasks

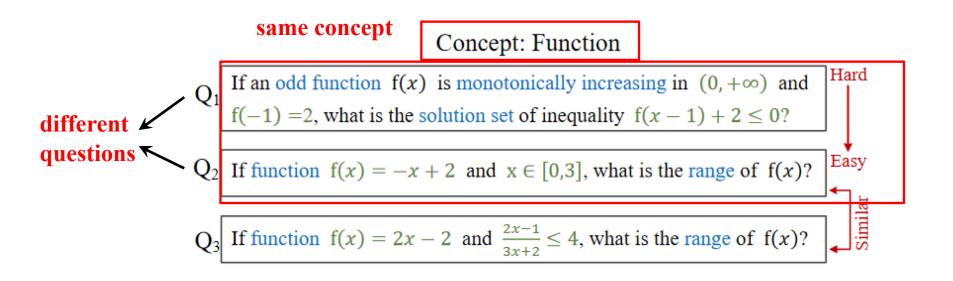


One unified vector representation

- □ All the information are integrated together
- □ Question with same concept are quite different
 - Concept

8

Personal properties (difficulty, semantics)



Introduction

9

Ideal question representation model Get rid of labels in specific tasks

Try to learn information of question on their own

□ **Distinguish** the different characteristics of questions

- Reduce noise
- Explicit way to get good interpretability

Question representations should be flexible

- Can be applied in different downstream tasks
- **Improve the applications** in online learning systems

Our work-main idea

Disentangled representation

□ Disentangle question information into two representations

Concept representation

10

Individual representation

Concept representation

high dependency to concept information (knowledge)

Individual representation

high dependency to individual information (difficulty, semantics, et al.)

□ Two representations with high independency to each other

Contain no information from each other

Outline

11

Introduction

Preliminary

□ Our Method

□ Experiment

□ Conclusion

12

Unsupervised question representation Learning

□ **Given**: $Q = \{q_1, q_2, ..., q_N\}, q = \{x_1, x_2, ..., x_M\}$ with $k \in K$

Goal: disentangled question representation

- Concept representation $v_K \in \mathbb{R}^d$
- Individual representation $v_I \in \mathbb{R}^d$

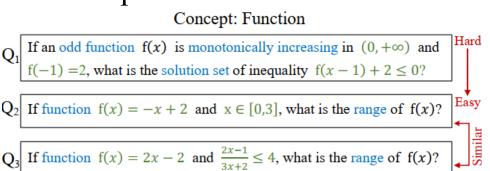
Question-based supervised tasks

$$\Box \text{ Given } Q = Q^L \cup Q^U \text{ and } |Q^L| \ll |Q^U|$$

• Labeled
$$Q^L = \{q_1, q_2, ..., q_L\}$$
 with $\{y_1, y_2, ..., y_L\}$

• Unlabeled $Q^U = \{q_1, q_2, \dots, q_U\}$

- **Goal**: predict properties of unknown questions
 - e.g., difficulty of one question
 - e.g., similarity of question pair



Outline

13

Introduction

Preliminary

Our Method

□ Experiment

□ Conclusion

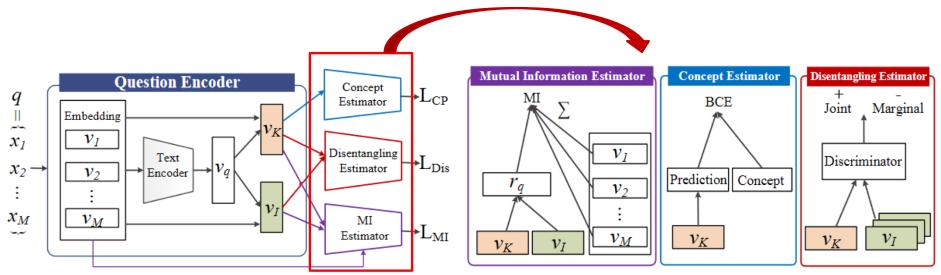
DisenQNet: glance

Disentangled Question Network (DisenQNet)

- Unsupervised model without labels
- Question encoder

14

- Learn to disentangle one question into two ideal representations
- Self-supervised optimization
 - Three information estimators



Model architecture

Model optimization

15

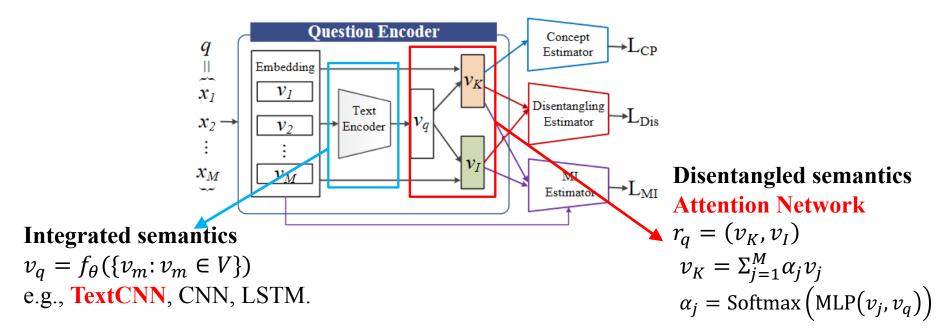
How and the state of the state

Question Encoder

□ Learn to disentangle one question into two ideal representations

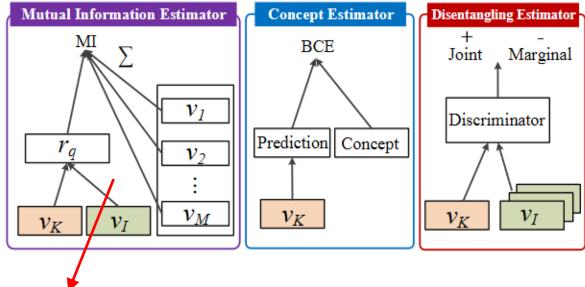
- Concept representation v_K
- Individual representation v_I
- □ Key: they focus on different content

e.g., concept: "function", individual: "f(-1)=2"



16

How to optimize? — Self-supervised optimization
Three estimators to measure the information dependency

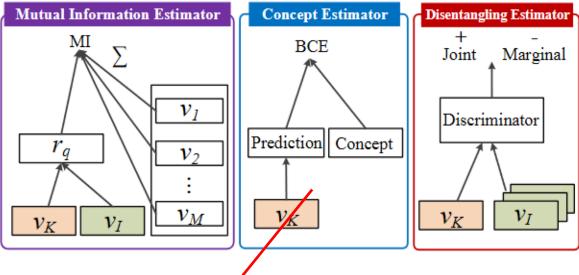


MI Estimator

 $r_{q} = (v_{K}, v_{I}) \text{ contains all information of one question}$ $\Rightarrow \text{ maximize } \mathbf{MI} \text{ between } \boldsymbol{r_{a}} \text{ and each word } \boldsymbol{v_{i}} \in \boldsymbol{V}$ $\mathcal{L}_{MI} = \hat{I}_{\theta_{1}}^{(JS)}(r_{q}, V) = \frac{1}{M} \sum_{j=1}^{M} \left\{ \mathbb{E}_{\mathbb{P}(r_{q}, v_{j})} \left[-\text{sp}(-T_{\theta_{1}}(r_{q}, v_{j})) \right] - \mathbb{E}_{\mathbb{P}(r_{q})\mathbb{P}(v_{j})} \left[\text{sp}(T_{\theta_{1}}(r_{q}, v_{j})) \right] \right\}, \qquad (6)$

17

How to optimize? — Self-supervised optimization
Three estimators to measure the information dependency



Concept Estimator

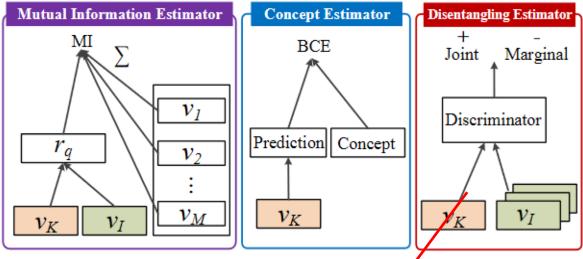
 v_K contains the given **concept meaning** explicitly

Multi-label concept classification task: predict concepts

$$\mathcal{L}_{CP} = \frac{1}{|K|} \sum_{j=1}^{|K|} (k_j \log(h_{\phi}(v_K)_j) + (1 - k_j) \log(1 - h_{\phi}(v_K)_j)).$$

18

How to optimize? — Self-supervised optimization
Three estimators to measure the information dependency



Disentangling Estimator

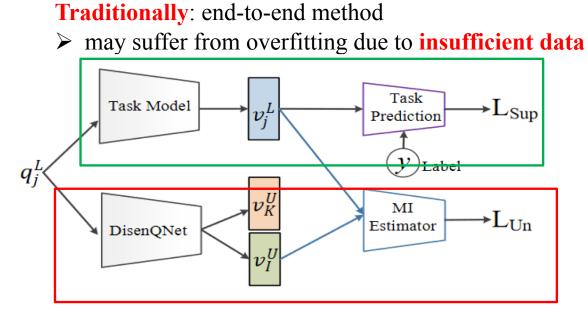
- \succ Keep v_I and v_K independent: v_I must not contain the information by v_K
- > Minimize the mutual information between v_I and v_K (cannot directly learn)
- Method: WGAN-like adversarial training Minimize Wasserstein distance between $P(v_I, v_K)$ and $P(v_I) \otimes P(v_K)$ $= P(v_I) \otimes P(v_K) \approx P(v_I, v_K) =>$ Independent v_I and v_K

$$\mathcal{L}_{Dis} = \mathbb{E}_{\mathbb{P}(v_k, v_i)} \left[D_{\phi}(v_k, v_i) \right] - \mathbb{E}_{\mathbb{P}(v_k) \mathbb{P}(v_i)} \left[D_{\phi}(v_k, v_i) \right].$$

19

□ DisenQNet+ — Question-based supervised tasks

- \Box Transfer $\boldsymbol{v_I}$ from DisenQNet to improve different applications
 - e.g., difficulty estimation, similarity search
- \Box Key: individual v_I focus more on **unique** information



Our improve: force v_I from DisenQNet to task model via mutual information maximization

$$\mathcal{L}_{Un} = \hat{I}_{\theta_2}^{(JS)}(v_I^U, v_j^L) = \mathbb{E}_{\mathbb{P}(v_I^U, v_j^L)} \left[-\operatorname{sp}(-T_{\theta_2}(v_I^U, v_j^L)) \right] - \mathbb{E}_{\mathbb{P}(v_I^U) \mathbb{P}(v_j^L)} \left[\operatorname{sp}(T_{\theta_2}(v_I^U, v_j^L)) \right].$$

Outline

20

□ Introduction

Preliminary

□ Our Method

Experiment

□ Conclusion

Easy

Similar

Dataset

21

□ System1: high school level questions

□ System2: middle school level questions

- Concepts: "Function", "Triangle", "Set", etc
- □ Math23K: elementary school level questions
 - Concepts (five operations): +, -, \times , \div , \wedge

Dataset	SYSTEM1	SYSTEM2	Math23K
#Questions	108,137	25,293	23,096
#Concepts	31	21	5
Avg. question length	48.15	129.96	28.06
Avg. concepts per question	1.91	1.16	1.9
#Questions with difficulty label	5,291	/	2000
Avg. difficulty labels per concept	307	/	772
#Questions with similarity label	/	2944	/
#Labeled similar pairs	/	1900	/
Avg. similarity labels per question	/	1.29	/
Label sparsity	4.9%	11.6%	8.7%

Concept: Function

If an odd function f(x) is monotonically increasing in $(0, +\infty)$ and f(-1) = 2, what is the solution set of inequality $f(x - 1) + 2 \le 0$?

Q₂ If function f(x) = -x + 2 and $x \in [0,3]$, what is the range of f(x)?

Q₃ If function f(x) = 2x - 2 and $\frac{2x-1}{3x+2} \le 4$, what is the range of f(x)?

Problem: Robin was making baggies of cookies with 6 cookies in each bag. If she had 23 chocolate cookies and 25 oatmeal cookies, how many baggies could she make? **Expression:** $x = (23 + 25) \div 6$ **Answer:** 8

22

DisenQNet Evaluation (v_K and v_I)

□ Task: Concept Prediction Performance

□ Baseline: Text model, NLP pre-trained models, question pre-trained model

Datasets	SYSTEM1			SYSTEM2			Math23K					
Metrics -	Micro	-F1@k	Macro-F1@k		Micro-F1@k		Macro-F1@k		Micro-F1@k		Macro-F1@k	
	1	2	1	2	1	2	1	2	1	2	1	2
TextCNN	0.6772	0.5402	0.2287	0.2406	0.6311	0.5407	0.4263	0.4339	0.5001	0.6544	0.3589	0.4926
ELMo	0.6944	0.5622	0.2742	0.2657	0.7702	0.6313	0.6638	0.6329	0.5719	0.7242	0.4366	0.5727
BERT	0.6908	0.5407	0.3875	0.3539	0.7760	0.6352	0.6920	0.6318	0.5906	0.7510	0.5790	0.7210
QuesNet	0.7252	0.6081	0.3291	0.3338	0.7734	0.6321	0.6903	0.6485	0.6236	0.7867	0.4834	0.6818
DisenQNet- v_K	0.8133	0.6498	0.3815	0.3544	0.7996	0.6499	0.7115	0.6655	0.6311	0.7989	0.5654	0.7536
DisenQNet-v	0.3672	0.3933	0.1743	0.2228	0.2996	0.3153	0.1941	0.2395	0.4360	0.5916	0.2553	0.3864

Disentangled representation learning is necessary

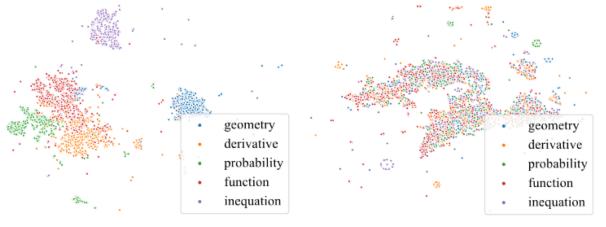
DisenQNet- v_K is well predicted: v_K capture the concept information of questions

> **DisenQNet-** v_I fails to predict concepts: v_I removes the concept information

23

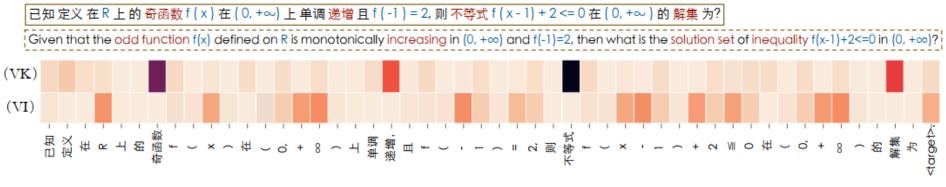
DisenQNet Visualization (v_K and v_I)

- $\succ v_K$ are easier to be grouped by concepts
- $\succ v_I$ are scattered



(a) Concept representation v_K

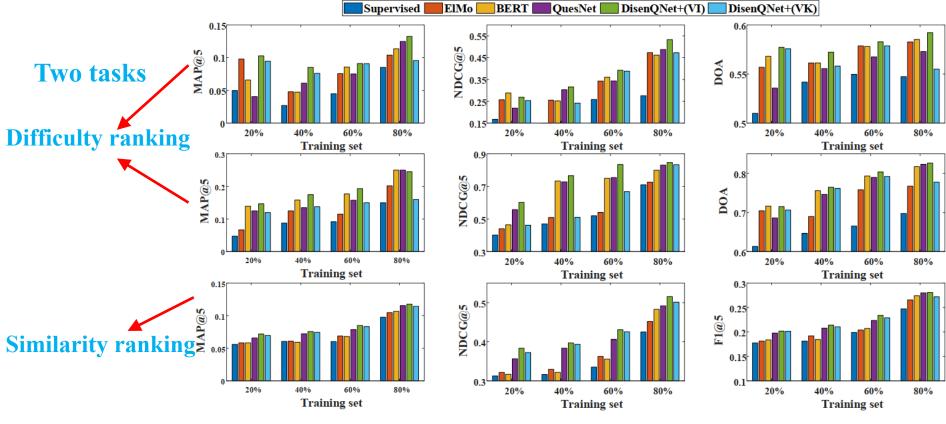
(b) Individual representation v_I



v_K is more related to concept words ("Odd function", "solution set", "inequality")
v_I focuses more on mathematical expressions ("f (-1) = 2")

24

DisenQNet+ evaluation



Disentangled learning is better than integrated learning

- $\succ v_I$ improves the application performance (best)
 - It can preserve personal information of questions
 - ➢ It has good ability to be transferred across different tasks

Outline

25

Introduction

Preliminary

□ Our Method

□ Experiment

□ Conclusion

Conclusion

Land to the second seco

Summary

26

Disentangled representation learning for educational questions

- Unsupervised DisenQNet
 - Distinguish concept and individual information of questions
 - Good interpretability
- Semi-supervised DisenQNet+
 - Improve the performance of different tasks
 - Good transferability

Future work

- □ More sophisticated models for disentanglement implementation
- □ Heterogeneous questions, e.g., geometry
- Deeper knowledge transferring

The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'2021)

27

Thanks!

huangzhy@ustc.edu.cn linx@mail.ustc.edu.cn