

EKT: Exercise-aware Knowledge Tracing for Student Performance Prediction

Qi Liu, Zhenya Huang, Yu Yin, Enhong Chen, Hui Xiong, Yu Su and Guoping Hu

Outline

1 Background

- 2 **Problem Definition**
- 3 **EKT Framework**
- 4 **Experiments**

5 **Conclusion and Future Work**

- > Traditional Learning
 - Classroom & Homework & Examination
- Limitations
 - > Resources
 - > Share
 - > Personalized

Online Education Systems MOOC, ITS, OJ

中国大学MOOC

Student can choose exercises individually according to their needs and acquire necessary knowledge during exercising

> A fundamental problem

> Predict student performance in the future

- Requires a unified way to automatically understand and represent exercises from a semantic perspective
 - > Diverse text expressions of exercises

- How to track the historically focused information for the exercising records of students
 - Long-term historical exercising

Cold start problem

> We have to make predictions for new students and new exercises

> Tracking knowledge acquisition

- Students usually care about not only what they need to learn but also wonder why they need it.
- Remind them how much they have already learned about each knowledge concepts.

Related Work

- Cognitive Diagnosis
 - > IRT: Item Response Theory

$$P(X_{ij} = 1|\theta_j) = c_i + \frac{1 - c_i}{1 + \exp[-1.7a_i(\theta_j - b_i)]}$$

DINA: Deterministic Inputs, Noisy-Ard gate model

$$P(Y_{ij} = 1 | \boldsymbol{\alpha}_i) = (1 - s_j)^{\eta_{ij}} (g_j)^{1 - \eta_{ij}}$$

- Matrix Factorization
 - > projects students and exercises into latent

Limited

Performance

Lack of

Interpretability

Related Work

Bayesian Knowledge Tracing

Figure 1: Single-skill knowledge tracing architecture

- **Problem Definition**
- **EKT Framework**
- **Experiments**

Conclusion and Future Work

Problem Definition

➢ Given:

- > Student exercising sequence: $s = \{(k_1, e_1, r_1), (k_2, e_2, r_2), \dots, (k_T, e_T, r_T)\}$
- Exercise Content: word sequence: $e = \{w_1, w_2, \dots, w_M\}$
- → Knowledge Concept: $k \in K$

					Exercise	Exercise Content	Knowledge Concept	
student exercising process				process		e_1	If function $f(x) = x^2 - 2x + 2$ and $x \in [0,3]$, What is the range of $f(x)$?	Function
<i>s</i> ₁	e_1 e_2 e_3 e_4 e_5		<i>e</i> ₅	Pe	If four numbers are randomly selected without replacement from set $\{1, 2, 3, 4\}$,	Probability		
						■ ^e 2	what is the probability that the four numbers are selected in ascending order?	
						e ₃	What is the y-intercept of the graph of equation $y = 2 \times 4 \times x - 4 - 10$?	Function
	\checkmark	Χ	\checkmark	\checkmark	?	<i>e</i> ₄	What is the value of x If the inequality $\frac{2x-1}{x+2} \le 3$?	Inequality
						e_5	If function $f(x) = 2x - 2$ and $\frac{2x-1}{3x+2} \le 4$, what is the range of $f(x)$?	Function, Inequality

➤ Goal:

- ➤ Track the mastery level of student's knowledge states on K concepts
- > Predict student performance on future exercises e_{T+1}

Study Overview

Overview solution

Outline

1 Background and Challenge

- 2 **Problem Definition**
- 3 **EKT Framework**
 - 4 **Experiments**

5 **Conclusion and Future Work**

EKT framework

- Exercise-aware Knowledge Tracing
 - Learning a unified exercise representations from its text/formula content

— Exercise Embedding $Module_0$

Challenge 3:

Cold-start

problem

Challenge 1:

content

presentation

Challenge 4:

knowledge

tracking

Challenge 2:

Long-term

focused states

Exploring the impacts of each exercise on improving student states from exercise's knowledge concepts

- Knowledge Embedding Moduce

Modeling student exercising states with LSTM architecture

- Student Embedding Module

- Two prediction strategies
 - ► EKTM with Markov property
 - EKTA with Attention mechanism

EKT framework

- Framework architecture
 - ≻ EKTM with Markov property
 - EKTA with Attention mechanism
 - Both have same modeling process and different prediction strategies

EKT framework

Modeling process

- > Orange: Exercise content Embedding
- Green: Knowledge Embedding
- ➢ Blue: Student Embedding

EKTM: Step 1

- Exercise Embedding Module
 - Goal: learns the semantic representation of each exercise x_i from its text content e_i.

EKTM: Step 2

Knowledge Embedding Module

- Sol: Exploring the impacts β_t of each exercise on improving student states from exercise's knowledge concepts k_t
- Intuition: Knowledge concepts are not isolated but contain correlations
- Assumption: learning one concept could affect the acquisition of other ones

EKTM: Step 3

Student Embedding Module

Goal: modeling exercising process and learning the student states considering

- \succ Exercise content x_i
- \succ Knowledge impacts β_t
- \succ Score r_t

students getting right response and wrong response to the same exercise actually reflect their different states

EKTM

> EKTM with Markov property

Assumption: student next state only depends on the current state

EKTM

EKTM with Markov property

- Problem: Vanish problem, ignoring the effects of historical states
- Intuition: Students may get similar scores on similar exercises

EKTA

EKTA with Attention mechanism

> Assumption: student next state depends on the aggregated focused states

Applications

Student performance prediction

Given: an individual exercising record

 $s^{p} = \{ (k_{1}^{p}, e_{1}^{p}, r_{1}^{p}), (k_{2}^{p}, e_{2}^{p}, r_{2}^{p}), \dots, (k_{T}^{p}, e_{T}^{p}, r_{T}^{p}) \}$

Steps:

- > Apply model EKTM(A) to fit exercising process s^p to get the student state H_T^p (H_{att}^p) at step T
- > Extract exercise representation x_{T+1}^p and knowledge impact β_{T+1} with Exercise Embedding and Knowledge Embedding modules

▶ Predict performance \tilde{r}_{T+1}^p

Cold start problems

- Exercises can be new exercises
- Students can be new students

Applications

Knowledge Acquisition Tracking

- Estimate her mastery of the i-th specific concept without any exercise input
 - \succ Omit the input exercise embedding x_t
 - \succ Construct the impact weight $\beta_t = (0, 0, \dots, 1, 0, \dots, 0)$

$$\begin{split} y_t^i &= ReLU(\mathbf{W_3} \cdot [H_t^i \oplus \mathbf{0}] + \mathbf{b_3}), \\ l_t^i &= \sigma(\mathbf{W_4} \cdot y_t^i + \mathbf{b_4}), \end{split}$$

Outline

1 Background and Challenge

- 2 **Problem Definition**
- 3 **EERNN Framework**
- 4 **Experiments**

5 **Conclusion and Future Work**

Experiments dataset

Mathematical records of high school students

Dataset analysis

Anhui

- Most exercises contain less than 2 knowledge concepts and features
- > One specific knowledge concept is related to 406 exercises on average

Baseline methods

TABLE 2 Characteristics of all models.							
Model	1	Data Sourc	e	Predictio	on Scenario	Knowledge	
	Score	Concept	Content	General Cold-start		Tracking?	
IRT [10] BKT [7]	√ √	× ✓	××	\checkmark	××	× ✓	
PMF [42] DKT [34] DKVMN [53]	√ √ √	× ✓ ✓	× × ×	✓ ✓ ✓	× ✓ ✓	× × ✓	
LSTMM LSTMA	√ √	√ √	××	\checkmark	√ √	××	
EERNNM [38] EERNNA [38] EKTM EKTA		× × ✓				× × ~	

Evaluation metrics

- Regression perspective: RMSE
- classification perspective: ACC, AUC

Prediction Performance

Fig. 9. Results of student performance prediction in general scenario under four metrics.

Attention Effectiveness

historical exercising states

EKTA enhance the effect of some of

Fig. 11. The effectiveness of attention in fitting process for testing.

Fig. 12. Performance over different attention values in proposed models.

Knowledge Acquisition Tracking

Fig. 13. An example of the knowledge mastery level tracking of a certain student on 6 concepts during her 30 exercising steps, which is painted in the middle matrix. Left side shows all concepts, which are marked in different colors. Top line records her performance on the 30 exercises. Right radar figure shows her knowledge mastery levels (in the range (0, 1)) on 6 concepts before (T=0) and after (T=30) exercising.

- > The mastery levels on concepts change gradually during the process
- When she answers an exercise right (wrong), her knowledge state on the corresponding concept increases (decreases)

> Prediction Case Study

Attention Scores

	Fitting process							
Testing Stage	e_1	In a triangle ABC containing angles A, B, C and edges a, b, c, angles A, B, C form an arithmetic sequence and b=2a cos A, what is the	Trigonometry	X				
	<u> </u>	shape of the triangle? If function $f(x) = (ax^2 + bx - 2)/(x - 1)$ and x is more than 1, when a=1 and b=3, what is the range of the function $f(x)$?	Eurotion	~ •				
	e_2	In function $f(x) = (ax + bx - 5)/(x - 1)$ and x is more than 1, when $a = 1$ and $b = 5$, what is the range of the function $f(x)$:	Function	V				
	<i>e</i> ₃	If a, b, c form a geometric sequence, how many zeros does the function $f(x) = ax^2 + bx + c$ have?	Function,	X				
			Sequence	1				
	<i>e</i> ₄	In a quadrilateral ABCD, points E, F, G, H lie on edges AB, BC, CD, DA, if edges EH, FG intersect at point M, which line can go through	Solid	./				
		point M?	Geometry	V				
	0-	Given a sequence $a_n = 2n^2 - 21n$, S_n denotes the sum of the first n items in the sequence a_n . What is the value of n when S_n is	Sequence					
	C 5	equal to its minimum value?		V				
Prediction								
	e_{20}	There are two lines a and b. If a is parallel to b, and b lies on the plane C, what is the positional relation between line a and plane C?	Solid	. /				
	-0		Geometry	V	1			

Fig. 14. Attention visualization in EERNNA and EKTA of an example student. We predict her performance on e_{20} based on her past 19 exercise records (we only show the first 5 exercises for better illustration). Right bars show the attention scores of two frameworks (i.e., EERNNA (blue) and EKTA (yellow)) for all exercises based on e_{20} .

- > e_4 is actually much more difficult than e_{20}
- > Both e_4 and e_{20} contain the same knowledge concept "Solid Geometry"
- \blacktriangleright EKTA endows a larger attention weight on e_4

Outline

1 Background and Challenge

- 2 **Problem Definition**
- 3 **EERNN Framework**
- 4 **Experiments**

5 **Conclusion and Future Work**

Conclusion

- A novel EKT framework to track the mastery levels on multiple concepts and predict student future performance
- EERNN integrated three critical modules: Exercise Embedding, Knowledge Embedding, Student Embedding.
- Proposed two strategies for prediction : EKTM with Markov property and EKTA with Attention mechanism.
- Experiments on real-world dataset demonstrated the effectiveness and interpretability of EKT framework.

Thanks!