

# Adaptive Normalization for Non-stationary Time Series Forecasting: A Temporal Slice Perspective

Zhiding Liu<sup>1,2</sup>, Mingyue Cheng<sup>1,2</sup>, Zhi Li<sup>3</sup>, Zhenya Huang<sup>1,2</sup>, Qi Liu<sup>1,2</sup>, Yanhu Xie<sup>4</sup>, Enhong Chen<sup>1,2\*</sup>

<sup>1</sup>Anhui Province Key Laboratory of Big Data Analysis and Application,
University of Science and Technology of China

<sup>2</sup>State Key Laboratory of Cognitive Intelligence

<sup>3</sup>Shenzhen International Graduate School

<sup>4</sup>The First Affiliated Hospital of University of Science and Technology of China

Presenter: Zhiding Liu

### Introduction



- What is time series?
  - □ *Any signals* collected in chronological order.
  - □ Ubiquitous/Noisy & Chaotic/Extremely long/Multivariate
- What is forecasting?
  - □ Given the observation of past S time steps, predict the values of future T steps.
  - □ Temporal/Channel dependence
- Why forecasting?
  - Weather report
  - ☐ Healthcare analysis
  - Decision making
  - □ ...

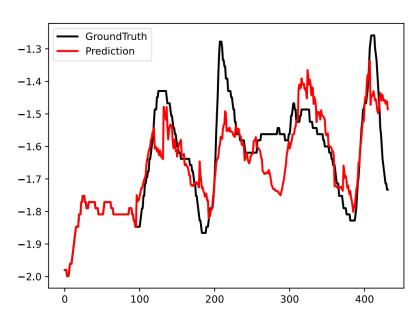


Figure 1: Illustration of forecasting.

### Introduction



- □ Tremendous efforts have been devoted in designing powerful networks and therefore greatly advanced the accuracy of forecasting performance.
- □ The intrinsic **non-stationary property** hinders the generalizability of deep-learning-based models.
  - □ The distribution shift in time series, i.e.,  $\forall_{i,j} p(x^i) \neq p(x^j)$
  - □ Existing forecasting methods barely rely on the non-linear capacity to tackle the challenge.
- □ To **explicitly alleviate the impact of non-stationarity**, adaptive normalization on input series is the feasible and mainstream solution.
  - □ Ensure the inputs are *I.I.D.* through normalization.



#### Motivation

- □ Existing normalization methods are based on an assumption that *the input* series of an instance follows the same distribution.
  - In the real-world scenarios, time series points rapidly change over time. For any given time slices of instance k,  $x_i^k$ ,  $x_i^k$ ,  $p(x_i^k) \neq p(x_i^k)$ .
- □ Previous works either *ignore* the restoration of non-stationary information or simply *adopt the statistical properties of input series to denormalize the output results*.
  - Lead to a prediction shift of the final forecasting results due to a bad estimation of future statistics.

### Our thoughts

- □ Split series into non-overlap equally-sized slices and model the **local-region non-stationarity** under them.
- Employ a **statistics prediction module** learning to estimate the distribution of future slices precisely.

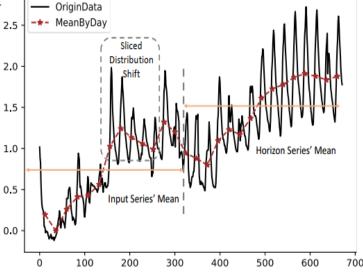


Figure 2: A forecasting instance with non-stationarity.



#### Sliced normalization

□ Removing the local non-stationarity for each time slice according to their statistics.

$$\mu_j^i = rac{1}{T} \sum_{t=1}^T m{x}_{j,t}^i, (\sigma_j^i)^2 = rac{1}{T} \sum_{t=1}^T (m{x}_{j,t}^i - \mu_j^i)^2, \qquad m{ar{x}}_j^i = rac{1}{\sigma_j^i + \epsilon} \cdot (m{x}_j^i - \mu_j^i).$$

### Statistics prediction

- □ Under our assumption, a natural challenge is that how to **estimate the evolving distributions** for each future slice.
- □ We adopt a two-layer perceptron network responsible for this task for simplicity and efficiency.

$$\hat{\boldsymbol{\mu}}^i = \boldsymbol{W}_1 * MLP(\boldsymbol{\mu}^i - \boldsymbol{\rho}^i, \bar{\boldsymbol{x}}^i - \boldsymbol{\rho}^i) + \boldsymbol{W}_2 * \boldsymbol{\rho}^i, \qquad \text{: residual learning}$$

$$\hat{\boldsymbol{\sigma}}^i = MLP(\boldsymbol{\sigma}^i, \bar{\boldsymbol{x}}^i). \qquad \text{: individual preference}$$

- The overall mean of the input sequence is a *maximum likelihood estimation* of the target sequence's mean  $\rightarrow$  **residual learning**.
- Different variables may exhibit distinct patterns in scale changes  $\rightarrow$  individual preference.



#### □ Sliced de-normalization

- □ The non-stationarity information is vital for forecasting.
- □ Restore them into predicted results in a slice perspective.

$$oldsymbol{\hat{y}}^i_j = oldsymbol{ar{y}}^i_j * (oldsymbol{\hat{\sigma}}^i_j + \epsilon) + oldsymbol{\hat{\mu}}^i_j.$$

Slicing Adaptive Normalization (SAN)

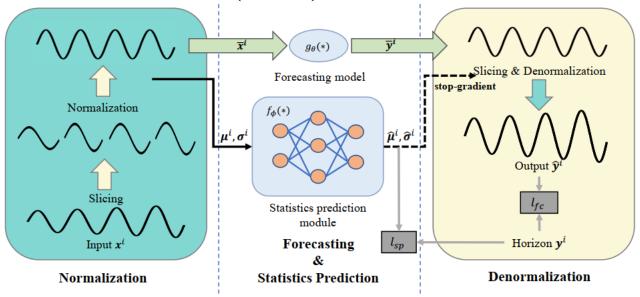


Figure 3: Illustration of the proposed SAN framework.



### □ Two-stage training schema

□ It forms to a bi-level optimization problem when joint training SAN and backbone model, as the target is to ensure the similarity between distributions of **denormalized output and ground truth**.

$$\begin{split} \arg\min_{\theta} \sum_{(\boldsymbol{x}^i, \boldsymbol{y}^i)} l_{fc}(\theta, \phi^*, (\boldsymbol{x}^i, \boldsymbol{y}^i)), \\ s.t.\phi^* &= \arg\min_{\phi} \sum_{(\boldsymbol{x}^i, \boldsymbol{y}^i)} l_{sp}(\theta, \phi, (\boldsymbol{x}^i, \boldsymbol{y}^i)). \end{split}$$

- □ Relax the optimization objective of statistic prediction module to **estimating the future distribution.** 
  - The original non-stationary forecasting task is divided into **decoupled** statistic prediction task and stationary forecasting task.
- Qualities:
  - Simplifies the task of non-stationary forecasting through divide-and-conquer.
  - **E**stimate **more accurately** on future distributions.



#### Setup

□ The widely used benchmark with 9 datasets:

| Dataset     | Variables | Sampling Frequency | Length | Slicing Length | $ADF^*$      |
|-------------|-----------|--------------------|--------|----------------|--------------|
| Electricity | 321       | 1 Hour             | 26,304 | 24             | -8.44        |
| Exchange    | 8         | 1 Day              | 7,588  | 6              | -1.90        |
| Traffic     | 862       | 1 Hour             | 17,544 | 24             | -15.02       |
| Weather     | 21        | 10 Minutes         | 52,696 | 12             | -26.68       |
| ILI         | 7         | 1 Week             | 966    | 6              | -5.33        |
| ETTh1&ETTh2 | 7         | 1 Hour             | 17,420 | 24             | -5.91&-4.13  |
| ETTm1&ETTm2 | 7         | 15 Minutes         | 69,680 | 12             | -14.98&-5.66 |

<sup>\*</sup>A smaller ADF test result indicates a more stationary time series data

#### □ Baseline models:

- RevIN (ICLR'22), NST(NIPS'22), Dish-TS(AAAI'23)
- Backbone models:
  - Autoformer(NIPS'21),FEDformer(ICML'22),SCINet(NIPS'22),DLinear(AAAI'23)
  - Slice-based models: PatchTST(ICLR'23),Crossformer(ICLR'23)



#### Results

□ Overall forecasting performance on SAN-enhanced backbone models.

| Method:<br>Metric                        | -                                          | Dline<br>ISE |                |                | AN<br>MAE      | FEDfo<br>MSE |       |       | AN<br>MAE      | Autofo<br>MSE |       | + S<br>MSE |       | SCIN<br>MSE |       |       | AN<br>MAE | Method<br>Metric |            | Patch<br>MSE       | nTST<br>MAE        | + S<br>MSE            | AN<br>MAE             | Crossf<br>MSE         | ormer<br>MAE   | + S<br>MSE       | SAN<br>MAE     |
|------------------------------------------|--------------------------------------------|--------------|----------------|----------------|----------------|--------------|-------|-------|----------------|---------------|-------|------------|-------|-------------|-------|-------|-----------|------------------|------------|--------------------|--------------------|-----------------------|-----------------------|-----------------------|----------------|------------------|----------------|
| <u>&gt; 96</u>                           | 0.1                                        | 140          | 0.237          | 0.137          | 0.234          | 0.185        | 0.300 | 0.164 | 0.272          | 0.195         | 0.309 | 0.172      | 0.281 | 0.213       | 0.316 | 0.152 | 0.256     | - Wictire        |            | 1                  |                    |                       |                       |                       |                |                  |                |
|                                          |                                            |              |                |                | 0.247<br>0.264 | 1            |       |       |                | l             |       |            |       | 0.224 (     |       |       |           |                  | 96<br>192  | 0.138 0.153        | 0.233<br>0.247     | 0.136<br>0.150        | 0.234<br><b>0.247</b> | 0.150<br>0.175        | 0.258<br>0.284 | 0.143<br>0.162   | 0.246<br>0.265 |
| ラ<br>日<br>720                            | - 1                                        |              |                |                |                | 1            |       |       |                | ı             |       |            |       | 0.260       |       |       |           | Electricity      | 336        | 0.170              | 0.263              | 0.165                 | 0.264                 | 0.218                 | 0.325          | 0.177            | 0.280          |
| 96<br>102                                |                                            |              |                |                |                |              |       |       |                |               |       |            |       | 0.126       |       |       |           |                  | 720        | 0.206              | 0.296              | 0.200                 | 0.296                 | 0.226                 | 0.324          | 0.221            | 0.318          |
| chan 336                                 | 0.3                                        | 338          | 0.437          | 0.294          | 0.407          | 0.452        | 0.498 | 0.260 | 0.384          |               | 0.544 | 0.262      | 0.385 | 0.266 (     |       |       |           |                  | 96<br>192  | 0.094              | <b>0.216</b> 0.311 | $0.087 \\ 0.181$      | 0.218<br><b>0.323</b> | 0.283<br>1.087        | 0.393<br>0.804 | $0.087 \\ 0.171$ | 0.219<br>0.313 |
| 当   720                                  | 1 5 1                                      |              |                |                |                |              |       |       | 0.633          |               |       | 0.689      |       |             |       |       |           | Exchange         | 336        | 0.191              | 0.311              | 0.101                 | 0.323                 | 1.367                 | 0.804          | 0.171            | 0.313          |
| 일<br>일 192                               | - 1                                        |              | 0.283<br>0.289 | 0.412<br>0.429 |                | 1            |       |       | 0.330<br>0.345 | 0.654         |       |            |       | 0.626 (     |       |       |           |                  | 720        | 0.888              | 0.706              | 0.659                 | 0.620                 | 1.546                 | 0.987          | 0.749            | 0.653          |
| r                                        | - 1                                        |              |                |                |                | 1            |       |       |                | l             |       |            |       | 0.625 (     |       |       |           |                  | 96         | 0.147              | 0.197              | 0.150                 | 0.205                 | 0.148                 | 0.214          | 0.151            | 0.210          |
|                                          | 1                                          |              |                |                |                |              |       |       |                |               |       |            |       | 0.181       |       |       |           | Weather          | 192<br>336 | <b>0.191</b> 0.244 | 0.240<br>0.282     | 0.194<br><b>0.243</b> | 0.252 $0.290$         | 0.201<br><b>0.248</b> | 0.270<br>0.311 | 0.198<br>0.248   | 0.253<br>0.294 |
| [달] 192                                  | 0.2                                        | 217          | 0.275          | 0.196          | 0.254          | 0.281        | 0.341 | 0.234 | 0.296          | 0.302         | 0.361 | 0.258      | 0.316 | 0.239       | 0.311 | 0.215 | 0.275     |                  | 720        | 0.320              | 0.334              | 0.311                 | 0.343                 | 0.366                 | 0.395          | 0.322            | 0.350          |
| 8 336<br>720                             |                                            |              |                |                |                |              |       |       |                |               |       |            |       | 0.293 (     |       |       |           |                  | 96         | 0.382              | 0.403              | 0.375                 | 0.398                 | 0.390                 | 0.417          | 0.387            | 0.402          |
| 24                                       |                                            |              |                |                |                |              |       |       | 1.119          |               |       |            |       | 7.467       |       |       |           | ETTh1            | 192        | 0.416              | 0.423              | 0.413                 | 0.422                 | 0.424                 | 0.448          | 0.413            | 0.425          |
| $\begin{bmatrix} 36 \\ 48 \end{bmatrix}$ |                                            |              | 2.0.0          | 2.029<br>2.041 |                |              |       |       | 1.079<br>1.032 | 3.207         |       |            |       | 7.035       |       |       |           | LIIII            | 336<br>720 | 0.441 0.470        | 0.440<br>0.475     | 0.428<br>0.445        | 0.434<br>0.461        | 0.486<br>0.507        | 0.492<br>0.519 | 0.436<br>0.467   | 0.431<br>0.474 |
| 60                                       |                                            |              |                |                |                |              |       |       |                |               |       |            |       | 7.335       |       |       |           |                  | 96         | 0.174              | 0.261              | 0.167                 | 0.260                 | 0.330                 | 0.401          | 0.170            | 0.262          |
| 96<br>2 192                              | $\begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix}$ |              |                |                |                |              |       |       | 0.355<br>0.413 |               |       |            |       | 0.690 (     |       |       |           |                  | 192        | 0.174              | 0.201              | 0.107                 | 0.298                 | 0.530                 | 0.543          | 0.170            | 0.202          |
| Ē 336                                    | 0.4                                        | 473          | 0.477          | 0.356          | 0.398          | 0.481        | 0.479 | 0.459 | 0.462          | 0.468         | 0.473 | 0.446      | 0.457 | 1.028       | 0.759 | 0.412 | 0.430     | ETTm2            | 336        | 0.293              | 0.346              | 0.276                 | 0.334                 | 0.887                 | 0.637          | 0.274            | 0.333          |
| щ   720                                  | 0.7                                        | 708          | 0.599          | 0.396          | 0.435          | 0.458        | 0.477 | 0.462 | 0.472          | 0.473         | 0.485 | 0.471      | 0.474 | 1.363       | 0.885 | 0.437 | 0.461     |                  | 720        | 0.373              | 0.401              | 0.366                 | 0.393                 | 0.844                 | 0.640          | 0.366            | 0.390          |



#### Results

□ Comparison between SAN and existing normalization approaches.

|             |       |        | FEDfor | Autoformer |        |       |        |       |          |        |  |
|-------------|-------|--------|--------|------------|--------|-------|--------|-------|----------|--------|--|
| Methods     | +SAN  | +RevIN | +NST   | +Dish-TS   | IMP(%) | +SAN  | +RevIN | +NST  | +Dish-TS | IMP(%) |  |
| Electricity | 0.191 | 0.200  | 0.198  | 0.203      | 3.54   | 0.204 | 0.219  | 0.213 | 0.231    | 4.23   |  |
| Exchange    | 0.298 | 0.474  | 0.480  | 0.704      | 37.13  | 0.297 | 0.495  | 0.494 | 1.008    | 39.88  |  |
| Traffic     | 0.572 | 0.647  | 0.649  | 0.652      | 11.59  | 0.594 | 0.666  | 0.664 | 0.677    | 10.54  |  |
| Weather     | 0.279 | 0.268  | 0.267  | 0.398      | -4.49  | 0.305 | 0.290  | 0.290 | 0.433    | -5.17  |  |
| ILI         | 2.467 | 2.962  | 3.084  | 2.846      | 13.32  | 2.562 | 3.151  | 3.235 | 3.180    | 18.69  |  |
| ETTh1       | 0.447 | 0.463  | 0.456  | 0.461      | 1.97   | 0.518 | 0.519  | 0.521 | 0.521    | 0.19   |  |
| ETTh2       | 0.404 | 0.465  | 0.481  | 1.004      | 13.12  | 0.411 | 0.489  | 0.465 | 1.175    | 11.61  |  |
| ETTm1       | 0.377 | 0.415  | 0.411  | 0.422      | 8.27   | 0.406 | 0.562  | 0.535 | 0.567    | 24.11  |  |
| ETTm2       | 0.287 | 0.310  | 0.315  | 0.759      | 7.42   | 0.311 | 0.325  | 0.331 | 0.894    | 4.31   |  |



#### Results

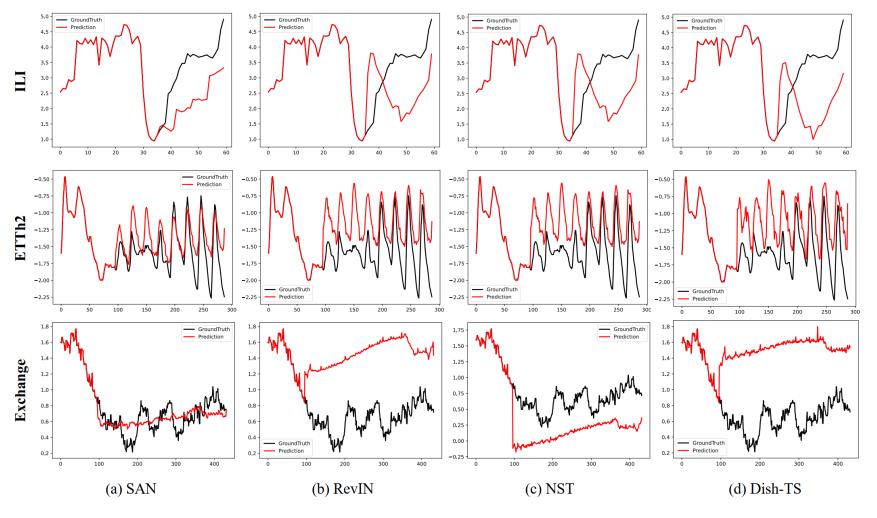


Figure 4: Visualization of forecasting results comparing SAN and baseline models.

### **Conclusion**



- We focused on alleviating the **non-stationary property** of time series data using a novel **slice view** in the forecasting task.
- □ We proposed Slicing Adaptive Normalization (SAN)
  - □ A **model-agnostic** approach that removes the non-stationary factors the input by normalization and restores them to the output through denormalization **on a per-slice basis**.
  - □ With a two-stage training schema for the statistics prediction module, SAN simplifies the non-stationary forecasting task through divide and conquer.
  - □ Compared to existing normalization methods, SAN could better alleviate the local-region non-stationarity and provides more accurate estimation on future distributions.
- □ Extensive experiments validated the effectiveness of our method.



## **Thanks**



https://github.com/icantnamemyself/SAN zhiding@mail.ustc.edu.cn