// AAAI-25 / 1AAI-25 / EAAI-25
‘ FEBRUARY 25 — MARCH 4, 2025 | PHILADELPHIA, USA

Automated Creation of Reusable and Diverse

Toolsets for Enhancing LLM Reasoning

Zhiyuan Ma, Zhenya Huang, Jiayu Liu, Minmao Wang, Hongke Zhao, Xin Li
State Key Laboratory of Cognitive Intelligence, University of Science and Technology of China
Institute of Artificial Intelligence, Hefei Comprehensive National Science Center
College of Management and Economics, Tianjin University

Outline // 1

AAAI-25 / 1AAI-25 / EAAI-25

0 Introduction

1 KTCE Framework

0 Experiments

1 Conclusion

Background /é‘.

AAAI-25 / 1AAI-25 / EAAI-25

o Tool Augmented Reasoning

01 Tools (e.g., Python Library functions like Sympy) empower LLMs to tackle complex reasoning
tasks by precise computation

-1 Tool Creation

00 Manually constructing tools requires substantial costs and the resources are limited in quantity.

00 Many studies have automatically created tools in various fields (e.g., math) using Large
Language Models (LLMs), and invoked them to enhance the reasoning ability of LLMs

Motivations

0 Existing tool creation methods face limitations:

O Low Reusability

m Tools are over problem-specific, which limits their ability to
be reused for other tasks. (e.g., a "revolution ratio" tool fails
on similar "distance ratio" tasks)

O Limited Diversity

m Toolsets lack coverage for broader tasks. Tools created by
TROVE can only be applied to less than 15% of problems in
the MATH dataset

OThese limitations severely restrict the application of
tool creation

/3

AAAI-25 / 1AAI-25 / EAAI-25

Question 1: On a merry-go-round, a horse at 24 feet makes 32 revolutions.
How many revolutions for a horse at 8 feet to cover the same distance?

Question 2: A person walks 300 meters in 10 minutes. How many meters
will the person walk in 25 minutes if they maintain the same speed?

(a) Existing Methods
def cal_revolution(radiusi, rev1, radius2): def cal_distance(time1,dis1,tlime2):

rate = radius1 / radius2 rate = time2 / time1
rev2 = rate " rev1 dis2 = rate " dis1
return rev2 return dis2
Tool Calling 1 # Tool Calling 2 Temporary!

result1=cal_revolution(24,32,8) result2=cal_distance(10, 300, 25)

(b) KTCE (Ours) Topic Concept Key Points

Algebra Ratios Length ratio ... different quantities

def prop_area_len(ratio, is_area=False): # Tool Calling 1
#Calculates area/length proportional result1=32"prop_area_len((24, 8))
ratio = ratio[0] / ratio[1]
if isinstance(ratio, tuple) else ratio # Tool Calling 2 Reusable!
return ratio®*2 if is_area else ratio result2=300"prop_area_len((25, 10))

Figure 1: Comparison between (a) existing methods and (b)
KTCE, illustrating that (a) existing methods require gener-
ating two temporary functions while (b) KTCE enables a
reusable tool to address a class of problems.

Motivations /4‘.

AAAI-25 / 1AAI-25 / EAAI-25

0 These limitations stem from two oversights:

O Low Reusability

m The neglect of the importance of abstract knowledge in tool development. Tools are highly condensed
knowledge, and without an explicit connection between tools and knowledge, the generated tools have

difficulty in solving new problems sharing the same knowledge points

O Limited Diversity

m The complete reliance on the problem itself to build static tools, while neglecting the combination and
expansion of these tools. As a result, these tools are restricted in functionality and hard to be applied to

different problems

Outline // 1

AAAI-25 / 1AAI-25 / EAAI-25

o1 Introduction

0 KTCE Framework

0 Experiments

1 Conclusion

Problem Definition /4‘.

0 To address these limitations, we propose the Knowledge-grounded Tool Creation with Evolution Framework

(KTCE). It aims to create reusable and diverse toolsets by grounding tools in domain knowledge and

evolving them adaptively.

0 Given a task with training dataset D4, = {(p;, 5;)}, the goal of KTCE is to create a Python function - based

toolset T* with two main objectives are:
0 Tool Reusability: Tools should solve classes of problems, measured by the tool calling frequency on D¢t

1 Toolset Diversity: Tools should cover a wide range of tasks, reflected by the proportion of solvable

problems in D;pqt

KTCE Framework /{ “
N

EAAI-25

(a) Stage 1: Knowledge-based Tool Craft (b) Stage 2: Tool Evolutionary Search
Do C---t------------------=:
Training Dataset ! .. .

———— ﬁg | Structed Domain | | Initial fucEyaluation

(S;ES :::m, ; lll t‘i'j n); @ Knowledge iToolset T Tool Metric:
uestion, Solution): e T T

Question: The quadratic $x"2- : : > I ”Top{c“,.l(dlLUlUi : —_— TES -
20x+365 ... What is $b+c$? () Knowledge Extract | {"Topic":"Algebra", || ! ZOIéM3tTIC-

. . {”Topic":"_.-\13__‘-clml", i ,
?01“"011' :oAc;nven thl; to lh_e C‘o_ ncept":"Quadrat) S— U N

orm $(x+b)"2+c$... $b+ ¢ = -748. ic Equations”, LLM-based Tool Evolution

Key_Points™:"Solx
eax?+bx+c=0 def form_quadratic_from_roots(rl,r2): @ x Remove!
v

by ..."}

Selectmn

Knowledge Tree KT

Quadratic
Equations

def vietas_formulas_from_coeff(a, b, c):
Initial Toolset T def vietas_formulas_from_coeff(a,b,c): - —
nitial 1001s¢ - ‘ f}

sum_roots =-b / a —_— raise ValueError("a is zero!!!")

product_roots=c/a Mutataion| sum_roots=-b/a
return sum_roots, product_roots product_roots =c/a

Algebra

Math

return sum_roots, product_roots

Calculus

def solve_qguadratic_equation(a, b, c):
discrim=b**2-4*a* ¢

(ty, co) Initial Toolset T (t; c) rootl = (-b + np.sqrt(discrim)) / (2a) def solve_and_verify_quadratic(a, b, c):
“Algebra - Quadratic Equations” “Calculus - Limits” root2 = (-b - np.sqrt(discrim)) / (2a) # Step 1: Solve the quadratic equation
def solve_quadratic_equation(a, b, c): def infinite_series_sum(expression, return (rootl, root2) \ roots=solve_quadratic_equation(a, b, c)
def form quadratic from roots(rl, r2): def check_convergence(series_exp, (ﬁ_" rootl, root2 = roots o
def vietas_formulas_from_coeff(a, b, ¢): | ««= | def decompose to_partial_fractions ||| def vietas_formulas_from_coeff(a,b,c): Crossover # Step 2: Verify result by Vieta's formu..
sum roots = -b ja_ - (expression): - | | Ve S, P = vietas_formulas_from_coeff(a,b c)
Pmd—uct_rﬂo‘ES =c/a x = symbols('x‘) return (sum_roots, product_roots) | |
return (sum_roots, product_roots) return apart(expression).simplify() “Algebra - Quadratlc Equations”

Figure 2: Our framework of KTCE, which consists of two main stages: (a) Stage 1 creates an initial toolset 7 based on a
structured knowledge tree KT, and (b) Stage 2 optimizes the toolset into 7* through iterative tool evaluation and evolution.

KTCE Framework /éA .
9|

0 Stage 1: Knowledge-Based Tool Creation

D ‘lproblem_knowledge_tool" pa radigm (a) Stage 1: KDOWledge'based Tool Craft

Training Dataset

. Structed D i
m Tools Tools should be executable, condensed domain (Question, Solution): | & e
. e . (Ques_ﬁom Solution):{ I {"Topic":"Calculus
knowledge rather than task-specific solutions Question: The duadratic 352 | @ Knowledge Extract | [Topic™ Alscbia”
. Solution: To convert this to the “&‘360“ j-&}#g.fpt:-.:'}[-";':.‘“I‘Lllll-[_lul'
O Knowledge Extraction: form S0 268 ., S = TS| et e Fquations’,
W oLl PO S

= Extract Topic-Concept-KeyPoint triples from Knowledge Tree KT | Lo oo L0

ge Tree ®\¢\

Quadratic
Equations

problem-solution pairs. Build a hierarchical

‘—.'% Initial Toolset T

knowledge tree via clustering

O TOOI G ene rat ion: (ty, co) Initial Toolset T (i cp)
. . . “Algebra - Quadratic Equations” “Calculus - Limits”
m Create atomic Python functions for each KeyPoint def solve_quadratic_equation(a, b, c): def infinite_series_sum(expression,
def form quadratic from roots(rl, r2): def check_convergence(series_exp,
in the kn Owledge tree def vietas_formulas_from_coeff(a, b, c): | »»+ | def decompose_to_partial_fractions
sum_roots=-b /a (expression):
product_roots=c/a x = symbols('x’)
return (sum_roots, product_roots) return apart(expression).simplify()

KTCE Framework /4‘.

AAAI-25 / 1AAI-25

0 Stage 2: Tool Evolutionary Search

EAAI-25

(b) Stage 2: Tool Evolutionary Search
O Tool Evaluation T T

Tool Evaluation

i Initial
. i Toolset T ool Metric:
= Evaluate toolset using metrics like tool invocation e T Met
. s — " | Toolset Metric
frequency, toolset coverage, task accuracy, along with | TA, TC

an Optimization function LLM-based Tool Evolution

def form_quadratic_from_ roots(rl,r2): @
- - - x Remove!

H Selection
D TOOI EVOI Utlo n ' : ' ° def vietas_formulas_from_coeff(a, b, c):
def vietas_formulas_from_coeff(a,b,c): @ fa==0:
. . sum_roots=-b /a - e "
m Selection: Keep good tools, remove bad ones (e.g., product.roots =< / 2 Mutataion| S vetrrona s zeroltt)

return sum_roots, product_roots product_roots=c/a

return sum_roots, product_roots

rarely used)

def solve_quadratic_equation(a, b, c):
discrim=b**2-4*a* ¢

= Mutation: Use LLM to refine tools with execution r00t1 = (+b + np.sart(discrim)) / (2a) | def solve_and_verify_quadratic(a, b, c)
root2 = (-b - np.sqrt(discrim)) / (2a) \ # Sth_’ 1:|50|“’e “:je qtlfadratlct?quiatlgn :
feedback, adjusting code and handling errors return {root1, root2 . |root,roooraots e
. def vietas_formulas_from_coeff(a,b,c): Crossover # Step 2 Verify result by Vieta’s formu..
m Crossover: Combine tools to make new, more useful | .. (d | - S, P = vietas_formulas_from_coeff(a,b c)
return (sum_roots, product_roots L J
fu N Ctio NS “Algebra - Quadratic Equations”

Clteratively Evaluation & Evolution

KTCE-augmented Agent

1 KTCE-augmented Agent (KA)

0 Utilize tools from the final optimized toolset T for generating code solutions of input problems
m A is the final standardized answer

A=M(p: T* H
m M is the KA’s problem-solving process (p)

O Workflow
u Tool Retrieval: Identify relevant (t;, c;) pair to access tools from F;;.

m Solution Generation: Leverage LLM to generate Python code calling retrieved tools, incorporating examples
from H via In-Context Learning.

m Result Formatting: Execute code, transform intermediate results into standardized answer format A for
evaluation

Outline // 1

AAAI-25 / 1AAI-25 EAAI-25

o1 Introduction

1 KTCE Framework

0 Experiments

1 Conclusion

Experiments /4‘.

AAAI-25 / 1AAI-25 EAAI-25

1 Datasets

00 Mathematical Reasoning: MATH; Tabular Reasoning: TabMWP; Scientific Reasoning: SCIBENCH

1 Baselines

r1Basic: CoT, PoT; Tool-Augmented: PoT with Library (e.g., SymPy), Wolfram
01 Tool Creation: Creator, Creator (SR), CRAFT, TROVE

0 Evaluation Metric
O Acc: measures model reasoning ability
00 Cov: task coverage represents the proportion of problems that can be solved by using the tools
O# Freq: tool usage frequency represents the average number of times each tool is called

O# T — size. the number of functional tools in the toolset

Experiments /4‘.

AAAI-25 / IAAI-25

o Overall performance

EAAI-25

[0 ACC Comparison

m Our KTCE outperforms all baselines across three datasets

m This demonstrates KTCE's ability to handle competition-level reasoning tasks effectively

MATH

Type Method Alg Count Geo Int Num Pre.Alg Pre.Cal TabMWP | SCIBENCH
Bas CoT 49.12 2975 2234 1462 3333 5385 16.85 73.50 27.00
asIc PoT 4836 4388 3132 1827 5222 65.10 2033 74.70 31.00
Tool-Au Library 58.80 51.90 3340 2990 5722 68.66 22.16 78.20 30.00
g Wolfram 5527 37776 2860 2049 3481 6177 2692 68.00 26.00
Creator 3429 43.04 2547 2481 3852 4386 21.06 84.90 27.00
ool Creat Creator (SR) | 50.38 4873 28.18 2890 4870 62.34 19.78 87.80 32.00
oot Lreation — ~p AFT 5333 4262 2296 2525 4167 6935 2051 77.00 28.00
TROVE 57.03 52.00 3006 26.02 4593 66.02 19.96 65.00 25.00
Ours KTCE | 69.00% 5338*% 40.29* 29.90% 57.96* 73.02* 31.68* | 90.00% | 37.00%

Table 2: GPT-3.5-Turbo reasoning accuracy on three challenging reasoning datasets (%). Bold values indicate the highest
scores, underlined values indicate the second highest. *indicates statistical significance (p < 0.05).

Experiments /4‘.

AAAI-25 / 1AAI-25 EAAI-25

o Overall performance

0 Cov Comparison

o o L

KTCE tools can solve a significantly broader range of Cov 19.10% | 30.50% 6.00%
CRAFT | #Freq 1.02 1.69 0.27
problems. #Tsize | 936 180 22

. Cov 14.78% 55.00% 20.00%
O # Freq Comparison TROVE | # Freq 0.56 1.47 0.37
T-size 1347 399 65

m3.10 avg. calls/tool (vs. 0.56 for TROVE), demonstrate Cov 1507 | 82.90% 2.00%
: : KTCE # Freq 3.10 4.37 0.45
that KTCE tools are highly reusable across different tasks. et | 1317 o 199

O # T-size

Table 3: Comparison of toolsets created by various methods.

m Show the larger and more diverse toolset compared to
CRAFT

Experiments

o Ablation Study

0 “w/o Stage 1”
m Indicate that the structured domain knowledge in Stage 1
is crucial for creating a comprehensive toolset
0 “w/o Stage 2”
m Evolutionary optimization is necessary to ensure toolset
quailty
mw/o Sel: lead to redundant, ineffective tools
mw/o CO: limite toolset diversity

= w/o Mut: prevent necessary tool updates, reducing
adaptation capability

/3

AAAI-25 / IAAI-25

EAAI-25

Method | Ace | Cov | #Freq | # T-size
KTCE | 53.14% | 64.50% | 310 | 1317
w/o Stage 1 | 50.16% 9.16% 5.99 78

w/o Stage 2 | 50.50% | 57.92% 2.14 1612
w/o Sel SL.72% | 65.10% 2.04 1858
w/o CO 50.62% | 59.86% 2.85 1278
w/o Mut | 51.56% | 64.42% 2.65 1402

Table 4: Ablation study results on the MATH dataset.

Experiments /4‘.

AAAI-25 / 1AAI-25 / EAAI-25

0 Code Complexity Analysis
00 Metrics
m Cyclomati mplexi i
Cyclomatic Complexity (CC) N ccy | mvy | mEL
= Halstead Volume (HV) PoT 232 | 6636 | 247.83
e Halsead Effort (4B S LT
TROVE 1.57 | 82.79 | 23588
00 Analyse KTCE 149 | 4410 | 119.71
m KTCE produces solutions with the lowest complexity Table 5: Complexity of Python solutions in the MATH

. dataset for different methods.
across all metrics

m Utilzing comprehensive and reusable tools, KTCE enables
LLMs to focus on high level reasoning which reduces
solution complexity and enhances reasoning efficiency

Experiments /4‘.

AAAI-25 / 1AAI-25 / EAAI-25

01 Reasoning Across Difficulty Levels
1751 Increasing Numbers - TROVE L0.6
01 To assess KTCE’s robustness across difficulty levels, we o o e Gt Rate - TROVE
S -#- Accuary Growth Rate - KTCE F0.5
. . e e &
analyze its performance on problems of varying difficulty 5 s S
w 0.4 o«
0KTCE outperforms baselines at all levels with notable g 03
E 751 E
.) = S
improvements on challenging problems S o m 02
S B .
01 Validate KTCE’s effectiveness in enhancing reasoning £ I <
cpea e 0 // 0.0
capabilities across difficulty levels through the well-
s

. Level 1 Level 2 Level 3 Level4 Level5
designed toolset
Figure 3: Comparison of Reasoning Accuracy of TROVE
and KTCE w.r.t. Difficulty Level in the MATH dataset.

Experiments /4‘.

AAAI-25 / 1AAI-25

1 Generalization Performance

EAAI-25

1Cross-Dataset

m Toolset generated from MATH dataset applied to GSM8K

Model | Dataset | Method | Accuracy
m Accuracy improves by 3.34%, showing it captures math GPT-3.5-Turbo ”‘gﬁ; KP,;’gE ;’fjﬁf;
concepts for cross - dataset generalization ORI Tubo = 1 vate | 2% | Saoe
01 Cross-Model DecpSeck.Coder | SCIBENCH | e | 30 0%
m GPT-3.5-Turbo’s tools used in GPT-40-Mini on MATH: Table 6: Performance of KTCE toolset when generalized to

different LLMs and datasets.
4.06% accuracy boost; In DeepSeek-Coder on SCIBENCH:

5.00% accuracy increase

m Demonstrates cross - model robustness

Outline // 1

AAAI-25 / 1AAI-25 EAAI-25

o1 Introduction

1 KTCE Framework

0 Experiments

0 Conclusion

Conclusion /é‘.

AAAI-25 / 1AAI-25 EAAI-25

0 Summary

00 Proposed a two-stage framework combining structured knowledge trees (for reusability) and
evolutionary search (for diversity), enabling LLMs to:

= L) Induce tools from fundamental concepts: by grounding tools in abstract domain knowledge

= & Evolve toolsets via Selection/Mutation/Crossover through iterative refinement, KTCE expands
toolset diversity

0Demonstrated the effectiveness of KTCE in enhancing LLMs' reasoning capabilities across
various tasks.

1 Future works

0 Explore more advanced tools such as multi - modal and embodied Al tools

0 Design better agent workflows to improve tool selection and utilizing

Thanks for Listening!

zhyma@mail.ustc.edu.cn

