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Background

 Tool Augmented Reasoning

 Tools (e.g., Python Library functions like Sympy) empower LLMs to tackle complex reasoning 

tasks by precise computation

 Tool Creation

 Manually constructing tools requires  substantial costs and the resources are limited in quantity.

 Many studies have automatically created tools in various fields (e.g., math) using Large 

Language Models (LLMs), and invoked them to enhance the reasoning ability of LLMs
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Motivations

 Existing tool creation methods face limitations:

Low Reusability

◼Tools are over problem-specific, which limits their ability to 

be reused for other tasks. (e.g., a "revolution ratio" tool fails 

on similar "distance ratio" tasks)

Limited Diversity

◼Toolsets lack coverage for broader tasks. Tools created by 

TROVE can only be applied to less than 15% of problems in 

the MATH dataset

These limitations severely restrict the application of 

tool creation
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Motivations

 These limitations stem from two oversights:

Low Reusability

◼The neglect of the importance of abstract knowledge in tool development. Tools are highly condensed 

knowledge, and without an explicit connection between tools and knowledge, the generated tools have 

difficulty in solving new problems sharing the same knowledge points

Limited Diversity

◼The complete reliance on the problem itself to build static tools, while neglecting the combination and 

expansion of these tools. As a result, these tools are restricted in functionality and hard to be applied to 

different problems
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Problem Definition

 To address these limitations, we propose the Knowledge-grounded Tool Creation with Evolution Framework 

(KTCE). It aims to create reusable and diverse toolsets by grounding tools in domain knowledge and 

evolving them adaptively.

 Given a task with training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 = 𝑝𝑖 , 𝑠𝑖 , the goal of KTCE is to create a Python function - based 

toolset 𝑇∗ with two main objectives are:

 Tool Reusability: Tools should solve classes of problems, measured by the tool calling frequency on 𝐷𝑡𝑒𝑠𝑡

 Toolset Diversity: Tools should cover a wide range of tasks, reflected by the proportion of solvable 

problems in 𝐷𝑡𝑒𝑠𝑡
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KTCE Framework

 Stage 1: Knowledge-Based Tool Creation

“problem-knowledge-tool” paradigm

◼Tools Tools should be executable, condensed domain 

knowledge rather than task-specific solutions

 Knowledge Extraction:

◼ Extract Topic-Concept-KeyPoint triples from 

problem-solution pairs. Build a hierarchical 

knowledge tree via clustering

Tool Generation:

◼Create atomic Python functions for each KeyPoint 

in the knowledge tree
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KTCE Framework

 Stage 2: Tool Evolutionary Search

Tool Evaluation

◼Evaluate toolset using metrics like tool invocation 

frequency, toolset coverage, task accuracy, along with 

an optimization function

 Tool Evolution

◼Selection: Keep good tools, remove bad ones (e.g., 

rarely used)

◼Mutation: Use LLM to refine tools with execution 

feedback, adjusting code and handling errors

◼Crossover: Combine tools to make new, more useful 

functions

Iteratively Evaluation & Evolution

10



KTCE-augmented Agent

 KTCE-augmented Agent (KA)

Utilize tools from the final optimized toolset 𝑇∗ for generating code solutions of input problems

◼A is the final standardized answer

◼M is the KA’s problem-solving process

 Workflow

◼Tool Retrieval: Identify relevant (𝑡𝑖 , 𝑐𝑗) pair to access tools from 𝐹𝑖𝑗.

◼Solution Generation: Leverage LLM to generate Python code calling retrieved tools, incorporating examples 

from 𝐻 via In-Context Learning.

◼Result Formatting: Execute code, transform intermediate results into standardized answer format 𝐴 for 

evaluation

11



Outline

 Introduction

 KTCE Framework

 Experiments

 Conclusion

12



Experiments

 Datasets

Mathematical Reasoning: MATH; Tabular Reasoning: TabMWP; Scientific Reasoning: SCIBENCH

 Baselines

Basic: CoT, PoT; Tool-Augmented: PoT with Library (e.g., SymPy), Wolfram

Tool Creation: Creator, Creator (SR), CRAFT, TROVE

 Evaluation Metric

𝐴𝑐𝑐: measures model reasoning ability

𝐶𝑜𝑣: task coverage represents the proportion of problems that can be solved by using the tools

# 𝐹𝑟𝑒𝑞: tool usage frequency represents the average number of times each tool is called

# 𝑇 − 𝑠𝑖𝑧𝑒：the number of functional tools in the toolset
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Experiments

 Overall performance

 ACC Comparison

◼Our KTCE outperforms all baselines across three datasets

◼ This demonstrates KTCE's ability to handle competition-level reasoning tasks effectively
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Experiments

 Overall performance

 Cov Comparison

◼64.5% on MATH (vs. 14.78% for TROVE), indicate that 

KTCE tools can solve a significantly broader range of 

problems.

 # Freq Comparison

◼3.10 avg. calls/tool (vs. 0.56 for TROVE), demonstrate 

that KTCE tools are highly reusable across different tasks.

 # T-size

◼Show the larger and more diverse toolset compared to 

CRAFT
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Experiments

 Ablation Study

 “w/o Stage 1”

◼ Indicate that the structured domain knowledge in Stage 1 

is crucial for creating a comprehensive toolset

“w/o Stage 2”

◼Evolutionary optimization is necessary to ensure toolset 

quailty

◼w/o Sel: lead to redundant, ineffective tools

◼w/o CO: limite toolset diversity

◼w/o Mut: prevent necessary tool updates, reducing 

adaptation capability
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Experiments

 Code Complexity Analysis

 Metrics

◼Cyclomatic Complexity (CC)

◼Halstead Volume (HV)

◼Halstead Effort (HE)

 Analyse

◼KTCE produces solutions with the lowest complexity 

across all metrics

◼Utilzing comprehensive and reusable tools, KTCE enables 

LLMs to focus on high level reasoning which reduces 

solution complexity and enhances reasoning efficiency
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Experiments

 Reasoning Across Difficulty Levels

To assess KTCE’s robustness across difficulty levels, we 

analyze its performance on problems of varying difficulty

KTCE outperforms baselines at all levels with notable 

improvements on challenging problems

Validate KTCE’s effectiveness in enhancing reasoning 

capabilities across difficulty levels through the well-

designed toolset
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Experiments

 Generalization Performance

Cross-Dataset

◼Toolset generated from MATH dataset applied to GSM8K

◼Accuracy improves by 3.34%, showing it captures math 

concepts for cross - dataset generalization

Cross-Model

◼GPT-3.5-Turbo‘s tools used in GPT-4o-Mini on MATH: 

4.06% accuracy boost; In DeepSeek-Coder on SCIBENCH: 

5.00% accuracy increase

◼Demonstrates cross - model robustness
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Conclusion

 Summary

 Proposed a two-stage framework combining structured knowledge trees (for reusability) and 

evolutionary search (for diversity), enabling LLMs to: 

◼📚 Induce tools from fundamental concepts:  by grounding tools in abstract domain knowledge

◼🧬 Evolve toolsets via Selection/Mutation/Crossover through iterative refinement, KTCE expands 

toolset diversity

Demonstrated the effectiveness of KTCE in enhancing LLMs' reasoning capabilities across 

various tasks.

 Future works

 Explore more advanced tools such as multi - modal and embodied AI tools

 Design better agent workflows to improve tool selection and utilizing
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