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Introduction

• Our task: Molecular property prediction

• Applications: Drug discovery, material engineering…

Properties:
U0 (Atomization energy at 0K)
U (Atomization energy at room temperature)
G (Free energy of atomization)
HOMO
LUMO

.

.

.Input: Molecule
Output: Properties



Introduction

• Measure properties by experiments
• Density Functional Theory
• Modern: Machine learning methods

• A molecule as a graph(! = ($, &))
• Pass it to a message passing Graph Neural Networks
• Get the result after 10*+ seconds



Introduction

• ML model is data hungry, requires many labelled data
• Unlabelled data (molecular graph) is everywhere
• Labelling is expensive
• Our goal: label efficient model
!: # → %&

• Our Solution: Active semi-supervised learning



Preliminaries—GNN for molecular property prediction

• Pass message from nodes to nodes
• Aggregate node to get the graph representation

GraphSAGE: A popular MPNN



Related Work—Semi-supervised Learning

• Number of labeled data ≪ unlabeled data
• How can we make use of unlabeled data ?

• Create pseudo labels and predict them!

The influence of unlabeled data



Related Work—Active Learning

• Active learning is to improve the value of these labels
• Choose data that is helpful to the model and retrain the model
• Solution: most representative and diversified subset in the dataset

Framework of active learning.



Challenges

• Data structure of molecules is different from traditional images/text/…

• Few works on semi-supervised learning of molecules

• Low training efficiency because of the imbalance data



Model Framework

• Two GNN, a teacher and a student model

• Train the teacher with semi-supervised learning
• Train the student with fully supervised learning for downstream property prediction



Teacher Model

• Local(node) level pseudo labels—reconstruction
• We believe a good property predictor is able to recover the atom itself 

from its embedding
• A loss function to reconstruct atom and their distance

GNN

-

Sample and reconstruct



Teacher Model

• Global level pseudo labels—clustering loss
• Implicit clustering via optimal transport
• Predict these clusters and repeat iteratively



Teacher model 

• Summary of the teacher model
• Add these three loss terms to guide its optimization
(1).property loss
(2).reconstruction loss
(3).clustering loss

!":labeled data  !#:unlabeled data



Student model

• Weight transfer from the teacher model
• Fine tune on property prediction task
• Accelerate convergence and alleviate loss conflict



Active Data Selection

• Choose most informative data
• K center to choose one molecule from one cluster
• Add them into the labeled dataset

• Repeat the process until label budget is used up

Selection via k-center



Experiments

• Datasets
(1) QM9: 130,000 molecules, <9 heavy atoms
(2) OPV: 100,000 medium sized molecules

• Properties (All calculated by DFT)
(1) QM9:
(2) OPV:



Experiments

• Effectiveness, compare error on test dataset
• Baselines
(1).Supervised
(2).Mean-teachers
(3).InfoGraph



Experiments

• Results

Results on QM9

Results on OPV



Experiments

• Efficiency, the label efficiency at a certain error
• Baselines:
(1).Random
(2).Query by Committee
(3).Deep Bayesian Active Learning
(4).Vanilla K-center



Experiments

• Results



Experiments

• Ablation Study
• Why using two models (a teacher and a student)
• Why transferring weight from the teacher to the student
• Visualization experiment

Necessity of teacher and student

Necessity of weight transfer

Visualization



Many thanks!


