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Abstract 

A multiscale modeling procedure, combining meshless method with molecular dynamics 
is developed in this paper. An intermediate oscillator is introduced to act as a media for 
the energy transfer between atom and continuum domains. Very smooth energy transfer 
is observed in our calculations for both 1D and 2D examples. 
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Introduction 

Most physical phenomena in nature involve a hierarchy of both spatial and temporal 
scales at different levels. Typical cases include protein folding, chemical reaction, 
turbulence, crack propagation in solid, or shear localization. To solve such kind of 
problems is often beyond the capability of one theoretical frame valid within a single 
scale, such as molecular dynamics and continuum mechanics. 

Efforts seeking for multiscale methodologies spanning from atomistic to continuum 
domains can be traced back to the work by Sinclair (1971). Mullins et al. (1982) used 
finite element method to model the continuum domain slight away from the region near 
the crack tip where atomistic calculation is performed. Tadmor et al. (1996) developed 
the quasicontinuum (QC) method with capability to remesh according to the variation of 
the deformation gradient. Rudd et al. (1998) formulated a coarse-grained molecular 
dynamics (CGMD) method, derived directly from finite temperature MD through a 
statistical coarse graining procedure. Xiao et al. (2004) proposed a bridging domain 
method with linear combination of the continuum and atomic Hamiltonians at the 
overlapping domain, avoiding spurious wave reflections. Till now, most of the multiscale 
methods belong to handshaking approach. Recently, Cai et al. (2000) and Park et al. 
(2004) introduced a general Langevin equation as a boundary to atom region, also to 
eliminate wave reflections. 



 

In this paper, motivated by Xiao et al. (2004), we study wave propagation with a 
modified multiscale modeling method, coupling meshless method with molecular 
dynamics. Very smooth energy transfer between atom and continuum domains is 
achieved. 

Coupling Model 

The coupled model (Fig.1) 
includes atomistic and continuum 
domains, and an intermediate 
oscillator. The oscillator acts as a 
media for the energy transfer between atomistic and continuum domains. The total 
Hamiltonian of the extended system is a combination of the Hamiltonians of the atomistic 
and continuum domains, and the intermediate oscillator,  

where i stands for the atoms, I for meshless node, and Θ  for the interpolation point in the 
overlapping region. ( [0,1])α ∈ is the scale parameter, allowing for a grade energy transfer 
between atomistic and continuum domains. In practice, α  takes the form of arctangent 
function. Q, K, λ , gΘp and Θg are the generalized mass, stiffness, Lagrange force, 
momentum, and coordinate of the intermediate oscillator respectively. gΘp and Θg are 
obtained by the following, 
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At each pointΘ , there is a “particle” with mass Q (a small value for quick energy transfer 
in calculations), subjected to a constant force (penalty method) and variable Lagrange 
force (Lagrange multiplier method). ΘIN and ΘiN  are shape functions of node I and atom i 
respectively evaluated at point Θ . The shape function is constructed via MLS approach 
(Belytschko et al., 1994).  The equations of motion, derived from Hamiltonian canonical 
equations, can be integrated with velocity Verlet integrator, using multiple- time step 
algorithm: 
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where, 0,1,2 , 1.j N= − T∆ is the time step for continuum, t∆ for atomistic region. int
If , int

if  
are the interal force for continuum and atom respectively. The generalized forces are 
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Figure 1.  Coupling model 
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Results and Discussion 

 

In the 1D and 2D models, nearest neighbor (NN) interaction in atom domain is 
represented with harmonic potential. The elastic properties of continuum domain are 
equivalent to that of atomistic domain.  The units are reduced.  

The lognitudinal wave propagation in 1D model is shown in Fig.2. The distances between 
the NN atoms and NN nodes are 0.2 and 0.5, respectively. There are 30 nodes and 75 
atoms in 1D model. The two ends are traction free. An initial displacement of one-quarter 
of sinusoid is applied as in Fig.2 (time=0.0). The time steps for atoms and nodes are 0.01 

nodes goverlappin atoms

Figure 4.   The 2D model. 
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Figure 6.   Time history of energy 
transfer in 2D domain. (plane wave) 

Figure 7.   A circular
wave propagates in 2D
domain with overlapping
area.

Figure 2.   A wave propagates in 1D domain with 
overlapping area. 

Figure 3.   Time history of 
energy transfer in 1D domain. 
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Figure 5.   A plane wave propagates in a 
2D domain with overlapping area. 
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and 0.05, respectively. Figure 3 shows a smooth energy (sum of kinetic and potential 
energy) transfer from atom to continuum.  

Figure 4 is a 2D slab model, with 105 nodes and 400 atoms. The distances between the 
NN atoms and NN nodes are 0.2 and 0.4, respectively. Periodic boundary condition is 
applied along the vertical direction and the two horizontal ends are traction free. The 
initial displacement is similar to that in 1D model. Figure 5 demonstrates the plane wave 
propagation in the slab model. Again, energy transfers smoothly between the two 
domains (Fig. 6).  

Figure 7 exhibits the propagation of a circle wave in a square model. The overlapping 
zone locates between the dashed lines, the left to which is continuum domain, and the 
right to which is atom domain. The wave crosses the bridging domain in a good manner, 
with minor wave reflection observed. For comparison, Park et al. (2004) adopted 
generalized Langevin equation as the boundary condition for atom domain, where the 
refection wave is not neglectable. 

Conclusions 

A multiscale modeling method, combining meshless method with molecular dynamics, is 
developed in this paper, in which an intermediate oscillator is introduced acts as a media 
for the energy transfer between atom and continuum domains. 1D and 2D models are 
studied with our approach. Smooth energy transfer is observed in our calculations. 
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