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A coarse grain model of microtubules
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Abstract This paper proposes a 3-dimensional coarse grain model of microtubules and treats the
tubulin monomer as a sphere of multiple patches, with parameters chosen to yield experimental values
of bending and stretching stiffness. The model has demonstrated the ability to produce the bistability
of tubulin sheets, elastic deformation near the tip, and cracking and peeling of protofilaments. This
model is expected to take into account the structural and mechanical aspects underlying the physical
mechanism of polymerization/depolymerization and dynamic instability of microtubules. c© 2012
The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1201406]
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Microtubules (MTs) are polar linear polymers of
protein tubulin heterodimers found ubiquitously in eu-
karyotes. The MTs together with actin and inter-
mediate filaments form cytoskeletal networks, which
determine the mechanics of cells, and perform var-
ious essential biological functions including chromo-
some segregation, motor proteins transportation and
cell locomotion.1 The MT usually consists of 13 protofil-
aments (PFs), assembled in parallel by lateral inter-
actions into hollow cylindrical shell of approximately
25 nm in the outer diameter and 5 nm in the thick-
ness. Such tubular arrangement makes MT the stiffest
element compared to other two cytoskeletal filaments.
Accordingly, the persistence length lp (lp = κ/kBT ,
where κ is the bending stiffness) of MTs ranges from
hundreds to thousands of micrometers2 in comparison
with the typical size of an eukaryotic cell ranging from
10 to 100 micrometers. Instead of being static, the
length of MTs switches repeatedly and stochastically
between slow growing and rapid shrinking phases both
in vivo and in vitro, a dramatic nonequilibrium phe-
nomenon called dynamic instability3 allows for force
generation and remodeling of cytoskeleton spatial orga-
nization during mitosis or exploration of the surround-
ing environment.

The MT dynamic instability roots in the molec-
ular details of tubulin dimers during polymerization
and depolymerization. The molecular structure of
α and β monomers are highly homologous. Each
tubulin monomer resembles an ellipsoid of dimension
4.6 nm× 4.0 nm× 6.5 nm, formed by a core of two β
sheets surrounded by α helices and identified func-
tionally into three binding domains.4 Either of the
monomers binds one guanosine triphosphate (GTP)
molecular at the N-terminal nucleotide-binding domain.
A non-exchangeable GTP at the N-site in α-tubulin is
fully buried in the intradimer interface, while the GTP
bound at the E-site on the free surface of β-tubulin is
exchangeable and hydrolyzable.1 When tubulin dimers
polymerize head-to-tail into PFs, the partially exposed
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β-tubulin GTP is then buried non-exchangeably in
the newly formed interdimer interface and shortly hy-
drolyzes to guanosine diphosphate (GDP) catalyzed by
α-tubulin residues.

It is now accepted that the nucleotide state plays
a central role in connecting monomers. The longitu-
dinal intra- and inter-dimer contacts are distinct de-
spite their similarity in electron density map. The GTP
monomer-monomer interface is significantly strong with
less bending while GDP dimer-dimer interface is much
flexible and prone to large kinking, due to residues dif-
ference and local conformation change.5 A free-standing
GDP-bound PF will naturally bend, but it is forced to
straighten by the constraints from neighboring PFs in
MT lattice. The chemical energy from GTP hydrolysis
is thus stored in the apparently straight MT in the form
of elastic energy, which promotes a transition to shrink-
age, i.e. catastrophe. The lateral aggregation of PFs
into tubule results in large part from the interactions
of M-loop and helix H3 between adjacent monomers.
This lateral contact is of weak electrostatic effects in
contrast to the hydrophobic and polar nature of longi-
tudinal contacts.6 The highly stressed plus-end of MTs
tends to disassemble especially when the lateral con-
tact is weakened by the conformation change in helix
H3 associated with GTP hydrolysis. It is proposed that
a layer of GTP cap or an equivalent structural cap of
strong lateral contact is required to stabilize MTs, oth-
erwise catastrophe is triggered.

Despite the substantial experimental understand-
ings in the molecular details of tubulin, the physi-
cal mechanism underlying dynamic instability remains
unclear. Various theoretical and computational mod-
els have quantified phenomenologically the stochas-
tic growth and shrinkage in kinetic view by assum-
ing the rate of addition and hydrolysis of tubulin.7,8

However, the mechanical and structural features are
the crucial ingredients of dynamic instability. Several
coarse-grained simulations considering elasticity explic-
itly have been devoted to understand mechanical de-
formation near the cap,9 force generation of shrink-
ing MTs,10, length dependence of persistence length,11

and 3-dimensional structures of sheet-like/blunt tip
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and their consequence on catastrophe.12 An impor-
tant experimental observation that tubulins first aggre-
gate into intermediate sheets then turn over to closed
tubes, is igonred by most computational and theoreti-
cal models, which indicates the existence of bistability
in MTs.5,13,14,16 The bistability feature is not surprising
since GDP PFs peel outward and at the same time MTs
favor lateral curving.

In this study, we propose a 3-dimensional coarse-
grain model of MTs, aiming at capturing the crucial role
of bistability as well as the structural and mechanical
aspects. The α or β tubulin monomer is modeled as a
sphere, decorated with 4 orientation-dependent patchy
points on the surface (Fig. 1(a)). The adhesion between
patches on adjacent spheres can introduce naturally
spontaneous curvatures in tubulin aggregation. Polar
disk was used in self-assembly of supermolecular15 and
here the idea is extended nontrivially to sphere of mul-
tiple polarities. The non-covalent interaction between
patchy monomer i and j is described as modified Morse
potential (Fig. 1(a))

V (rij) = ε{[1− e−a(rij−r0)]2 − 1}e−b(θ
2
i+θ

2
j ), (1)

where rij and r0 are the current and the rest center-
to-center distances respectively, θi and θj are the rela-
tive angles, a and b are the paraments related to bend-
ing and stretching stiffness between monomers, and ε
is the adhesion strength. The standard Morse poten-
tial part maintains an equilibrium distance between
monomers. The exponential term enforces an orien-
tation requirement that two patches have to eqnarray
along the center-to-center line, otherwise the interaction
between the two patches decays quickly (Fig. 1(a)). By
tuning relative position of patch points, it is possible
to generate a bistable MT with spontaneous curvatures
of longitudinal outwards and lateral inwards. In ad-
dition, this simple model does not require permanent
connection among monomers and therefore facilitates
simulation of assembly/disassembly based on discrete
tubulins.

From Eq. (1) one can calculate important mechan-
ical properties of bending and stretching stiffness, lon-
gitudinally and laterally, where parameter a determines
the stretching stiffness and parameter b for the bend-
ing stiffness. In a straight GTP PF, the rest distance
between neighboring dimer-center is L = 2r0. With
infinitesimal axial strain δ, one can write down the
stretching energy per dimer as

Us = (1− e−aδL)2ε− ε ' (aδL)2ε. (2)

In its continuum analogue of an elastic rod, the stretch-
ing energy can be expressed alternatively as

Us =
1

2
Sδ2L, (3)

where S = EA is the stretching stiffness. By equating
the two expressions above, we get the stretching stiffness
of a PF

S = 2a2Lε. (4)

Fig. 1. (a) The interaction between two patchy monomers.
The white dot on the grey sphere is the patchy point. The
θi and θj are the angles between the center-to-patch line
and the center-to-center line. When θi = θj = 0, the two
patchy points eqnarray. Two spheres form a dimer with 6
patchy points (inset). (b) Effect of unidirectional sponta-
neous curvature on a flat tubulin sheet(middle): the sheet
curves upwards with the longitudinal spontaneous curvature
and downwards with the lateral spontaneous curvature. The
α-tubulin is in yellow and β-tubulin is in blue. (c) With
bidirectional longitudinal and lateral natural curvature, in-
creasing the number of PFs causes a turn-over from longi-
tudinal curving to lateral curving. The data of spontaneous
curvature are taken from the work by Nogales et al.17,18

Similarly, we can obtain the equivalent bending
stiffness from the orientation-dependent term in Eq. (1).
Assuming a weakly bent PF with relative angles θi =
−θj = θ ∼ o(1), the curvature κ ' 2θ/L and the dis-
crete form of bending energy per dimer, we have

Ub = −εe−bL
2κ2/2 + ε ' 1

2
bκ2L2ε. (5)

The continuum description of bending energy of an elas-
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Table 1. This table lists the longitudinal Young’s modulus E, bending rigidity EI, shear modulus G and the outer radius
Ro and inner radius Ri of MTs.

Tubulin Source E/GPa Ro&Ri/nm EI/(10−24Nm2) G/Pa
Gittes19 1.2 14.18 11.48 21.5±0.8

Pure: 62±9
Tao: 34 ± 3(37◦C) 21 ± 1(25◦C)Mickey20 Bovine 1.4 14.18 11.48

Taxol: 32±2
Cap: 26±2

Pure: 2.9−5.1
Felgner21 Porcine Taxol: 0.7−2.0

MAPs: 13−21
Tolomeo22 Mammalian 2 15 8.5 70 103

Kis23 >0.1 12.5 7.5 (1.4 ± 0.4) × 106

de Pablo24 Porcine 0.8
Tuszynski25 Long.: 1.32 Lat.: 0.004 12.5 7.5 53.0 − 50 × 106

Pampaloni2 Porcine 1.51±0.19 12.5 7.5
Long.: 1.25(α) 1.34(β)Zeiger26

Lat.: 0.8356(α) 0.6584(β)
Apo: 2.2 28.8 47 × 106

Sept27

Taxol: 0.38
12 8

14.6 48 × 106

Deriu28 −1 4 − 9 50 × 106

tic rod is

Ub =
1

2
Bκ2L. (6)

Again by equating the two expressions above, we get
the bending stiffness of a PF

B = bLε. (7)

The relations (4) and (7) along with the interaction
potential (1) allow us to determine the three parameters
a, b, and ε by using the available data of cohesive energy,
stretching stiffness S and bending stiffness B from ei-
ther experimental measurements or full atom molecular
dynamics simulations as summarized in Table 1. We see
wild fluctuation that (0.38 − 2.2) GPa for longitudinal
Young’s modulus, (0.7 − 71) × 10−24 Nm2 for bending
stiffness, and 53.0 − 50 × 106 Pa for shear modulus.
The information about lateral stretching and bending
is rare in the literature, perhaps they are regarded as
trivial in comparison with the important longitudinal
properties. It is then left to us to determine reason-
able values of longitudinal/lateral stretching and bend-
ing stiffness. Thanks to the longitudinal and lateral
adhesion energy of 18.5kBT and 3.2kBT , respectively,29

assuming the radius of a monomer 2 nm, we find aLong =
4.5 nm−1 and bLong = 72, corresponding to longitudinal
Young’s modulus ELong = 1.97 GPa and bending stiff-
ness BLong = 2.21× 10−26 Nm2; respectively for lateral
interactions, we choose aLat = 4.5 nm−1 and bLat = 6
so that ELat = 178 MPa and BLat = 3.17× 10−28 Nm2.
These parameters are determined with certain arbitrari-
ness, but still comply with the fact that the interac-
tions are strong longitudinally and weak laterally, fol-
lowing the experimental understandings of interactions
between tubulin molecular.1,4,5 Dynamic instability is
found to have an inherent property regardless of com-
plications from various effectors like ions, MAPs, and

drugs, indicating the insensitiveness of the patchy model
to “exact” parameters if the critical underlying mecha-
nism is captured.

To validate our model, several simulations have
been carried out via Monte-Carlo method30 to study
the bistability of tubulin sheets, elastic deformation in
the vicinity of MT tip, and peeling of PFs during de-
polymerization. During the simulations, two spheres are
permanently linked mimicking a stable tubulin dimer by
fixing the center-to-center distance (inset in Fig. 1(a)).
Figure 1(b) shows that a flat tubulin sheet bends
upwards with longitudinal spontaneous curvature, or
downwards with lateral spontaneous curvature. When
the two spontaneous curvatures apply simultaneously, a
tubulin sheet changes gradually from bending upwards
to downwards as the number of PF increases (Fig. 1(c)),
showing the typical characteristic of bistability.

Figure 2(a) and 2(b) plot the displacement of the
MT near the tip (x = 0) driven by the longitudinal
spontaneous curvature κ0, showing an oscillation of ex-
ponential decay. We assume that the deformation is
small w ∼ t, where t is the thickness of the tube. The
bending energy is Ub ∼ BlpDκ2, where B is the bending
stiffness of PF, D = 2πR is the circumferential length.31

The released stretching energy associated with the cir-
cumferential strain w/R is Us2 ∼ S2Dlpw

2/R2, where
S2 is the circumferential stretching stiffness. Notic-
ing that the two energies should be of the same or-
der Ub ∼ Us2, we get w ∼ Rtκ. This linear de-
pendence of w on κ is consistent with our simulation
result (inset in Fig. 2(a)). To determine persistence
lp, we need to consider another stretching energy as-
sociated with longitudinal strain release w2/l2p, that is

Us1 ∼ S1Dlp(w2/l2p)2. Minimizing the sum of Us1+Us2,

we see that lp ∼ (Rw)1/2 ∼ (Rt)1/2, noticing w ∼ t in
our small displacement assumption. Figure 2(c) demon-
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Fig. 2. (a) The normal deflection w varies with distance
x from the free tip. The inset shows a linear relationship
between w and the spontaneous curvature κ, as rescaled by
the maximum κ0. (b) The MT constructed in simulation,
the left tip is free and the right side is fixed. The elastic
energy of tubulin dimers is shown in color, blue for lower
energy and red for higher energy. (c) The onset of cracking
and peeling of MTs. When the spontaneous curvature is
larger than a critical value, MT start to crack and PF peels
off.

strates the peeling process of PFs from the tip when the
spontaneous curvature reaches a critical value. The ra-
dius of the longitudinal curvature of PF is 20 nm, and
the radius of the lateral curvature of PF is 12.5 nm. It
is interesting to note that once the tip starts to crack,
the dimers behind the cracked area have the least elastic
energy.

In summary, we proposed a 3-dimensional patchy
sphere model of MTs with multiple polarities. The
parameters in the monomer-monomer interaction have
been reasonably determined, whose uncertainties can be
alleviated with better experimental or atomistic simu-

lation values. We validate the patchy model via Monte-
Carlo simulations including the demonstration of bista-
bility of tubulin sheets. This model is expected to be
able to study structural, mechanical, as well as kinetic
aspects underlying the physical mechanism during poly-
merization/depolymerization of MTs.
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