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Interface failure modes explain 
non-monotonic size-dependent 
mechanical properties in 
bioinspired nanolaminates
Z. Q. Song, Y. Ni, L. M. Peng, H. Y. Liang & L. H. He

Bioinspired discontinuous nanolaminate design becomes an efficient way to mitigate the strength-
ductility tradeoff in brittle materials via arresting the crack at the interface followed by controllable 
interface failure. The analytical solution and numerical simulation based on the nonlinear shear-lag 
model indicates that propagation of the interface failure can be unstable or stable when the interfacial 
shear stress between laminae is uniform or highly localized, respectively. A dimensionless key 
parameter defined by the ratio of two characteristic lengths governs the transition between the two 
interface-failure modes, which can explain the non-monotonic size-dependent mechanical properties 
observed in various laminate composites.

Laminated composite architectures have been widely used to make tough and damage tolerant materials which 
are intrinsically brittle1–4. It is well accepted that interface failure by delamination or debonding and/or friction 
between adjacent laminae plays an important role in enhancing toughness and damage tolerance5–11. Usually 
laminated composites are continuous, i.e. ceramic-metal laminates12,13, metal-intermetallic multilayers14,15, and 
multilayered ceramics with weak interlayer1,16–18 etc. When the strength of the weak interlayer bond is below 
a critical value compared to the strength of the lamina, the nucleated cracks in each lamina are deflected onto 
the interface followed by interface failure5–7, then it becomes a discontinuously laminated structure. Within the 
structure, the penetrations of these cracks into adjacent discontinuous laminae that usually lead to a straight 
propagation path and a catastrophic failure are significantly mitigated. Instead, a non-catastrophic fracture called 
as a “graceful failure” with the highly meandering crack path is observed1,15–19. Biological materials, i.e. nacre 
and bone are such good examples to achieve excellent mechanical performance by controlling interface failure 
via delicate hybrid discontinuous laminate design, a so called brick-and-mortar microstructure20,21 which is the 
incorporation of inorganic platelets with optimal aspect ratio and nanometers thick organic weak interlayer. 
Therefore, fabrication of biomimetic discontinuously laminated composites opens a new way towards superb 
mechanical properties21–24.

It is known that weak interface can arrest the cracks in the laminae, deflect them onto the interface and facil-
itate interface failure. The weak interlayer is unnecessary to be soft organic component25. Recent studies further 
show that there are significant size-dependent mechanical properties in discontinuously laminated composites 
under uniaxial stretch. They are definitely related to the interface failure since the unique stress transfer mecha-
nism in these composites is the lamina/platelet in tension and the interface in shear. Once the maximum shear 
stress at the edge of the laminae is beyond the interface strength the interface starts to fail and the failure zone can 
propagate through the overlapping domain which varies with the platelet size and the platelet arrangement26–36. 
Theoretic analysis indicates that the aspect ratio of the platelet in nacre has a characteristic value, at which the 
platelet and the interface simultaneously undergo uniform failure and that is why nacre exhibits optimal mechan-
ical properties26,37–40. In contrast, another experimental results report that the polymer/nanoclay nacre-mimetics 
exhibit high toughness and interface failure with low aspect ratio nanoplatelets, while they exhibit superior 
stiffness and strength with large aspect ratio nanoplatelets, in accompany with the failure mode changing from 
interface failure to platelet fracture33. The failure mode transition depends on where the maximum stress first 
reaches the failure point. The effects of the interfacial elasto-plasticity and the overlapping length on the stress 
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field developed in the laminated structure are identified34. More interestingly, a non-monotonic size-dependency 
of the mechanical response is observed in the case of even no platelet fracture. The stiffness, strength, failure 
strain and toughness can be synergistically increased with the increase of the overlapping length in discontin-
uously overlapped ply carbon/epoxy composites, and they show a ductile behavior wherein the interface fails 
progressively although their components are brittle35. However in 3D-printed laminated composites under uni-
axial stretch the measured failure strain is found to decrease with the increase of the overlapping length, and they 
exhibit a brittle behavior wherein the propagation of the interface failure is catastrophic36. These experimental 
data seems contradictory. A unified explanation about the size effect of the interface failure in such structures is 
needed. In most previous theoretic efforts based on interfacial fracture mechanics, the interface failure is con-
sidered as a crack. Although when the crack deflects onto the interface has been studied extensively, it remains 
unclear how the interface failure proceeds and how its propagation correlates the size-dependent mechanical 
behavior, as well as the so called “graceful failure” with enhanced work of failure.

In this paper, we aim to theoretically elucidate the size effect of the interface failure in such structures men-
tioned in the literatures. We use a shear lag model to calculate the stress field in the discontinuously laminated 
composite34,41–44 under uniaxial stretch. The interface failure zone is considered as a debonding zone wherein the 
shear stress drops to zero when the failure criterion is met. We then adopt a stress-based criterion to characterize 
the condition of the interface failure5 instead of the energy-based criterion usually used in the interfacial fracture 
mechanics6. The consistency of the both criterions is identified45. In fact the shear lag model with the stress-based 
failure criterion shows its capability to study the interface failure in layered nanoceramic composites compared 
with molecular modeling46. Our analytical results for the regularly staggered laminated structure show that the 
non-monotonic size effect of the interface failure is attributed to the propagation mode transition of the interface 
failure zone, which is a function of the overlapping length. At a small overlapping length, the interface exhibits 
catastrophic failure corresponding to the brittle feature, while it shows a steady and progressive failure above 
a critical overlapping length. The size-dependent mechanical response in the randomly staggered laminates is 
also discussed. The staggering randomness is found to suppress the single-sided interface failure on the interface 
with short overlapping length and to promote the double-sided interface failure which significantly increases the 
failure strain and the work of failure. The calculated step-like stress-strain response that exhibits the feature of 
“graceful failure” in these randomly staggered laminates is obtained. Its formation can be roughly explained as the 
result of superposition of propagation of interface failure involving different overlapping lengths.

Results
Mechanical response in regularly staggered laminates.  We consider the interface failure process of a 
typical discontinuous laminate under uniaxial stretch εc as shown in Fig. 1. The discontinuous laminate can be a 
continuous laminate after the crack propagation in each lamina is arrested at the interface between lamina (see 
Fig. 1(a)) or inorganic platelets bonded by weak interlayer with nacre-like brick-and-mortar structure. The repre-
sentative volume element (RVE) of such structure depends on the size of the platelets lp and their arrangements. 
When the arrangement is regularly staggered with the offset s =  0.5 (Fig. 1(b)), the two-dimensional RVE is sim-
plified as shown in Fig. 1(c) and a shear-lag model can be analytically solved to obtain the stress field in the struc-
ture. While if the arrangement is randomly staggered, the RVE becomes complex, and the shear-lag model is 
numerically solved via an overdamping relaxation method to obtain the stress field34. In the nonlinear shear-lag 
model, the interface is assumed to be elastic with τ =  Gintγ linking the shear stress τ and strain γ by the shear 
modulus Gint and it undergoes brittle failure after the shear stress is above its shear strength τf with the failure 
strain γe
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Figure 1.  Schematic illustrating (a) the image adapted from ref. 47 for discontinuous Al2O3/LaPO4 laminates 
after cracking in each layer, (b) sketch of the discontinuously laminated structure for modeling, (c) the shear-lag 
model for the interface failure process.
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displacement in the platelets #1 and #2, respectively. After the stress fields are solved (see the details in the 
Supplementary Material Appendix A), the average stress in the RVE has the form
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stress on the interface, i.e. the shear stress is almost uniform as ld ≤  0.5l0. =a a l/ p is the dimensionless length of 
the interface failure zone. At a given uniaxial stretch εc the value of a is determined by the following equation
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Figure 2 plots the calculated effective stress-strain curve of the RVE in Fig. 1(c) under different values of ld by 
substituting the value of a in eq. (2) into eq. (1). The result demonstrates a size-dependent mechanical response. 
When the overlapping length is smaller than a critical value, the failure of the structure is brittle, however it exhib-
its a ductile behavior after the overlapping length is larger than a critical value. The yield strain εy is defined at 
which interface failure starts to appear, namely, the value of a changes from zero to nonzero.
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before the complete failure which poses an energetic instability. We noted that this criterion is consistent with the 
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Figure 3 plots the applied stretch as a function of the size of the interface failure zone at different values of the 
dimensionless key parameter ld/l0. It shows that when ld/l0 is small, the maximum applied stretch reaches at =a 0 
and this implies that once the interface failure occurs its propagation is catastrophic, while if ld/l0 is sufficiently 
large, the maximum applied stretch reaches at → .a 0 25, and this signifies that there is a steady and progressive 
interface failure process. Figure 4 shows that the yield strain monotonically decreases till the value of ε0 with the 
increase of ld/l0, however, the failure strain firstly decreases, then increases and finally converges toward 2ε0 at 
sufficiently large value of ld/l0. The result in Fig. 4 indicates that on the one hand, the failure strain could be much 
larger than the yield strain where a progressive non-catastrophic interface failure contributes a ductile behavior 
in the laminate although the platelets and the interlayer are intrinsically brittle, on the other hand, in the structure 
with ld/l0 <  1.95 the failure strain is very close to the yield strain, and it exhibits a brittle behavior. The reason is 
that the shear stress on the interface is almost uniform and the interface tends to undergo uniform rupture. In the 
case of large ld/l0, the shear stress is highly localized. Figure 5 plots the shear stress profile along the interface with 
the increase of uniaxial stretch at ld/l0 =  15. The result clearly shows that the interface is separated into three dis-
tinct zones: failure zone, localized shear zone, and zero shear stress zone. With the increase of the uniaxial stretch, 
the failure zone can grow steadily without the drop of the tensile stress in the platelets at the expense of decreasing 
the zero shear stress zone until it disappears. Therefore it is the steady profile of the localized shear stress that 
guarantees a progressive interface failure. Our simple model thus elucidates two distinct interface failure modes: 

Figure 2.  The calculated stress-strain curve under different overlapping length in regularly staggered 
discontinuous laminates. 
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the catastrophic and non-catastrophic interface failures. The former occurs when the shear stress on the interface 
is uniform and uniform interface failure is favorable. The latter takes place when the shear stress on the interface 
is localized and progressive interface failure dominates. Control of the interface mode depends on the value of 
ld/l0 which determines the distribution of the interfacial shear stress. The size-dependent interface failure mode 

Figure 3.  Plot of the applied stretch as a function of the size of the interface failure zone at different values 
of ld/l0. 

Figure 4.  Plots of the yield and failure strains as a function of ld/l0 in regularly staggered discontinuous 
laminates. 

Figure 5.  The sequential profile of the localized shear stress at the interface with the increase of the applied 
strain at ld/l0 = 15. 
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can explain why the failure strain in the 3D-printed laminate36 decreases while the failure strain in the discontin-
uously overlapped ply carbon/epoxy laminate35 increases with the increase of the overlapping length. Based on 
estimating the value of ld/l0 in the two laminates35,36, we find that ld/l0 <  2 (l0 =  5/λ with the interface plasticity 
taken into account34,36, ld =  L, ld/l0 ≈  λL/5) in the former while ld/l0 ≈  21 (l0 =  37 mm, l0 =  7.64 mm) in the latter35. 
From Fig. 4, the two laminates are exactly located the two sides of the deflection point ld/l0 ≈  2, respectively. 
Therefore their failure strains show different size-dependency.

Mechanical response in randomly staggered laminates.  The overlapping length depends on not only 
the size of the platelets but also their arrangements. In the real case as shown in Fig. 1(a), the discontinuous lam-
inates are more or less randomly staggered. Hence the overlapping length is not uniform any more but widely 
distributed. We need to discuss the effect of the staggering randomness on the size-dependent mechanical 
response. We introduce a distributed offset s to characterize the staggered arrangement. For example, the random 
staggering can be generated by a normal distribution with the mean = .s 0 5 and a standard deviation Δs. In this 
setting, the average overlapping length ld is equal to 0.5lp, the large value of Δs implies the overlapping length is 
very unevenly distributed. The regularly staggered laminate as we discussed in the above section is the limit of 
Δs =  0. If the value of the offset s has a distribution, the interface failure processes between adjacent platelets could 
be not simultaneous any more. The mechanical equilibrium configuration of the structure under uniaxial stretch 
is hard to be analytically solved but can be obtained by minimizing the total energy of the structure Etot including 
the elastic energy in the all layers and the interface energies between all adjacent layers. The strong elastic interac-
tions between adjacent layers can be taken into account by modeling the interlayer as a cohesive interface at which 
the interface energy is a functional of the displacement jump across the interface. The total energy can thus be 
written as a functional of the displacement in each layer u(i) (See the details in the Supplementary Material 
Appendix B). Based on a gradient flow directed relaxation model, we assume that the energy minimization pro-
cess is governed by the Ginzburg-Landau kinetic equation = −Γδ
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, where Γ is a constant34. After the ran-

domly staggered structure is generated (see the Figure S2 in the Supplementary Material), the evolution of the 
kinetic equation could track the stress field and the failure process in the laminate.

As we have checked (see the Figure S3 in the Supplementary Material), in the case of regularly staggered lam-
inates with the offset s ≠  0.5, i.e. s =  0.3, the overlapping length can be 0.3lp or 0.7lp, the maximum interfacial 
stress appears at the interface zone with smaller overlapping length. Therefore the interface failure in regularly 
staggered laminates with the offset s ≠  0.5, i.e. s =  0.49, prefers to occur only on the interface zone with smaller 
overlapping length instead of double-sided failure, and the enhancement of the resultant failure strain due to the 
single-sided interface failure drops to one-half, compared to the case of double-sided failure in all the interfaces 
(see the Figure S4 in the Supplementary Material). Figure 6 plot the calculated stress-strain curves of the 
ten-layers discontinuous laminated structure with a distributed offset in these layers s =  [0.1, 0.06, 0.4, 0.2, 0.45, 
0.4, 0.25, 0.2, 0.4] under different values of l l/d 0. All the curves demonstrate a step-like or saw-tooth 
load-displacement response replicating the so called “graceful failure” widely observed in many tough lami-
nates1,15–19. Figure 6(a) shows that the laminate with smaller average overlapping length has higher failure strain, 
in consistent with the previous study for the nacreous laminates using finite element method48 wherein the aspect 
ratio of the platelets is not big such that the shear stress is uniform with high stress-transfer efficiency26. 
Figure 6(b) indicates that the laminate with larger average overlapping length has higher failure strain, in good 
agreement with the previous experiment for the discontinuous laminate with ultrahigh aspect ratio of the plate-
let35. The results in Fig. 6 also demonstrate that the interface failure in the staggered laminate with a distributed 
offset tends to be a progressive layer-by-layer failure process. However, the overall mechanical response in the 
laminate cannot be simply viewed as the result of the superposition of propagation of interface failure involving 
different overlapping lengths (in which the average stress is σ σ= ∑ s l( )c i

i i
p

( ) ( ) , and the average strain is the 
applied stretch εc) since there are strong elastic interactions between adjacent layers. Figure 7 further shows the 

Figure 6.  The calculated stress-strain curves demonstrating a so called “graceful failure” process in the ten-
layers randomly staggered discontinuous laminate with a distributed offset s =  [0.1, 0.06, 0.4, 0.2, 0.45, 0.4, 0.25, 
0.2, 0.4] under different values of = . .l l/ 0 5, 1, 1 5d 0  for (a), and = .l l/ 2 5, 15, 50d 0  for (b).
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snapshots of the laminated structure during the interface failure process at the points D–F and O–P marked in 
Fig. 6(b). Figure 7D–F demonstrate that the strain hardening feature of the stress-strain curve in Fig. 6(b) is due 
to the fact that the adjacent interface starts to carry much more load with the increase of the applied stretch until 
it also fails completely. Figure 7O–Q elucidate that a sharp stress drop and the appearance of the platform in the 
stress-strain curve in Fig. 6(b) is due to the unstable and progressively stable propagation of the interface failure, 
respectively. In addition, we note that the single-sided interface failure dominating in the regularly staggered 
laminates with s ≠  0.5 is mitigated in the randomly staggered laminates especially at the large value of l l/d 0. The 
results in Fig. 7 clearly show that with the increase of l l/d 0 formation of double-sided interface failure is more 
favorable and it is not sensitive to the staggering arrangement any more. To check whether large value of l l/d 0 
favors the double-sided interface failure or not, we estimate the points (l l, d0 ) in many typical discontinuous lam-
inates. The input data is from the Table 1 in the Supplementary Material Appendix D. The result in Fig. 8 indicates 
that with the increase of l l/d 0 the single-sided interface failure mode exactly tends to change into the double-sided 
interface failure mode.

Obviously the double-sided interface failure could provide more tensile strain capacity and work of failure in 
comparison with the case of single-sided interface failure. Figure 9 plots the calculated failure strain and the work 
of failure as a function of l l/d 0 in randomly staggered laminates compared with those of regularly staggered ones. 
The result in Fig. 9 demonstrates that the failure strain and the dimensionless work of failure ε=W W E/( )p 0

2  with 
∫ σ ε=
εW dc c0

f  in the randomly staggered laminate can be larger than those in regularly staggered laminates with 
the offset s ≠  0.5 wherein single-sided interface failure is dominant. The correlation between the large value of 

Figure 7.  The snapshots of the laminated structure with propagation of the interface failure at the points 
D–F and O–P marked in Fig. 6(b).

Figure 8.  Two characteristic lengths coordinate the transition map from single-sided to double-sided 
interface failure wherein the input data is from the Table 1 in the Supplementary Material.
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l l/d 0 and synergistically increased failure strain, strength, and work of failure can now be understood based on the 
mechanism of the size-dependent interface failure.

Discussion
In the above modeling and simulation, the interface is assumed to be brittle. For the interface involving significant 
plastic yielding38, we could model the interface to be elastic perfectly plastic34. Our calculated results indicate that 
interface plasticity promotes to homogenize the interfacial shear stress and the localization of the interfacial shear 
stress only appears in the nacreous composites with larger overlapping length. Interestingly the two 
size-dependent interface failure modes are still observed. It is understandable since the transition of the interface 
failure modes mainly depends on when the interfacial shear stress between laminae is uniform or highly local-
ized. As we expect, the transition point ld/l0 =  1.95 shown in Fig. 4 shifts to the position with larger value of ld/l0 in 
the presence of notable interface plasticity as we have checked. In addition, we should note that the above conclu-
sions are limited to the case without platelet fracture. They are valid only if the maximum tensile stress in the 
platelets is smaller than the fracture strength. The maximum tensile stress in the platelets for the case of regularly 
staggered laminates with s =  0.5 is σ ε= ( )E2 tanhp

m
p

l
l0
d

0
. Based on the Griffith theory, the fracture strength 

σ =
γ

g
E

h
p

l
2

 is saturated to the theoretic strength σth if the platelet’s thickness is below than a critical value 

γ σ≈⁎h E /l p th
2 with γ the surface energy of the platelet26. Therefore, only if the parameters in the discontinuous 

laminate guarantee the condition σ σ≤p
m

g  the platelet fracture will not occur. In addition, the real interface 
between adjacent platelet usually involves plasticity, friction and interlock, these factors lead to significant 
stress hardening and thus enhanced probability of the platelet fracture, as is observed in the nacre-mimetics 
composed of platelets with ultrahigh aspect ratios33.

In summary, using nonlinear shear-lag analysis on the discontinuous laminate we have shown that there are 
two kinds of propagation modes of the interface failure: unstable or progressively stable interface failure, depend-
ent on whether the shear stress at the interface is uniform or localized. The transition from the uniform shear 
stress to the localized shear stress is determined by the critical ratio of the overlapping length to the characteristic 
length of the localized shear zone. If the value of the ratio is larger than two, the shear stress tends to be local-
ized, and the interface failure tends to be progressively stable. These results have explained the non-monotonic 
size-dependent mechanical properties reported in various laminate composites. We expect that the size effect of 
the interface failure may provide guideline for rational design of strong and tough bioinspired laminates.
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1. Appendix A: A nonlinear shear lag model for regularly discontinuous 
laminated structure without offset 
 

failure zone localized shear localized shear failure zonezero shear stress zone

#2

#1

a

x

a

dl
 

Figure S1 the sketch of RVE for the interface failure process, under unidirectional 
stretch, and the interface zone divided into failure zone, localized shear zone and zero 
shear stress zone, according to the interfacial shear conditions. 

 

Figure S1 shows a representative volume element (RVE) of regularly 

discontinuous laminated structure, whose interface is divided into three parts, 

including failure zone, localized shear zone, and zero shear stress zone. The 

discontinuous laminated structure has some characters: the thickness of interlayer 

hint  is much smaller than the thickness of the platelets lh , the length of the platelets 

pl  is much larger than the thickness of the platelets lh . The shear strength of 
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interlayer f  is much smaller than the failure strength of the platelets f
p , and 

interlayer easily undergoes shear-like deformation. The platelets are brittle and they 

only have elastic deformation with the elastic modulus pE . The mechanical response 

of such structures is obtained by performing nonlinear shear-lag analysis for RVE. An 

elastic interface is used to characterize the lateral interaction between bricks via the 

shear deformation of the interlayer. It can reproduce experimentally observed 

parameters like elastic modulus, post-yield slope, failure point and shear strength by 

fitting. Here as shown in Figure 1 the interface is assumed to be elastic, with shear 

modulus Gint , shear strength f  and failure strain f
e , for simplicity. The overlap 

length, which is also the distance of adjacent crack, of the platelets, is satisfied with 

0.5d pl l  in regularly discontinuous laminated structure without offset. 

The governing equations for the elastic zone (including shear stress zone and 

zero shear stress zone) of RVE of regularly discontinuous laminated structure are 

0 5
0

int             

  . .
   p

G

a x l a

x y

 
 


        

                      (S.1) 

The first expression describes the interlayer, and the second one describes 

platelet #1. Substituting 
2

ly h

 



, 1

p

u
E

x






a  for platelet #1, and 

2

ly h

 
 


, 

2
p

u
E

x
 



 for platelet #2 into Eq. (S.1) we have 

     

     

2 1
1

2 1
2

1
0

2
0 5

1
0

2

int
int

int
int

    

. .

       

l p

p

l p

u x u x
G h E u x

h
a x l a

u x u x
G h E u x

h

 
 

   
  

         (S.2) 

 The failure zone of platelet #1and platelet #2 is expressed as 
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 

 

1

2

1
0

2    0  and 0.5 0 5 .  
1

0
2

.
l p

p p

l p

h E u x
x a l a x l

h E u x

       
  


           (S.3) 

We set 
p

a
a

l
  and 

p

x
x

l
 . From Eq. (S.2) and Eq. (S.3), the normalized 

equations are given as 

 

 

1

2
1 2 1 2

2

2
2 2 2 1

0,                   0  or 0.5 0.5

2 ,                        0.5
  

0,                   0  or 0.5 0.5

2 ,                       0.5

u x a a x

u k u u a x a

u x a a x

u k u u a x a

      
     
       
      

             (S.4) 

where 
f

p

p l

l

E h


   and 

2

2
0

2int

int

p d

p l

G l l
k

E h h l
  . int

0
int

p lE h h
l

G
  is the critical length.  

The solutions of Eq. (S.4) can be written as 

   
1 1 2

1 3 4 5 2 6 2

1 7 8

2 9 1

                                                             0

sinh 2 cosh 2    0 5

                                                 0.5 0 5

,

, .

, .

u c x c x a

u c c x c k x c k x a x a

u c x c a x

u c x c

   

      

    

 

   
0

2 3 4 5 2 6 2

2 11 12

   
                                                            0

sinh 2 cosh 2    0 5

                                                0.5 0 5

,

, .

, .

x a

u c c x c k x c k x a x a

u c x c a x





  
       

     

      (S.5) 

The stress and displacement in the platelets #1 and #2 are continuous at x a  

and  0 5.x a  . They lead to eight equations  

   
   

   
   

   
   

   
   

1 1

1 1

1 1

1 1

2 2

2 2

2 2

2 2

0 5 0 5

0 5 0 5

0 5 0 5

0 5 0 5

. .

. .

. .

. .

u x a u x a

u x a u x a

u x a u x a

u x a u x a

u x a u x a

u x a u x a

u x a u x a

u x a u x a

 

 

 

 

 

 

 

 

   

  

           
          
   

  

           
          

                                              (S.6) 
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There are four boundary conditions for the RVE 

 1 0 0u  ,  2 0 0u  ,    1 2 0 5.u a u a   ,  2 0 5.u               (S.7) 

Substituting Eqs. (S.6)-(S.7) into Eq.(S.5), 1c  to 12c  can be determined by  , 

2k , and  . 

   
   

    
      
   

2
2 2 2

1
2 2

2

2 2 2

3

2 2 2

2
2 2 2

4

2

sech 2 0.5 sinh 2 2 0.5

1 2 0.5 tanh 2 0.5

0

cosh 2 0.5 2 sinh 2 0.5

2 cosh 2 0.5 2 0.5 sinh 2 0.5

sech 2 0.5 sinh 2 2 0.5

2 1

k k a k a
c

k a k a

c

k a ak k a
c

k a k a k a

k k a k a
c

k

        
     



         
         

        
      

      
    

      
    

 

2

2
2 2 2

5

2 2

2
2 2 2

6

2 2

7

2 2
8

2 0.5 tanh 2 0.5

sech 2 0.5 sinh 2 sinh 2 0.5

4 1 2 0.5 tanh 2 0.5

sech 2 0.5 cosh 2 cosh 2 0.5

4 1 2 0.5 tanh 2 0.5

0

sinh 2 0.5 cs

a k a

k a ak k a
c

k a k a

k a ak k a
c

k a k a

c

k k a
c

   

         
     

          
     



    
 

     

    
     

   
 

2

2 2 2

9

2 2 2

10
2 2 2

2
2 2 2

11
2

ch 2 2 0.5

csch 2 0.5 2 0.5 sech 2 0.5

0

cosh 2 0.5 2 sinh 2 0.5

cosh 2 0.5 2 0.5 sinh 2 0.5

sech 2 0.5 sinh 2 2 0.5

1 2 0.5 tanh

k a

k a k a k a

c

k a ak k a
c

k a k a k a

k k a k a
c

k a k

  
         



         
         

        
    

      
     

2

2 2 2

12
2 2 2

2 0.5

cosh 2 0.5 2 0.5 sinh 2 0.5

cosh 2 0.5 2 0.5 sinh 2 0.5

a

k a k a k a
c

k a k a k a

  

          
         

      (S.8) 

The value of a  can be determined by assumption of the shear stress 

12

1

2
f u  


  / at the point x a . From Eq. (S.3), the shear stress of interface 

between platelet #1a and platelet #2 is 
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   
2
2

5 2 6 22

0                                                                 0

2
sinh 2 cosh 2 0 5

0                                                     0.5 0 5

,

, .

, .

x a

k
c k x c k x a x a

a x




 

        


  

            (S.9) 

According to Eq. (S.9) the shear stress at the point x a  requires 

  1x a   so  

   
2
2

5 2 6 22

2
sinh 2 cosh 2 1

k
c k a c k a


                       (S.10) 

Substituting the forms of 5c  and 6c  in Eq. (S.8) into Eq.(S.10), we have 

    0
2 2

2

1 2 0.5 tanh 2 0.5k a k a
k


                     (S.11) 

where we define the critical strain 
2

int
0

2 int

f

p l

h

k E G h

   , which is only related to 

the mechanical properties of material components. 

In the regular structure, the composite strain c  is satisfied with 2c    so 

    0
2 2

2

2
1 2 0.5 tanh 2 0.5c k a k a

k

                     (S.12) 

The applied stress is satisfied with 
0.5

0
2c dx   , so it is expressed as 

 0 2tanh 2 0.5c pE k a                           (S.13) 

When failure occurs on the interface, the composite strain corresponds to yield 

strain 

 0
2 2

2

2
1 0.5 tanh 0.5y k k

k

                           (S.14) 

The failure strain of composite is defined as the max strain obtained in the 

process of interface failure. In order to obtain the failure strain f , we should 

calculate the peak value in Eq.(S.12). The differential cd

da


 can expressed as 

      2
0 2 2 24 2 0.5 sech 2 0.5 tanh 2 0.5cd

k a k a k a
da

                  (S.15) 

when 0cd

da


 , applied strain increase, the failure zone increases stably. The critical 
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condition is 
0

0c

a a

d

da





 , so we obtain  

   2 0 2 02 2 0.5 sinh 2 2 0.5 0k a k a                        (S.16) 

From Eq.(S.16), we can get the critical value 0a , we put the value 0a  into 

Eq.(S.13), we can get the failure strain f , and it is expressed as 

    0
2 0 2 0

2

2
1 2 0.5 tanh 2 0.5f k a k a

k

                     (S.17) 

The max stress at point 0x  in brick #1a is the max stress, so the max stress is 

 0 22 tanh 2 0.5m
p pE k a                               (S.18) 

so when 2k  , the max stress of brick is 02m
p pE  . 

According to the applied stress and applied strain, we define the effective 

toughness 
0

f

c cW d

   , which represents the total energy absorbed before 

laminated structure thoroughly failed; and the uniformed effective toughness is shown 

as  2
0pW W E  . 

 
2. Appendix B: Numerical Simulation for discontinuous laminated structure 
 

We use representative volume element (RVE) with periodic boundary conditions 

to simulate the randomly discontinuous laminated structure. The RVE we considered 

here has the size of x yL L , with x pL l  and 50y lL h . Since each platelet has the 

thickness of lh , there are 50 layers, which number guarantees the staggering 

randomness. After the randomly discontinuous laminated structure is generated, the 

mechanical equilibrium configuration of the laminated structure under uniaxial stretch 

can be obtained by minimizing the total energy of the discontinuous laminated 

structure including the elastic energy in the all platelet layers  
50

1

i
el

i

E

 and the interface 
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energy between every two platelet layers  
50

1

i

i

E

 int . 

    
50

1

i itot
el

i

E E E


  int                             (S.19) 

The elastic energy of the platelet layer i  has the form: 

       
21

2

i ii
el lE c x x h dx                         (S.20) 

where   i pc x E  when x  is in the segment otherwise    0
i

c x  , and 

     /
i ix u x    . Using a cohesive zone model, the interface energy adjacent to the 

layer i  can be written as  

         1 1

2
i i i i ih

E d dx d dx        int
int               (S.21) 

where the shear strain  
   1

int

i i
i u u

h



  and  

 

 
     

       

 

1int

int

,           

,  

0,                                  

i
i i i c

e

ii i if c f
e p

i f
p

G
u u

h

sign

 

     

 


    




  

 



                 (S.22) 

Based on a gradient flow directed relaxation model, we assumed that the energy 

minimization process is governed by the Ginzburg-Landau kinetic equation,  

 

 

i tot

i

u E

t u





 


                          (S.23) 

The equilibrium configuration is obtained after there is a steady solution of 

Eq.(S.23), which reduces to Eqs.(S.2) and (S.3). 

Substituting Eqs. (S.19)-(S.22) into Eq. (S.23) with  
 i

i

p

c
c

E
 , 

p

x
x

l
 , 
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   
   i

i

p

u x
u x

l
 , 1x x pL L l  , and the normalized kinetic equation is rewritten 

as： 

 
 

 
   1

i i
i i iu u

c
t x x

  
                   

           (S.24) 

where 
2

p l

p

E h

l


  is assumed to be 1. A finite difference method is adopted to solve 

Eq. (S.24) for each layer given the boundary condition 

                   
           

0

0
0 0 1

0
0 0 0

ii
x i i i

x

ii
x i

u Lu
u L u c

x x

u Lu
c

x x

 
     
  



    

, ,    if 

,       if 

        (S.25) 

with the initial condition 

    0
i

x

x
u x

L
                                 (S.26) 

where 0 0 pl   . 

In the randomly discontinuous laminated structure, we generate the randomness 

by setting a standard deviation s , and in this case, the average overlap length dl  is 

satisfied with d pl sl  where 0.5s   is the mean overlap factor. Figure S2 shows 

typical generated randomly staggered structures with (a) 0.04s  , (b) 0.16s   

during our numerical simulations.  
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(a)                                   (b) 

Figure S2 Generated randomly staggered structure by a normal distribution with the 
mean offset 0.5s   and a standard deviation s  for (a) 0.04s  , for (b) 

0.16s  . 

At first, we simulate the regularly discontinuous laminated structure with offset 

in which the overlap length dl  is satisfied with 0.3d pl l  (the overlap factor is 

0 3.s  ). Figure S3 plots the absolute shear stress distribution along interface with 

different overlap lengths in the condition that peak shear stress reaches the shear 

strength. Notably comparative shear stress indicates that peak shear stress always 

occurs on the short side, where the interface failure arises after shear stress exceeds 

the shear strength. 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

s=0.3

 

 




f

x/l
p

 l
d
/l

0
=0.5

 l
d
/l

0
=5

1-s=0.7

 

Figure S3 the typical absolute shear stress distribution along interface in regularly 
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discontinuous laminated structure with offset ( 0 3.s  ). 

 

 
3. Appendix C: The localization of shear stress and the mode of interface failure 

When the failure zone begins to progress, the shear stress in non-failure zone 

along interface is expressed as 

         
 

2 2 2 2

2

sinh sinh 2 1 cosh cosh 2

1 coshf

k k x k k xx

k




    


        (S.27) 

The minimum shear stress occurs in the middle of the RVE, where 0.25x  , so 
it is expressed as 

 
 2

0.25 1

cosh 0.5f k




                       (S.28) 

where    2 0cosh 0.5 cosh /dk l l . The shear stress in the middle of RVE decays 

exponentially with the increase of overlap length dl , and attenuation length of 

minimum shear stress is 0l  as the independent variable dl . Similar result is also 

uncovered in figure S2.  

Figure S4 shows the stress-strain curve and microstructure of regularly 

discontinuous laminated structure without offset ( 0.5s  ) and regular discontinuous 

laminated structure with offset ( 0.49s  ). The single-sided interface failure is 

occurred on the short overlap sides, for these short sides initially reach the shear 

strength, in regularly discontinuous laminated structure with offset, which, as a result, 

has a smaller failure strain. While in randomly discontinuous laminated structure the 

shear stress gradually increases until it reaches the shear strength with applied strain 

increasing, but it will redistribute when nearby interface totally fails, shown in figure 

S5. During the redistributed process, the peak shear stress of long overlap side may 

exceed that of the short one and, even in some cases, the peak shear stress of long 
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overlap side outgrows the shear strength which lead to the interface failure, shown in 

figure S5(d).   

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

 c/E
p

0


c


0

 s=0.5
 s=0.49

 

(a) 

 

(b) 
Figure S4 (a) the stress-strain curve of regularly discontinuous laminated structure 
without offset ( 0.5s  ) and regular discontinuous laminated structure with offset 
( 0.49s  ), and the corresponding microstructure with (b) single-sided interface 
failure in the laminated structure with offset and double-sided interface failure in the 
laminated structure without offset. 
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(a)                                       (b) 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0
l
d
/l

0
=1.85

/
0

1-s=0.595

 

 




f

x/l
p

 1.04
 1.05

s=0.405

 

(c)                                     (d) 

Figure S5 the part of microstructure of randomly discontinuous laminated structure 

with 0.18s   and 0/ 1.85dl l  under different strain (a) 0/ 1.04   , 

(b) 0/ 1.05   and (c) 0/ 1.14   . In black rectangle, the shear stress distribution on 

interface in figure (d) shows how progressive failure changes of neighboring shear 
stress. 
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4. Appendix D: Data of laminar materials 
 

 

Composites 

 

Platelet 

layers 

 

 

Interlayers

   
  

 

 

 

 

* 

Si3N4-matrix           

BS-51 

Si3N4 BN 

220 100 56.8 45 0.69 132 4480

BS-101 220 100 60.6 30 0.77 104 185 

BS-501 220 100 63 30 0.77 106 4 

Si3N4/BN2 220 87 56.8 25 0.78 92 1760

Al2O3-matrix          

Al2O3/Al-Si 

(25/50μm)3 

Al2O3 

Al-Si 370 25 30.4 50 0.33 124 426 

Al2O3/Al-Si 

(10/20μm)3 
Al-Si 370 10 30.4 20 0.33 50 18 

Al2O3/SiC4 SiC 370 90 181.5 10 0.90 42 753 

Al2O3 /LaPO4
5 LaPO4 370 100 51.2 40 0.71 170 508 

Others          

SiC/graphite6 SiC graphite 450 90 5.5 10 0.90 270 1379

Al2O3-ZrO2/ 

LaPO4
7 

Al2O3- 

ZrO2 
LaPO4 300 25 51.2 11 0.69 40 1427

Ti45Al40 (II)
8 Ti Al3Ti 116 285 56 154 0.65 300 410 

B4C/B4C-C9 B4C B4C-C 450 2625 194 90 0.97 738 2000

Table 1 the mechanical and geometric properties of some discontinuous laminar 

materials, and two characterized parameters that are the mean overlap length dl , and 

critical length of the platelets 0l  (red color represents notable double-sided interface 

failure, and blue color represents single-sided interface failure). 

*the lengths of mean overlap lengths of platelet dl   are described by the longest lengths of 

interface failure in laminar materials. 
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