
PHYSICAL REVIEW 8 VOLUME 51, NUMBER 2 1 JANUARY 1995-II

Electrical resistivity of a fractal network: The scattering of extended electronic states
by both fractons and phonons
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We calculate the electrical resistivity (ER) p of a fractal network from the view of the scattering of ex-
tended electronic states with both phonons and fractons and obtain different dependences of ER on the
fractal dimensionality df, temperature T, fracton dimensionality t1f, and characteristic length l„ for
different-order interactions and different Euclidean dimensionalities d. As to the first interaction, p is

3d /d +d —1

proportional to T at the high-T limit, as known, and p-aT+bT at some low-T ranges. In
the second-order case, p is a constant at the high-T limit, which is consistent with some recent experi-
ments. In particular, we find that before a special fractal dimensionality df, there exists a minimum in

the p-T curve, while after it p is a monotonically increasing function of T. The form of the p-df curve
also shows different characteristics when d changes from 2 to 3. Finally, we discuss the percolating net-
work and obtain scalar laws and scalar exponents.

I. INTRODUCTION
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The vibrational elementary excitation as a fractal net-
work transforms from phonons at low frequencies to frac-
tons at high frequencies with the crossover frequency m, .
The phonons and fractons have different density of states
N(co), dispersion laws co-q, and wave functions N (R).
For phonons (co (co, ),
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where ao is the lattice constant.
The interaction of the vibrational state with the elec-

tronic states near the Fermi surface plays an important
role in the electrical resistivity. It is well known that the
theory of electron-phonon interactions has given a good
explanation of the p —T relationship for crystalline ma-
terials, that is, the T law at low-enough temperatures
and a linear relationship at the high-T limit. However,
for disordered alloys and other noncrystalline materials,
things become much more complicated. Some materials
show minimum phenomena at normal temperatures but
others do not. Also, at the high-T limit, we find for some
high-T, superconductors that the linear law still exists
but for some disordered alloys p is a constant instead.
Perhaps the transformation from phonons to fractons can
explain this. In the following parts, we will calculate the
resistivity from the viewpoint of the interaction of the ex-
tended electron with both fractons and phonons.

e"'(R )=C~R„~ 1

R„
X exp

2 I
(2c)

II. METHOD OF CALCULATION

V~= —g U VV(r —R„), (4a)

We can write the electronic-vibrational state interac-
tion potential as follows:

Here, % „(to) and Nt, (to) are both normalized to unity
and v, is the velocity of sound. 6 is the volume of the
system, I, is the characteristic length, df is the fractal
dimensionality, df is the fracton dimensionality, and I

a
is the localization length of the ath mode. coD and coF are
Debye frequencies of phonon and fractons, respectively,
which satisfy the relationships'

2gco
[@ (R )b +@*(R„)b ]e (4b)

where V(r) is the electron potential energy in the ion
field, R„ is the equilibrium coordinate of the pth atom,
and U„ is its displacement off R„,where

1/2
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b (b ) is the creation (annihilation) operator of the ath
vibrational model and g is the density of mass of the sys-
tem. We can obtain 4 (R„) from (lc) or (2c) and e is a
unit vector in the polarization direction. The interaction
Hamiltonian may be written as

0'= f4 (r)V~V(r)d r,

7F

I
1 +

VF h VF

where ~F is the electronic relaxation time at the Fermi
surface, the superscript I denotes the first-order interac-
tion, and

in which Vt(r) and %(r) are the field operators of the
electron. As is well understood, the electronic states that
can contribute to electrical resistivity are near the Fermi
surface. So the electron wave function can be regarded as
a plane wave. Hence the interaction Hamiltonian can be
rewritten as
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where X is the total number of atoms, aj„a&. are the
creation and annihilation operators of the electron, and

V(k —k')= f V(x)exp[i(k —k') x]d x

3df /df+df —2 A~/kB T

f F N eX
CO 2fim/k~ T

C e
(Sc)

I I I
P Pph+Pfr & (9a)

Here, M is the mass of the atom and V is the average of
V (q) over all q. We assume that this procedure does not
result in qualitative errors. Noting that v, =a0cuD,
N =gG/M, and p=m '/ne r~, where m ' and n are the
e6'ective mass and density of the electron, and substitut-
ing (3), we finally get

I(k —k') =g 4'(R„)exp[i(k —k') R ] .

The factor ~I(k —k')
~

is very important. Following
the procedure of Alexander and Orbach (see Appendix),
we obtain

where

df +df /df —3df /d —2dVd

X f x +'P(Px)dx,
0

(9b)

d
a0f

For a fractal system, the translation symmetry and the
reciprocal space do not exist anymore. But we can see
from (5) that H, & ~h and H, & r, depend only on the change
of the electronic wave vector k —k' instead of k or k', re-
spectively. Hence, in the following parts, we rewrite k-k'
as q and introduce an integral about co instead of the
summation over q as follows:

g ~f N h(co)den+ f Nr, (co)de . (7)
0 ~c

q

Both sides of (7) are normalized to unit. Also, we will
substitute k by kF where kF is the electronic wave vector
at the Fermi surface and will only consider the longitudi-
nal boson so that e q/~q~ or e (k —k')/~k —k'~ equals
1.

III. THE FIRST-ORDER INTERACTION

2d —df
0 df /df —df —3df /dV d~

T+bT3df /df df—

prr= ~
6coF G

df
/df 3d /d +d

X f x p(px)dx . (9c)
1

Here, A, is defined as I, /a0, 3 is a constant irrelevant
to d/, P(Px) =e~"l(e ~ —1), P—:A'—co, /k~ T, and
x =co/co, . We have also used the relationships k~ ~ n '~,
the density of mass of a fractal network

dg=(l, lao) M/I, , and n =NZ/G in which Z is the
number of valence electrons. Hence we can obtain the
following results from (g) and (9).

(1) At the high-T limit when T ))A'co~/k~, it is explicit
that p h-T and p&, -T so that p —T, which is consistent
with the result in crystalline materials. When
T»A~ /k~ and T«AcoF/k~, we find pph-T and

3d /d +d —1

p&,
—T so that

When we talk about the first-order interaction, what
we consider is the process of emission or absorption of a
fracton or pho non by the electron. By solving the
Boltzmann transport equation to first order, we obtain

where a, b are coefficients changing with d&, d&, and I, .
The dependence of the resistivity on T is shown in Figs. 1

and 2. There, T, is defined as %co, /k~ and the value of
resistivity is just a relative number. This is also the case
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FIG. 1. The first-order interaction. The dependence of resis-
tivity and ratio on temperature. d=2, I, /ap=30. 0, df =1.50,
and Zf = 3. The inset gives some more detail about the resistivi-

ty below T=16T,. In Figs. 1 —11, the dashed line denotes the
value on the ratio axis, and the solid line the relative value of
the resistivity.

in other figures. It can be seen that they are very similar
to those in Ref. 9.

(2) p is related not only to T but also to df, df, and I, .
Lettiny G be 1,", and neglecting the difference between ao
and a 0, we perform our calculation of p at different df
and obtain the curves in Figs. 3 and 4. When d =2, p' is
a monotonically decreasing function of interesting dimen-
sionalities. But there is a minimum in the p -df curve
when d =3. Here we have used the df =—', conjecture on
a percolative network which is not true in other cases. It
must be emphasized that more correct quantitative re-
sults depend on a more correct relationship between df
and df .

(3) To show the relative contribution of phonon or
fracton to p', we defined a factor R—:p~h/pr, . The varia-
tion of R with T or d~ is also shown in Figs. 1 —4. We
now find a special df„before which R &)1 and after
which R (&1. This expresses the fact that when the sys-
tem becomes more and more distant from the Euclidean
space, fractons play a more and more important role in
the resistivity.

In particular, at the high-temperature limit, from (9),

2df /'df +df —d —3df /d
pph

COy

(10a)

hence

3(1—df /d)

COF G
(lob)

FIG. 3. The first-order interaction. The dependence of resis-
tivity and ratio on fractal dimensionality. d=2, I, /ap =30.0,
T/T, = 100, and Z& = —", .
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FIG. 2. The first-order interaction. The dependence of resis-
tivity and ratio on temperature. d=3, I, /ap =30.0, df =2.20,
and Zf = ~4.

FIG. 4. The first-order interaction. The dependence of resis-
tivity and ratio on fractal dimensionality. d =3, I, /ap =30.0,
T/T, =1000, and Zf =

—,.
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d+3 —df —2df /df (10c)
590

3.3

3.2
Still using the conjecture df =—', , we obtain dfQ

——2.0 for
d =2 and df, ——2.4 for d =3. That tells us that on a two-
dimensional precolative network (df = 1.9), fractons con-
tribute much more to p than do phonons. But this is not
the case when d =3 (df =2.5 ).

IV. THE SECOND-ORDER INTERACTION

As to the second-order interaction, we consider the
two processes shown in Fig. 5. In Fig. 5(a), a boson (frac-
ton and phonon) q is first emitted by the electronic state
k and then absorbed by the electronic state k'=k —q. In
Fig. 5(b), A —q boson is emitted by the electronic state
k —q and then annihilated by k.

The interaction matrix element can be written as

580
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FIG. 6. The second-order interaction. The dependence of
resistivity and ratio on temperature. d =2, I, /ao =30.0,
df = 1.50, and df 3.

1 —fo(k')
X

E(k) —E(k') —A'co&

X[n(co )+1],

fo(k')
E(k') —E(k) —trtcoq

where fo(k) and n(co~) are the equilibrium Fermi and
Bose distribution functions, respectively. We now make
an assumption that the electron only transports between
the energy surface Ez and E~ —kT. Hence, in which

2d —da,
)
II —g df V

COf
f

xaf f2df /df —df /2 —d/2 —2

f f 2g /d +d —2
X x f f F(Px)dx, (13c)

q co aQ

F(Px)—:
(e "—1)(x+1/P)P

fico/k~ T

X
Ace!k~ T k~ T+g~ (12)

P and x are defined as before. From (13) we have some
conclusions different from the first-order results above.

(1) In the high- T limit when T ))%co~ /k~ now

Here we have made an approximation fo(k')=1. Us-
ing 1 «~ "

l &I,, I, I and p =m ' Ine rz, we obtain

( 3rp )II ( 3/p )II + ( 1r )II

where
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FIG. 5. Diagram of the second-order interaction between the
electron and the fracton or phonon.

FIG. 7. The second-order interaction. The dependence of
resistivity and ratio on temperature. d =2, I, /ao =30.0,
df =1.65, and df = ~. The inset also gives some more detail
about the resistivity below T= 16T,.
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FIG. 11. The second-order interaction. The dependence of
resistivity and ratio on fractal dimensionality. d =3,
I, /a&=30. 0, df =2.30, and 1f
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FIG. 9. The second-order interaction. The dependence of
resistivity and ratio on fractal dimensionality. d =3,
1, /ao =30.0, df =2. 10, and Zf

p'-const instead of p ~ T. This result is consistent
with the experiments done by Lin and Yu. They found
that for the disordered alloy Ti„A1, (x (0.135) the
electrical resistivity is a constant at a high enough T.

(2) We have performed the calculation of p as a func-
tion of the temperature. What interests us most is that,
when df increases, the form of the p'-T curve changes
explicitly. At first, there is a minimum in the p '-T curve
later p is a rnonotonically increasing function of T. We
have also defined a factor R'—:(&p)r,'/
(&p)~z (R '-A, at high T with dfo ——2.4
for d=2) and the variation of p" and R' with T are
shown in Figs. 6—11.

(3) From (13), we known that for a second-order in-
teraction, p is a monotonically increasing function of
df, different from the case of the first-order interaction.

V. DISCUSSIONS ON THE PERCOLATIVE NETWORK
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FIG. 10. The second-order interaction. The dependence of
resistivity and ratio on fractal dimensionality. d =3,
I, /ao =30.0, df =2.20, and df = 3.

It is well known that the percolative network has frac-
tal properties near the percolation threshold P, . So we
think its electric resistivity comes from the contribution
of both fractons and phonons. We now use what we have
obtained above for a two-dimensional system. From
(10b) and (13c), we have

3(1—df /d)p„-
G coF

V (df —d)/'2
f

COy

(14a)

(14b)

(15c)

Here we have neglected the contribution of the phonon
just because we have df, ——2.0 and df,'—-2.4 when d =2.
Now we assume the following scalar laws:

(isa)

(15b)
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v -IP —P, l

'-,

where P is the occupation probability. Noting that

/dp-IP P,—l
', co~=co, A, f

(15d)

—df /df
and using the scalar law of fractons' co, -A. , we
obtain from (14a) that

df
t =3b

df
df +2c . (16)

Recently, Royer, Benoit, and Poussigue have calculat-
ed b using the spectral moments method. They got
b =0.7 for d=2." From percolative theory, we have
t=1.1, df =1.36, and df =1.9 for d=2. So it is easy to
conclude that c =0.5. If we apply this to (14b), we have

pf,
'- IP P, I

—' (d =2). We can also say that if c can be
determined exactly by another method, perhaps Eq. (16)
has provided another method to calculate the scalar ex-
ponent t.

VI. DISCUSSION AND CONCLUSION
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APPENDIX

There are two important conclusions from this paper.
First, the electric resistivity p is now not only a function
of temperature as known for crystalline materials, but
also a function of the fractal dimensionality df, the frac-
ton dimensionality df, and the characteristic length I„as
has been shown in (9) and (13). More correct variations
of p with these parameters depend on the implicit func-
tional relationship among them and the latter is still an
unsolved question. Secondly, we have provided a more
reasonable way to calculate electrical resistivity, that is,
we have considered phonon and fractons simultaneously.
We predicted that the variation of p with temperature for
a fractal network has some complicated characteristics as
shown in Sec. IV. We also discussed the percolating net-
work in Sec. V. Whether the scalar laws there exist is
still left unproven. But in any case, it is an illustration of
fracton theory. Finally, we must emphasize that our re-
sults depend greatly on the density of states and disper-
sion law of the fracton. The relations we have used in (3)
are provided by Alexander et al. ' but their correct forms
are still worth disputing.

y~".'(R„)e' "=l.' lk —k'I ' l
p p

f /
Ik k, ldf~ i(k —k') R„,

~a
p

where p' denotes the summation over the small volume.
Also,

II(k —k') I'= I
P V

=l.flk —k'I f

P V P WV

a

Here N' is the number of atoms in the small volume, so
1

Ik —k
I
fa,f

where ao is the lattice constant. We finally obtain the re-
sult shown in (6). We can also detect the correctness of
(6) from the viewpoint of dimensional analysis. First,

d
l f Ik —k'I f is a value on the order of unity, so for frac-

tons

II(k —k') I„= 1
fr d gao

If we substitute 4'(R„) by @I'"(R„), the new factor
II(k —k') h must be of the same dimension as
II(k —k') f,. Substituting

4~"(R )= —ea p

procedure provided by Ref. 4 and what we obtained is
shown in (6).

The calculation is based on the superlocalization of the
fracton wave function introduced by Alexander et al. ,

'

d
d —d /2 —d /2 1 Rp4'(R )=clR

I
l expa p p CO 2 I~a

The main point is that, when R„ 1/Ik —k'I,—d /24'(R„)=l„~,and 4'(R„)=0 outside this range. We

now divide the volume l f into small volumes
d , d

1/I k —k'
I . The number is l

I
k —k'

I
. In each of

these small cells, N '(R„)= l „.So,
a

The factor II(k —k')I has been quoted in different
forms in different references. In Ref. 4, it is

into

II(k —k)l', „= y~:"(R„)e'" "'" 2

II(k —k')I'=(l Ik —k'I) '.
However, in Ref. 5,

(Al)

(A2)

we get

+2

So we performed the calculation carefully following the
which is X times II(k —k')If, but has no dimensional
difFerence from it.
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