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We have studied the dynamics of a flexible polymer chain in constrained dumb-bell-shape geom-
etry subject to a periodic force and external noise along the longitudinal direction. It is found that
the system exhibits a feature of entropic stochastic resonance (ESR), i.e., the temporal coherence of
the polymer motion can reach a maximum level for an optimal noise intensity. We demonstrate that
the occurrence of ESR is robust to the change of chain length, while the bottleneck width should be
properly chosen. A gravity force in the vertical direction is not necessary for the ESR here, how-
ever, the elastic coupling between polymer beads is crucial. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4737638]

In the last two decades, stochastic resonance (SR)-like
phenomenon has gained extensive research attention due to its
significantly practical applications in many disciplines rang-
ing from physics, chemistry, and biological science.1–8 SR
describes a fascinating phenomenon, where an appropriate
amount of noise is not harmful but constructive in enhancing
coherence and resonance of a nonlinear system to a small pe-
riodic signal.6, 9 Previously, research on SR primarily focused
on the systems with purely energetic potential, either contin-
uous or discrete. While the system is scaled down to meso-
scopic level and confined to move in a constrained space, the
uneven boundaries’ effects may come into play in a nontrivial
way, usually resulting in entropic barriers, which could play
a prominent role in such processes as motion of particles in
the interior of a living cell10 or through an ion channel,11 dif-
fusion in zeolites12 and microfluidic devices,13 and folding of
proteins modeled as motion of the protein state in a funnel-
like phase space.14 More interestingly, it is found that such
entropic barrier can also lead to SR-like phenomenon, known
as entropic stochastic resonance (ESR), which has attracted
great attention in recent years. In the very beginning, Burada
et al.15 reported ESR for a Brownian particle subject to the
gravity force in the vertical direction in a confined geome-
try, where this phenomenon is characterized by the presence
of one peak in the spectral amplification at the correspond-
ing optimal values of the noise strength. They also found a
Brownian particle driven by a constant bias along the longitu-
dinal direction exhibited double ESR.16 More recently, it was
reported17 that a Brownian particle confined to two distinct
regions divided by a porous membrane could show a type of
ESR completely dependent on a geometric effect. ESR driven
by colored noise was also demonstrated in Ref. 18. Note that
among most of these studies, the gravity, which is vertical to
the direction of the external force, is of key importance for the
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Brownian particle to sample the entropic barrier and thus the
occurrence of ESR.

On the other hand, polymer translocation through con-
fined geometry has been a very active topic in recent years,
and has been widely investigated both theoretically and
experimentally.19–27 Experimental examples include DNA
and RNA transloction across nuclear pores,19 the incorpora-
tion of membrane proteins into lipid bilayers,20 to list just
a few. As for theoretical analysis, many studies about the
transport of the polymer mainly focused on the translocation
time through a narrow pore connecting two large spaces by
simulations using Langevin dynamics21–23 and Monte Carlo
methods,24–26 or analytically by treating this process as the
diffusion across a free energy barrier.27 It is generally ac-
cepted that entropic effects may play important roles in re-
garding the translocation of polymer through such constrained
spaces. Therefore, it is interesting to ask whether the above-
mentioned entropy-related phenomenon, the ESR, can also
be observed for polymers moving in such confined geome-
tries. The answer to this question may shed new light on
the dynamics and control of polymer translocation through
nanopores. We note here that SR related to polymer across
a bistable-energy barrier28, 29 was investigated by Asfaw and
Sung. However, to the best of our knowledge, ESR related to
polymer in confined geometry has not been studied yet.

In the present paper, we consider the dynamics of a flex-
ible polymer chain confined in a dumb-bell-shape geometry
as depicted in Fig. 1. The chain is described by a coarse-
grained bead-spring model with additional Lennard-Jones in-
teractions among the particles of the chain and the wall. We
assume that the chain is subject to a periodic force and random
noise in the horizontal direction, while the gravity force in the
vertical direction is not considered. Although for a Brown-
ian particle, ESR does not exist in the absence of gravity as
mentioned above, we find that it can be observed for the poly-
mer chain studied here. By extensive numerical simulations,
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FIG. 1. Schematic illustration of the two-dimensional wall, in which a flexi-
ble polymer chain which consists of N = 30 beads moves. F(t) is imposed
on every bead along x-direction, (a) before translocation and (b) during
translocation.

we show that the occurrence of ESR is robust to the change
of chain length. However, it can be observed only when the
bottleneck width b (see Fig. 1) lies in a proper range, i.e., too
small or too large b is not helpful for ESR. In addition, we
have also investigated the influence of the coupling strength
between the polymer beads on the ESR, finding that a nonzero
coupling is essential to the occurrence of ESR, while a rather
weak coupling is already sufficient.

The shape of the wall is given by

wl (x) = ly

(
x

lx

)4

− 2ly

(
x

lx

)2

− b

2
= −wu (x) , (1)

where wl (x) and wu (x) are parameters determining the size
of the confined region as shown in Fig. 1 and b refers to the
bottleneck width. The flexible polymer chain is consisted of
Lennard-Jones (LJ) particles with finite extension nonlinear
elastic (FENE) potential. Both excluded volume effects and
van der Waals interactions between the beads are modeled by
a repulsive LJ potential ULJ − PP,

ULJ−PP (r) =
{

4ε[(σ/r)12 − (σ/r)6] + ε, r ≤ 21/6σ

0, r > 21/6σ
,

(2)

where σ is the diameter of a bead and ε is the potential depth,
r denotes the distance between the beads. The connectivity
between the beads is modeled by a FENE spring,

UFENE (r) = −1

2
kR2

0 ln

(
1 − r2

R2
0

)
, (3)

where k is the elastic coupling constant, R0 represents the
maximum allowed distance between adjacent beads. We con-
sider that the wall is composed of fixed particles, which in-
teract with the polymer beads by the repulsive LJ potential
ULJ−PW , with the same form and parameters as shown in
Eq. (2). Besides, each bead is subject to a periodic force F(t)
= f0cos (ωt), with amplitude f0 and frequency ω, in the x-
direction. In a coarse-grained level, the system’s dynamics
can be described by the Langevin dynamics as follows (with-

out considering hydrodynamic interaction),30

m�̈ri = − ∇ (ULJ−PP + ULJ−PW + UFENE) − γ �vi

+ �ηi(t) + F (t)�ex +
√

2Dξi(t)�ex, (i = 1, . . . , N),
(4)

where N denotes the chain length, �ri = (xi, yi) and �vi are
the position and velocity (both are vectors) of the ith bead
(each with the same mass m), respectively. �ηi(t) denotes the
internal random force acting along both x- and y -directions
with 〈�ηi (t)〉 = 0, 〈ηiα(t)ηjβ(t′)〉 = 2γ kBTδijδαβδ(t − t′) for
α, β = (x, y), where γ is the friction coefficient, kB is the
Boltzmann constant and T is the temperature. The final term
in Eq. (4) represents the external noise in the x-direction,
where D denotes the noise intensity and ξ i(t) stands for in-
dependent Gaussian white noise with zero mean and unit
variance 〈ξ i(t)〉 = 0, 〈ξ i(t)ξ j(t′) 〉 = δijδ(t − t′). The internal
noise �ηi(t) comes from the fast and irrelevant microscopic de-
grees of freedom. The external noise ξ i(t), on the other hand,
comes along with the external force in the x-direction and pos-
sesses some nonequilibrium features. To say nonequilibrium,
we mean that, in the absence of F(t), the system should ap-
proach a stationary state with a temperature T for the motion
along y-direction, and with an athermal temperature, which is
larger than T along the x-direction. As described in Ref. [31],
these kinds of nonequilibrium fluctuations are relevant, for in-
stance, in the motions of biological agents or self-propelled
particles. The origin of these fluctuations can be, for example,
variations in the propulsion of chemically powered colloids,
complex intracellular processes in cell motility, and so on. In
our system, the external force F(t) can be realized by atomic-
force-microscopy (AFM) or by optical tweezers, where the
external noise may come from environment perturbations, or
the variations of the amplitude and frequency. It is hard to
characterize the properties of the external noise correctly, and
for simplicity, we just assume it to be Gaussian and white
noise.

We note that the intensity of the internal noise is deter-
mined by the friction coefficient γ and temperature T and not
adjustable if γ and T are both fixed. Therefore, to investigate
the behavior of SR, wherein the noise intensity usually need to
be altered, we have mainly focused how the system’s dynam-
ics depends on the external noise intensity D in the present
study, followed by discussions on the effects of internal
noise.

In our simulations, we rescale the length by σ , system
energy by ε, and time by tLJ = (mσ 2/ε)1/2, respectively. The
parameter values are lx = 10, ly = 8, γ = 1.0, f0 = 0.06,
ω = 5 × 10−3, kBT = 0.004, R0 = 2 and k = 1.0 if not oth-
erwise stated. And all simulations employ a time step of �t
= 5 × 10−3. Initially, the chain is located in the left lobe as
shown in Fig. 1(a). A typical snapshot of the chain configura-
tion during the translocation is presented in Fig. 1(b).

Figure 2 shows typical time series of x(t)
= 1

N

∑N
i=1 xi(t) for fixed change length N = 20 and

channel width b = 3.0, while for different noise intensity
D = 0.001, 0.06, and 0.6, respectively. Clearly, only rare ran-
dom switching events are observed when the noise is weak,
while many often but quite chaotic switches take place for
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FIG. 2. Typical time series x(t) of center-of-mass for N = 20 at the noise
strength D = 0.001, D = 0.06, and D = 0.6, respectively. The bottleneck
width b = 3.0. Rare random transitions for the weak noise strength, almost
regular transitions for intermediate level and chaotic transitions for large
noise.

large noise. At an optimal noise level, say, D = 0.06 as shown
here, the polymer chain translocates across the bottleneck
back and forth with a frequency nearly the same as that of
the periodic force. These features are typical fingerprints of
SR-like phenomena. To show this quantitatively, we calculate
the Fourier coefficient Q,32–34 which tells precisely how
much information in the signal is transported with the forcing
frequency ω. Noteworthy, Q is proportional to the square of
the spectral power amplification.35 The factor Q has been
often used to measure SR and is defined as follows:

Q= 1

t

√{∫ t

0
2x(t ′) sin(ωt ′)dt ′

}2

+
{∫ t

0
2x(t ′) cos(ωt ′)dt ′

}2

,

(5)

where t denotes the time interval for averaging, which should
be long enough. As shown in Fig. 3, there is a clear-cut max-
imum of Q at an optimal value of D as expected. Since the
polymer does not encounter any energy barrier during
the crossing process, and it is the entropic barrier that plays

FIG. 3. The Fourier coefficient Q as a function, the noise intensity D for
various polymer chain length N, for the bottleneck width b = 3.0, for coupling
strength k = 1.0, and for the maximum distance between beads R0 = 2.0.

FIG. 4. Q vs D for different values of bottleneck width b with chain length N
= 20, coupling strength k = 1.0, and the maximum distance between beads
R0 = 2.0.

the central role, we thus conclude that ESR does exist in the
present system.

One should note that a gravity force in the vertical di-
rection is not necessary here for the occurrence of ESR, in
distinct contrast to previous works about ESR associated with
Brownian particles in the same confined geometry.15 There,
a gravity force is essential for the Brownian particle to sam-
pling the boundary shape and thus the entropic barrier. In the
present work, the inter-coupling between the polymer beads
restrict the motion of the chain which could lead to the en-
tropic barrier during the translocation process. Intuitively, the
occurrence of ESR should depend on the chain length N,
channel width b, and the elastic constant k, which may affect
the height and shape of the entropic barrier.

As also shown in Fig. 3, the occurrence of ESR is ro-
bust to the change of chain length N. Nevertheless, the chain
length does influence the maximum-Q value, i.e., ESR seems
to be more pronounced for short chains. The optimal value
of D does not change much with N. The understanding of
this tendency is not that straightforward without a theoret-
ical analysis, which however is not available at the current
stage.

In Fig. 4, we draw the dependence of Q on D for dif-
ferent values of the bottleneck width b = 2, 3, 4, and 5 with
fixed N = 20. Interestingly, we find that Q decreases mono-
tonically with D if b is too small or too large. Namely, ESR
can only be observed when the channel width lies in a proper
range. As mentioned above, the key to ESR lies behind the
ability to sampling the entropic barrier. If the width is too
small, the polymer will be mainly confined in one side and
hardly translocate. On the other hand, the polymer will move
just freely across the bottle area without feeling the geometry
if b is too large. In both cases, one does not expect the ESR to
be observed.

Finally, we explore how the stiffness of the polymer chain
influences the ESR phenomenon. As discussed above, the
coupling between the polymer beads should be relevant to
the occurrence of ESR. Consider the limiting case k = 0,
just corresponding to the case where many independent Brow-
nian particles move in the geometry. Since no gravity force
is present, one should not expect the occurrence of ESR
(Ref. 15). This is actually the truth as shown in Fig. 5, where
the curve for k = 0 does not show a peak. However, for a
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FIG. 5. Q as a function of the noise strength D for different coupling constant
k = 0.0, 0.05, 3.0, 7.0. Other simulation parameters are: R0 = 8.0, b = 3.0,
and N = 20.

rather weak coupling strength, say, k = 0.05 as shown here,
the peak already becomes very much pronounced. Therefore,
coupling is essential for ESR to happen, but just a little is
enough. This can be explained by the fact that, for k 	= 0, when
the polymer locates in the left lobe or in the right lobe, there
are much more allowed configurations than in the bottleneck.
Compared with the k = 0 case, the decrease of configurations
in the bottleneck ensures the existence of entropic barrier even
without the gravity force.

According to Fig. 5, the Q-values for k = 0, although not
showing a maximum, are larger than those for larger k. This
seems to implicate that ESR, which happens for a nonzero
k, does not correspond to more regular motion. One should
note, however, that Q only accounts for the temporal evolu-
tion of the center of mass, but no information about the spa-
tial synchronization. For uncoupled particles, x(t) may follow
the external force better, but the particles could be scattered
in the space. We thus introduce a quantity S = 〈S(t) 〉, where
S(t) = 1

N

∑N
i=1 (xi(t) − x(t))2 and 〈 · 〉 means time-averaging,

to characterize the spatial synchronization among the poly-
mer beads. Note that a smaller S corresponds to more syn-
chronization in space. The dependence of S on D is shown
in Fig. 6, where the parameters are the same as in Fig. 5.
Clearly, with increasing k, the particles are more synchro-
nized in space. For relatively large coupling, e.g., k = 3.0
and 7.0, the synchronization factor is not much sensitive
to the noise intensity D. Combining with Fig. 5, it is then

FIG. 6. Degree of dispersion S as a function of the noise strength D for
different values of coupling constant k with parameters as shown in Fig. 5.

FIG. 7. Q vs D for different values of the internal noise strength γ kBT with
chain length N = 20, coupling strength k = 1.0, and the maximum distance
between beads R0 = 2.0.

worthy to point out that for an optimal noise level, say
D 
 0.06, the polymer chain moves in a best-coherent man-
ner, in the sense that they are most resonant with the external
force (Q reaches the maximum) and also keep good synchro-
nization in space.

To get more insight into the ESR behavior, we have fur-
ther investigated the dynamics of the polymer for different
internal noise intensity, which is realized by altering kBT. In
Fig. 7, one can easily observe that Q decreases monotonically
with D when the internal noise strength γ kBT is too large. In
other words, only when γ kBT is relatively small, ESR can be
observed. Interestingly, we find that ESR with respect to the
internal noise is also present if the external noise strength is
fixed and not too large. As shown in Fig. 8(a), Q also shows
an apparent maximum with increasing γ kBT for small D. In
addition, the chain length cannot change the optimal internal
noise intensity but change the height of the peak, the bottle-
neck width needs to be chosen properly to observe ESR, the
coupling is essential for the system to sampling the entropic
barrier, as depicted in Figs. 8(b)–8(d). These observations are
similar to those corresponding to ESR with respect to external
noise.

In summary, we have investigated the dynamics of a flex-
ible polymer chain in a confined dumb-bell-shape geometry,
subject to a periodic force and external noise in the horizontal
direction. We find that the translocation of the chain through
the narrow pore shows the best coherence with the external
signal at a moderate level of external noise, demonstrating
the occurrence of the so-called ESR. In contrast to most pre-
vious studies on this interesting phenomenon involved with
Brownian particles, a gravity force in the vertical direction
is not necessary in the present work. However, we show that
the coupling between the polymer beads is crucial for ESR to
happen, because otherwise the chain is not able to sample the
entropic barrier resulting from the uneven boundary. We have
also found that ESR is robust to the change of the polymer
chain length, while it can only be observed when the bottle-
neck width lies in a proper range. In addition, we have inves-
tigated how the internal noise affects ESR, and found simi-
lar conclusions with that of studying the external noise. Our
study may shed new light on the understanding of polymer
dynamics as well as its control in confined geometry, which
is of great importance in biological systems.



044904-5 Zhang, Chen, and Hou J. Chem. Phys. 137, 044904 (2012)

FIG. 8. Q as a function of the internal noise intensity γ kBT for different values of external noise strength D with N = 20, b = 3.0 in (a), chain length N with D
= 0.0, b = 3.0 in (b), bottleneck width b with D = 0.0, N = 20 in (c), other parameters are: R0 = 2.0, k = 1.0. (d) Q vs γ kBT for different coupling constant k
with N = 20, b = 3.0, R0 = 8.0, and D = 0.0.

ACKNOWLEDGMENTS

This work is supported by the National Science Foun-
dation of China (Grant Nos. 21125313, 20933006, and
91027012).

1P. Hänggi, ChemPhysChem 3, 285 (2002).
2H. Yasuda, T. Miyaoka, J. Horiguchi, A. Yasuda, P. Hänggi, and Y.
Yamamoto, Phys. Rev. Lett. 100, 118103 (2008).

3R. L. Badzey and P. Mohanty, Nature 437, 995 (2005).
4J. M. G. Vilar and J. M. Rubí, Phys. Rev. Lett. 77, 2863 (1996).
5J. M. G. Vilar and J. M. Rubí, Phys. Rev. Lett. 78, 2886 (1997).
6T. Wellens, V. Shatokhin, and A. Buchleitner, Rep. Prog. Phys. 67, 45–105
(2004).

7D. Wu and S. Q. Zhu, Phys. Lett. A 372, 5299 (2008).
8O. A. Rosso and C. Masoller, Phys. Rev. E 79, 040106 (2009).
9L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys.
70, 223 (1998).

10C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh, and D. A. Weitz,
Trends Cell Biol. 19, 423 (2009)

11I. Goychuk and P. Hänggi, Phys. Rev. E 61, 4272 (2000).
12R. M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves

(Academic, Oxford, 1978).
13J. Han and H. G. Craighead, Science 288, 1026 (2000).
14K. A. Dill, S. Author, and H. S. Chan, Nat. Struct. Biol. 4, 10 (1997).
15P. S. Burada, G. Schmid, D. Regurea, M. H. Vainstein, J. M. Rubí, and P.

Hänggi, Phys. Rev. Lett 101, 130602 (2008).
16P. S. Burada, G. Schmid, D. Regurea, J. M. Rubí, and P. Hänggi, Eur. Phys.

Lett. 87, 50003 (2009).

17P. K. Ghoshr, F. Marchesoni, S. E. Savelev, and F. Nori, Phys. Rev. Lett.
104, 020601 (2010).

18L. Zhao, X. Q. Luo, D. Wu, S. Q. Zhu, and J. H. Gu, Chin. Phys. Lett. 27,
040503 (2010).

19J. Darnell, H. Lodish, and D. Baltimore, Molecular Cell Biology (Scientific
American, New York, 1995).

20S. M. Simon and G. Blobel, Cell 65, 371 (1991).
21I. Huopaniemi and K. F. Luo, J. Chem. Phys. 125, 124901 (2006).
22K. F. Luo, R. Metzler, T. Ala-Nissila, and See-Chen Ying, Phys. Rev. E 80,

021907 (2009).
23M. Muthukumar, J. Chem. Phys 126, 145101 (2007).
24M. G. Gauthiera and G. W. Slater, J. Chem. Phys. 128, 065103

(2008).
25M. G. Gauthiera and G. W. Slater, J. Chem. Phys. 128, 205103 (2008).
26A. Milcheva and K. Binder, J. Chem. Phys. 21, 6042 (2004).
27W. Sung and P. J. Park, Phys. Rev. Lett. 77, 7483 (1996).
28M. Asfaw and W. Sung, Europhys. Lett. 90, 30008 (2010).
29M. Asfaw, Phys. Rev. E 82, 021111 (2010).
30M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford

University Press, Oxford, 1987).
31P. Romanczuk and L. Schimansky-Geier, Phys. Rev. Lett. 106, 230601

(2011).
32A. A. Zaikin, J. García-Ojalvo, L. Schimansky-Geier, and J. Kurths, Phys.

Rev. Lett. 88, 010601 (2002).
33E. I. Volkov, E. Ullner, A. A. Zaikin, and J. Kurths, Phys. Rev. E 68, 026214

(2003).
34C. S. Shen, H. S. Chen, and J. Q. Zhang, Chin. Phys. Lett. 25, 1591

(2008).
35P. Jung and P. Hänggi, Phys. Rev. A 44, 8032 (1991).

http://dx.doi.org/10.1002/1439-7641(20020315)3:3<285::AID-CPHC285>3.0.CO;2-A
http://dx.doi.org/10.1103/PhysRevLett.100.118103
http://dx.doi.org/10.1038/nature04124
http://dx.doi.org/10.1103/PhysRevLett.77.2863
http://dx.doi.org/10.1103/PhysRevLett.78.2886
http://dx.doi.org/10.1088/0034-4885/67/1/R02
http://dx.doi.org/10.1016/j.physleta.2008.06.015
http://dx.doi.org/10.1103/PhysRevE.79.040106
http://dx.doi.org/10.1103/RevModPhys.70.223
http://dx.doi.org/10.1016/j.tcb.2009.04.004
http://dx.doi.org/10.1103/PhysRevE.61.4272
http://dx.doi.org/10.1126/science.288.5468.1026
http://dx.doi.org/10.1038/nsb0197-10
http://dx.doi.org/10.1103/PhysRevLett.101.130602
http://dx.doi.org/10.1209/0295-5075/87/50003
http://dx.doi.org/10.1209/0295-5075/87/50003
http://dx.doi.org/10.1103/PhysRevLett.104.020601
http://dx.doi.org/10.1088/0256-307X/27/4/040503
http://dx.doi.org/10.1016/0092-8674(91)90455-8
http://dx.doi.org/10.1063/1.2357118
http://dx.doi.org/10.1103/PhysRevE.80.021907
http://dx.doi.org/10.1063/1.2719198
http://dx.doi.org/10.1063/1.2826339
http://dx.doi.org/10.1063/1.2927878
http://dx.doi.org/10.1063/1.1785776
http://dx.doi.org/10.1103/PhysRevLett.77.783
http://dx.doi.org/10.1209/0295-5075/90/30008
http://dx.doi.org/10.1103/PhysRevE.82.021111
http://dx.doi.org/10.1103/PhysRevLett.106.230601
http://dx.doi.org/10.1103/PhysRevLett.88.010601
http://dx.doi.org/10.1103/PhysRevLett.88.010601
http://dx.doi.org/10.1103/PhysRevE.68.026214
http://dx.doi.org/10.1088/0256-307X/25/5/019
http://dx.doi.org/10.1103/PhysRevA.44.8032


The Journal of Chemical Physics is copyrighted by the American Institute of Physics (AIP).  Redistribution of

journal material is subject to the AIP online journal license and/or AIP copyright.  For more information, see

http://ojps.aip.org/jcpo/jcpcr/jsp


