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Strategy to suppress epidemic explosion in heterogeneous metapopulation networks
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We propose an efficient strategy to suppress epidemic explosion in heterogeneous metapopulation networks,
wherein each node represents a subpopulation with any number of individuals and is assigned a curing rate that is
proportional to kα with the node degree k and an adjustable parameter α. We perform stochastic simulations of the
dynamical reaction-diffusion processes associated with the susceptible-infected-susceptible model in scale-free
networks. We find that the epidemic threshold reaches a maximum when α is tuned at αopt � 1.3. This nontrivial
phenomenon is robust to the change of the network size and the average degree. In addition, we carry out a mean
field analysis to further validate our scheme, which also demonstrates that epidemic explosion follows different
routes for α larger or less than αopt. Our work suggests that in order to efficiently suppress epidemic spreading on
heterogeneous complex networks, subpopulations with higher degrees should be allocated more resources than
just being linearly dependent on k.
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I. INTRODUCTION

In the lasttwo decades, we have witnessed dramatic ad-
vances in complex network research, which has been one of
the most active topics in statistical physics and closely related
disciplines [1–3]. The central issue in this field is to study how
the network topology influences the dynamics [4–6]. As one
of the typical dynamical processes built on complex networks,
epidemic spreading has attracted significant attention [7–24].

Recently, metapopulation dynamics on heterogeneous net-
works, which incorporates mobility over the nodes, local
interaction at the nodes, and a complex network structure,
has gained great research attention [24–42]. In this context,
reaction-diffusion (RD) processes have been widely used to
model phenomena as diverse as the spread of epidemics
and computer viruses [24–30], biological pattern formation
[31,32], chemical reactions [33–35], population evolution
[36], and many other spatially distributed systems [37–40].
In a series of important papers, Colizza et al. [25] provided
an analysis of the basic RD process of a paradigmatic
epidemic model, the susceptible-infected-susceptible (SIS)
model, defined on heterogeneous metapopulation networks.
Therein, each network node represents an urban area together
with its population, and edges represent air travel fluxes along
which individuals diffuse, coupling the epidemic spreading
in different urban areas. They paid particular attention to the
epidemic threshold ρc and found that ρc is strongly affected
by the topological fluctuations of the network for diffusing
susceptible individuals. Later, Balcan and Vespignani [40]
extended such analysis to non-Markovian diffusive processes
on complex networks, wherein individuals have a memory
of their location of origin and displaced individuals return to
their original subpopulation with a certain rate. Very recently,
Vespignani [41] reviewed and highlighted some of the recent
progresses in modeling dynamic processes that integrates the
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complex features and heterogeneities of real-world systems.
Nevertheless, all the studies so far have treated the curing rate
μ as a homogenous parameter; that is, it is not dependent on
the local property of the network node, such as the degree k.
Note, however, in reality the curing rate should certainly be
associated with the available medical resources in the local
subpopulation, and thus it is reasonable to assume that μ

is a function of the degree k. It is therefore interesting to
ask how the metapopulation dynamics of the SIS model, for
instance, the epidemic threshold ρc, would depend on such a
k-dependent curing strategy. The answer to this question may
provide useful instructions regarding the control of epidemic
explosion in metapopulation networks.

In the present paper, we have addressed such a question by
considering a simple strategy, μk ∼ kα , where k denotes the
node degree and α is an adjustable parameter. If α = 0, one
recovers the usual cases studied in previous works. Herein,
we mainly focus on the influence of varying α on the value
of ρc. Interestingly, we found that ρc bypasses a clear-cut
maximum at a certain αopt, which corresponds to an optimal
strategy to suppress epidemic explosion. This observation
along with the value of αopt is robust to the change of the
network size and the average network degree. To place the
finding on a solid foundation, we have also performed a mean
field (MF) analysis, wherein ρc is identified as the onset point
where the global healthy state with no infected individuals
loses stability. The MF equations successfully reproduce
the ρc ∼ α dependences and also provide more insights
regarding the routes to epidemic explosion for different values
of α.

II. MODEL DESCRIPTION

We consider a system of N distinct subpopulations, each
corresponding to a network node. Individuals inside each
node run stochastically through the paradigmatic SIS model
[43–45]. Schematically, the stochastic infection dynamics is
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given by

S + I
β→ 2I, I

μk→ S. (1)

The first reaction reflects the fact that each susceptible (S) in-
dividual becomes infected upon encountering one infected (I)
individual at a probability rate β. The second one indicates that
infected individuals are cured and become again susceptible
at a k-dependent rate μk . Inside each network node, reaction
processes take place under the assumption of a homogenous
mixing. After the reaction, individuals randomly diffuse along
the edges to neighboring nodes.

In this model, a significant and general result is that the
system undergoes an absorbing-state phase transition with
increasing density ρ, in analogy with critical phenomena [6].
Here ρ is defined as the total number of individuals divided by
N . The critical density ρc indicates the epidemic threshold.

To begin, we perform our strategy on scale-free (SF)
networks by using the Barabási-Albert (BA) model [46]
with power-law degree distribution p(k) ∼ k−3. Scale-free
networks are much more heterogeneous and serve as better
candidates to test our strategy than other homogeneous
networks, such as small-world or random networks. For a node
i with degree ki , the curing rate is given by

μki
= kα

i∑
j kα

j /N
. (2)

Herein, μki
is normalized such that the average curing rate

remains constant: μ̄ = 1
N

∑
i μki

= 1. Note that in other
related works about epidemic dynamics on networks, a k-
dependent strategy, but associated with the infection rate β,
had also been considered [17,47].

The system evolves in time according to the following
rules [25]: The dynamics proceeds in parallel and follows
a discrete time step representing the fixed time scale τ of
the process. The reaction and diffusion rates therefore are
converted into probabilities. At each time step, the system
is updated as follows. Inside each network node with degree
k, each infected individual is cured with probability μkτ . At
the same time, each susceptible individual becomes infected
with probability 1 − (1 − βτ )nI , where nI is the total number
of infected individuals in the node. After all nodes have been
updated for the reactions, diffusion processes take place by
allowing each individual to move into a randomly chosen
neighboring node with probability DIτ and DSτ , for infected
and susceptible individuals respectively, where DI (DS) de-
notes the corresponding diffusion constant. In our simulation,
the parameters are N = 1000, β = 0.5, DI = DS = 1.0, and
τ = 0.001 if not otherwise specified. Each simulation plot is
obtained via averaging over 20 independent runs.

III. SIMULATION RESULTS

Figure 1(a) shows how the proportion ρI /ρ, where ρI =∑
nI /N denotes the density of infected individuals in the

whole network, increases with ρ for four different values
of α. Clearly, the system undergoes a phase transition at a
certain threshold density ρc, above which ρI /ρ monotonically
increases from zero. For ρ < ρc, the system stays in a
“healthy” state with ρI = 0. Interestingly, ρc reaches a largest

FIG. 1. (Color online) (a) The proportion ρI /ρ of infected
individuals as a function of ρ for different α on 1000-node BA
networks. (b) The epidemic threshold ρc as a function of α for
different network sizes N . The maximal threshold locates at αopt �
1.3, which is indicated by the vertical dotted line. The inset shows
αopt as a function of N . All the networks have a fixed average network
degree 〈k〉 = 6. (c) The epidemic threshold ρc as a function of α for
different 〈k〉. The inset shows αopt as a function of 〈k〉. N = 4000.

value for α = 1.3, compared to those for α = 0, 1.0, 2.0. This
is demonstrated more clearly in Fig. 1(b), where ρc is plotted
as a function of α for different N . The distinct peak locates at
αopt � 1.3, which is rather robust to the change of network size
N as shown in the inset. In addition, we have also investigated
how this phenomenon depends on the average network degree
〈k〉. As shown in Fig. 1(c), the optimal value αopt also remains
nearly constant with varying 〈k〉 from 4 to 14.

So far we have considered that all species diffuse with the
same rate. In the following, we take into account different
diffusion rates for different species. For the sake of simplicity,
we assume that the infected individuals diffuse with a fixed rate
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FIG. 2. (Color online) The epidemic threshold ρc as a function
of α for different diffusion rates DS . All the networks have fixed
〈k〉 = 6, N = 1000, and γ = 3.0.

DI = 1 and vary the diffusion rate of susceptible ones DS . The
epidemic threshold ρc as a function of α is plotted in Fig. 2 for
DS = 0,0.005,0.05,0.5, and 1.0. Interestingly, the bell-shape
dependence of ρc on α always exists for nonzero DS , with the
peak locating at nearly the same optimal value αopt � 1.3. The
relative height of this peak decreases with increasing DS , and
eventually ρc is independent of α for DS = 0.

FIG. 3. (Color online) The epidemic threshold ρc as a function
of α for different infection rates β (a) and for different network
topologies (b). The network is of SF type with γ = 3.0 in panel (a)
and the infection rate is β = 0.5 in panel (b). All the networks have
fixed 〈k〉 = 6 and N = 1000.

Figure 3(a) shows that ρc as a function of α for different
infection rates β. It can be found that a maximum ρc still
shows up at the same αopt. Nevertheless, the maximum ρc

corresponding to αopt does change with β. In addition, we have
also considered how the above findings depend on the network
topology. To this end, we have performed simulations on SF
networks with different exponents γ and on Erdös-Rényi (ER)
random networks. The networks are generated according to
the Molloy-Reed model [48]: Each node is assigned a random
number of stubs k that are drawn from a specified degree
distribution, and pairs of unlinked stubs are then randomly
joined. This construction eliminates the degree correlations
between neighboring nodes. ρc as a function of α for different
type of networks is shown in Fig. 3(b). It is found that the
existence of an maximal ρc for optimal α is also robust to
the change of network topology. For SF networks, the optimal
value of α is always close to 1.3. For ER networks, the ρc ∼ α

curve becomes not so sharp, indicating that ρc is not that
sensitive to the change of α.

IV. MEAN FIELD ANALYSIS

According to the stochastic simulation schemes, one may
write down the following set of dynamic equations at a MF
level:

∂ρI,k

∂t
=ρI,k(βρS,k − μk) + DI

(
k

∑
k′

p(k′|k)
1

k′ ρI,k′ − ρI,k

)
,

(3a)

∂ρS,k

∂t
= ρI,k(μk − βρS,k) + DS

(
k

∑
k′

p(k′|k)
1

k′ ρS,k′ − ρS,k

)
,

(3b)

where ρI,k and ρS,k represent the average densities of infected
and susceptible individuals in the nodes with degree k

respectively. The first term in the right-hand side of Eq. (3a)
accounts for the change of infected individuals due to the
reaction (infection and recovery) processes, and the second
term accounts for the diffusion of infected individuals into
and out of those nodes with degree k. Equation (3b) can
be interpreted in a similar manner. p(k′|k) represents the
conditional probability that a node of degree k is connected to
a node of degree k′, which equals to k′p(k′)/〈k〉 [49,50] for
uncorrelated networks.

One notes that a thorough analysis of Eqs. (3) is not easy.
For sake of simplicity, here we consider only the case DI =
DS = 1. Then, substituting this into Eqs. (3) and using ρI =∑

k p(k)ρI,k , one obtains

∂ρI,k

∂t
= ρI,k(βρS,k − μk) + k

〈k〉ρI − ρI,k, (4a)

∂ρS,k

∂t
= ρI,k(μk − βρS,k) + k

〈k〉ρS − ρS,k. (4b)

For α = 0 and thus μk = 1, it was already shown in
the literature that ρc = μ

β

〈k〉2

〈k2〉 [25]. For α �= 0, it is hard
to get the explicit expression of ρc from Eqs. (4) directly.
Clearly, Eqs. (4) admit a steady state, which solves ∂ρI,k/∂t =
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FIG. 4. (Color online) Panels (a) and (b) correspond to the
dependence of the largest eigenvalues λmax on ρ for different α and the
dependence of ρc on α respectively, both on a synthesized 1000-node
BA network with 〈k〉 = 6.

∂ρS,k/∂t = 0,

ρ∗
I,k = 0, ρ∗

S,k
= k

〈k〉ρ, (5)

which physically corresponds to the disease-free state. Intu-
itively, this healthy state will lose stability at the critical density
ρc, above which the steady-state value of ρI,K cannot be 0 any
more. Therefore, one can alternatively perform linear stability
analysis of (ρ∗

I,k ,ρ
∗
S,k ) to get ρc. Following standard procedures,

we need to obtain the Jacobian matrix and calculate the
eigenvalues {λ}. The healthy state will lose stability when
λmax, the largest value of the real part of the eigenvalues,
passes through zero from below. Note that explicit expression
for λmax is not available, but numerical calculation of it is easy.

Figure 4(a) plots λmax as a function of ρ for several values
of α. The value of ρ where λmax = 0 corresponds to ρc. As
expected, ρc is largest for α = 1.3 compared to those for
other α. Figure 4(b) presents ρc as a function of α obtained
from simulations (symbols) and MF analysis (solid line).
Apparently, the MF results are in rather good agreements with
the simulation ones.

To get more insights into how the epidemic explosion
takes place for different α, we turn to the eigenvector v =
{(vI,k,vS,k)k=1,...} corresponding to λmax at the onset of the
phase transition, that is, ρ = ρc. The element vI,k of this
vector measures the relative amplitude of the fluctuation away
from ρ∗

I,k = 0 for nodes with given degree k. Therefore, the
dependence of vI,k on k qualitatively tells us how the epidemic

FIG. 5. (Color online) The eigenvectors vI,k , corresponding to
the eigenvalue λmax = 0, as functions of k for different α. Other
parameters are the same as in Fig. 4.

explosion grows from the healthy state. In Fig. 5, we depict the
eigenvectors vI,k as functions of k for different α. Interestingly,
we observe that epidemic explosion starts from large-degree
nodes for α less than αopt, as shown by the dotted, dashed,
and dash dotted lines in Fig. 5, while it is from small-degree
nodes for α larger than αopt, as shown by the “solid” and “short
dash dotted” lines. For α � αopt, vI,k is not that sensitive on k,
indicating a relatively homogenous epidemic explosion.

To reveal the underlying mechanism of the epidemic
spreading for different α in more detail, in Fig. 6 we illustrate
the time evolution of ρI,k/ρ, the average density of infected

FIG. 6. (Color online) Time evolution of the average density of
infected individuals ρI,k/ρ in the nodes with different degrees for BA
model with N = 1000 and 〈k〉 = 6. (a) α = 0.5, (b) α = 2.5.
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individuals in the nodes with degree k for two particular values
of α, one (α = 0.5) less than αopt and the other (α = 2.5) larger
than it. This can give us more detailed information about how
the epidemic outbreak takes place on nodes with different
degree k. We find that, for α = 0.5, the disease starts to spread
from large-degree nodes, such as those with k = 88, 75, and
60, as shown by the top three lines in Fig. 6(a); while for
α = 2.5, the spreading starts from those nodes with relatively
small degree, for example, k = 12, 17, and 8, as shown in
Fig. 6(b). These phenomena indicate that there indeed exist two
different epidemic explosion routes for α being less or larger
than αopt, which are consistent with the analysis associated
with the eigenvectors as shown in Fig. 5.

The above different pathways regarding small or large α

may be illustrated qualitatively in the following way. Consider
that the individuals in a given node are infected at the
beginning. These patients will diffuse to neighboring nodes
through the links. Certainly, nodes with larger degrees will
have more chances to accept these patients. To efficiently
suppress the epidemic explosion, the curing rates in such large-
degree nodes should be relatively large to compensate these
incoming patients via diffusion. Therefore, it is reasonable
that μk should be an increasing function of k to maintain
an effective epidemic control. Intuitively, one may imagine
that the most efficient way is to keep linear dependence of
μk on k (i.e., α = 1 in our strategy), considering that every
incoming patient via diffusion can be cured on time. However,
this is not exactly the case because the reactions inside a node
involve nonlinear autocatalytic processes, which makes αopt

larger than 1. (Unfortunately, why αopt is so robust to be about
1.3 is still open to us.) If α is too large, which means that
the medical resources are biased to large-degree nodes, the
patients in small-degree nodes cannot be cured on time. In
this case, disease will start to spread from those small-degree
nodes. In the contrast case, the disease will start more abruptly
from those large-degree nodes since the curing rates there are
too smaller than required. These scenario are in agreement
with the pictures shown in Figs. 5 and 6.

V. DISCUSSION AND CONCLUSIONS

One should note that the α value cannot be arbitrary for the
real world, if we adopt the power-law dependence. Following
the recipe of Eq. (2), for a scale-free network with minimum,
mean, and maximum degrees respectively of 2, 5, and 100, the
recovery rate will range from 0.4 to 20 in the simplest case
of linear dependency (α = 1). This large difference is to some
extent not reasonable, which implies that the optimal control
with α = 1.3 is hard to be realized practically. Nevertheless,
as a model study, we can just change α as we want to see what
we can find. If, for instance, we tune α to a reasonable nonzero
value, say α = 0.5, the ratio of the maximal and minimal μ

would be about 10 for a network with k ranging from 1 to 100,
which can also lead to a much better epidemic control (ρc =
1.37) than previous case of α = 0 (ρc = 0.95). Therefore, our
work has indeed provided an efficient strategy to suppress the
epidemic explosion.

In summary, we have studied a variant of SIS model defined
on scale-free metapopulation networks, wherein the curing
rate in a node with degree k is proportional to kα . By detailed
numerical simulations, we show that the epidemic threshold
reaches a maximum value when α is tuned to be αopt � 1.3,
which corresponds to an optimal control strategy to suppress
epidemic explosion and is robust to the change of network
size or average degree. We have also performed a mean field
analysis to further elucidate this strategy and unravel the dis-
tinct pathways to epidemic spreading for α larger or less than
αopt. Our findings suggest that a proper allocation of medical
resources can best suppress the epidemic explosion, which
could be of great importance in practical epidemic control.
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[10] M. Boguñá, R. Pastor-Satorras, and A. Vespignani, Phys. Rev.

Lett. 90, 028701 (2003).
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