
Chaos 22, 033141 (2012); https://doi.org/10.1063/1.4749795 22, 033141

© 2012 American Institute of Physics.

Delay induced bifurcation of dominant
transition pathways
Cite as: Chaos 22, 033141 (2012); https://doi.org/10.1063/1.4749795
Submitted: 16 March 2012 . Accepted: 17 August 2012 . Published Online: 06 September 2012

Huijun Jiang (江慧军), and Zhonghuai Hou (侯中怀)

ARTICLES YOU MAY BE INTERESTED IN

Cluster synchronization of spiking induced by noise and interaction delays in homogenous
neuronal ensembles
Chaos: An Interdisciplinary Journal of Nonlinear Science 22, 033147 (2012); https://
doi.org/10.1063/1.4753919

Clocking convergence to a stable limit cycle of a periodically driven nonlinear pendulum
Chaos: An Interdisciplinary Journal of Nonlinear Science 22, 033138 (2012); https://
doi.org/10.1063/1.4748856

Secondary nontwist phenomena in area-preserving maps
Chaos: An Interdisciplinary Journal of Nonlinear Science 22, 033142 (2012); https://
doi.org/10.1063/1.4750040

https://images.scitation.org/redirect.spark?MID=176720&plid=1398160&setID=379030&channelID=0&CID=495576&banID=520306874&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=c2b4158cdc518133878f7349ab9b6b7de9c25ed7&location=
https://doi.org/10.1063/1.4749795
https://doi.org/10.1063/1.4749795
https://aip.scitation.org/author/Jiang%2C+Huijun
https://aip.scitation.org/author/Hou%2C+Zhonghuai
https://doi.org/10.1063/1.4749795
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4749795
https://aip.scitation.org/doi/10.1063/1.4753919
https://aip.scitation.org/doi/10.1063/1.4753919
https://doi.org/10.1063/1.4753919
https://doi.org/10.1063/1.4753919
https://aip.scitation.org/doi/10.1063/1.4748856
https://doi.org/10.1063/1.4748856
https://doi.org/10.1063/1.4748856
https://aip.scitation.org/doi/10.1063/1.4750040
https://doi.org/10.1063/1.4750040
https://doi.org/10.1063/1.4750040


Delay induced bifurcation of dominant transition pathways

Huijun Jiang (江慧军) and Zhonghuai Hou (侯中怀)a)

Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at the Microscale,
University of Science and Technology of China, Hefei, Anhui 230026, China

(Received 16 March 2012; accepted 17 August 2012; published online 6 September 2012)

We investigate delay effects on dominant transition pathways (DTP) between metastable states of

stochastic systems. A modified version of the Maier-Stein model with linear delayed feedback is

considered as an example. By a stability analysis of the “on-axis” DTP in trajectory space, we find

that a bifurcation of DTPs will be induced when time delay s is large enough. This finding is soon

verified by numerically derived DTPs which are calculated by employing a recently developed

minimum action method extended to delayed stochastic systems. Further simulation shows that the

delay-induced bifurcation of DTPs also results in a nontrivial dependence of the transition rate

constant on the delay time. Finally, the bifurcation diagram is given on the s� b plane, where b
measures the non-conservation of the original Maier-Stein model. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4749795]

The fluctuation-driven transition (FDT) between meta-

stable states (MSS) is particularly relevant to many

important events in physics, chemistry, biology, etc.

Examples include chemical reactions, biological switches,

nucleation processes, to list just a few. In many systems,

the dynamics may involve delayed interactions due to

limit transmission rate of matter, energy or information

transport, or some kinds of feedback. Thus, it is of great

interest to investigate the impact of delayed interactions

on the transition behaviors of such systems. In this paper,

we address these issues by investigation the effect of

delayed interaction on the dominant transition pathways

(DTPs) which is informative to explain the mechanism of

fluctuation-driven transitions.

I. INTRODUCTION

Real dynamical systems are often subject to weak ran-

dom perturbations, such as thermal noise at a nonzero tem-

perature. It has been a common sense that small fluctuations

can produce a profound effect on the long time dynamics by

inducing rare but important events. For instance, fluctuations

may result in transitions between metastable sets of deter-

ministic dynamical system, which can be related to a large

number of interesting phenomena in physics, chemistry, and

biology such as nucleation processes, chemical reactions,

and biological switches.

In recent years, FDTs have gained great research

attentions.1–9 One of the fundamental purposes of studying

FDT is to explain how the transition occurs. Freidlin-

Wentzell theory of large deviations provides one of the right

frameworks to understand FDT.10–12 When the amplitude of

fluctuation is small, the distribution of trajectories which

make transitions between metastable sets is often sharply

peaked around a certain deterministic path or a set of paths.

It then becomes very important to identify such DTPs which

can be highly informative to help elucidate the underlying

mechanism of the FDT. Usually, the DTP tells how the tran-

sition happens step by step, identifies the transition state(s),

and can also be used to derive other important quantities

such as the transition rate of the FDT. In conservative sys-

tems, where there exists an underlying energy landscape,3,5,6

the DTP is actually the minimum energy path and is every-

where tangent to the potential force. In this case, the DTP

must first approach a transition state which is usually a sad-

dle point on the basin boundary of one attractor, and then

runs along the unstable manifold of that point and enters the

basin of attraction of the second attractor. The DTP before

reaching the transition state is actually the time reversed

heteroclinic orbit of the unperturbed system joining the

attractor and the saddle point. In non-conservative systems

in which detailed balance is absent, some new interesting

phenomena have been found, e.g., symmetry breaking bifur-

cation of the optimal escape path can be observed,1 an

unstable fixed point,2 or an unstable limit cycle7 can act as

the transition state. Moreover, a complex transition para-

digm containing a saddle point and two limit cycles as tran-

sition states was reported in the Lorenz system.8 The DTP

has also been used to explore the configuration space of sys-

tems with complicated structure,9 and study the nucleation

process in the presence of shear in a two-dimensional Ginz-

burg-Landau equation.4

Nevertheless, most studies of DTP so far are limited at

least in one sense, i.e., the state of system at one time can

only influence and be influenced by its state at that same

time. In fact, a variety of sources, such as the limit transmis-

sion rate of matter, energy or information transport, or some

kinds of feedback, might allow events at one time to affect

the state of the system at some later time. In these cases,

time delayed variables and equations should be used to

describe the dynamics. As we already know, delay models

have been widely used to describe chemical kinetics,13 neu-

ronal networks,14 circadian oscillators,15–17 physiologicala)Electronic mail: hzhlj@ustc.edu.cn.
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systems,18 optical devices,19 and so on. In addition, time

delay can lead to a variety of interesting and important phe-

nomena, such as delay-induced oscillation,20 delay-induced

excitability,21 and delay-induced oscillator death.22 How-

ever, to the best of our knowledge, how delay would influ-

ence the FDT dynamics of a stochastic system, albeit its

apparent importance, has not been studied yet.

In the present paper, we have addressed such an issue by

investigating the effect of time delay on the DTP in a modi-

fied version of the Maier-Stein model with linear delayed

feedback. By an analysis using small delay approximation,

we find that the DTP undergoes a bifurcation via transverse

instability in the trajectory space when the delay time s
bypass a certain threshold value sc. By extending a recently

developed minimum action method23 to this delayed stochas-

tic system, we have also obtained the DTPs by numerical

simulations, which further confirm the analytical results. In

addition, this bifurcation of DTP results in a nontrivial phe-

nomenon of the FDT: The transition rate constant between

two metastable states shows distinct dependence on the delay

time below and above the bifurcation point. Finally, the

bifurcation diagram is given on the s� b plane, where b
stands for the non-conservation effect of the original Maier-

Stein model.

II. ANALYSIS

In general, a delayed stochastic system whose dynamics

is determined by both the present state x(t) and the state

xðt� sÞ with the delay time s > 0 can be described as

_xðtÞ ¼ FðxðtÞ; xðt� sÞÞ þ ffiffi
e

p
rðxÞgðtÞ; (1)

where FðxðtÞ; xðt� sÞÞ is a known drift vector field and gðtÞ
is a set of independent Guassian white noises with zero mean

and unit variance. e is a small positive number and rðxÞ is

related to the diffusion tensor by a ¼ rrT .
To show the effect of delay, here we consider a modified

version of the Maier-Stein model with state vector x¼ (u, v)
as an example, whose linear term is modified to be a delayed

feedback

_uðtÞ ¼ ut�s � u3 � buv2 þ ffiffi
e

p
guðtÞ;

_vðtÞ ¼ �vt�s � u2vþ ffiffi
e

p
gvðtÞ: (2)

When s ¼ 0, Eq. (2) recovers to the original Maier-Stein

model. In the absence of noise terms, it has two stable steady

states at A¼ (�1, 0), B¼ (1, 0), and a saddle point at the ori-

gin (0, 0) for all values of b > 0. In the presence of weak

noise, however, both A and B become MSS, and the FDT

from one MSS to another is a rare event. b reflects the non-

conservation of the original model. For b ¼ 1, the drift field

of the original system can be viewed as a gradient of a poten-

tial field, and the DTP from A to B (or vice versa) is actually

the minimum energy path connecting A and B along the u
axis, which is shown in Fig. 1.

In the delayed Maier-Stein model whose dynamical

equation is governed by Eq. (2), A and B are still the asymp-

totic fixed points of the system. By a simple linear stability

analysis, we can find that A and B are stable for s > 0. Simi-

lar to the case without delay, when small perturbation is

present, FDT from one MSS to another is allowed. As this

study focuses on the effect of delay, we will fix b ¼ 1 if not

otherwise stated to avoid the influence of instantaneous non-

conservative effects.

We now try to figure out the critical value of s at which
the on-axis DTP will be unstable. To this end, we expand

Eq. (2) in powers of s using a small delay expansion around

x(t)24 as follows:

_uðtÞ ¼ ð1� sÞðu� u3 � uv2Þ þ ffiffi
e

p ð1� sÞguðtÞ;
_vðtÞ ¼ ð1þ sÞð�v� u2vÞ þ ffiffi

e
p ð1þ sÞgvðtÞ; (3)

When weak noise presents, for a given transition path U ¼
fU0 ¼ A;…;UT ¼ Bg from MSS A to B over a finite time

interval T, a Freidlin-Wentzell action functional ST ½U� can be

calculated by path intergral along U. The main result of the

Freidlin-Wentzell theory10 is that for sufficiently small e, a
probability can be assigned for path / as Pðjfxg � Uj
< �Þ � expf�ST ½U�=eg, where � is a sufficiently small posi-

tive number. The probability suggests that DTP(s) is(are) the

transition path(s) minimizing the action functional. For the on-

axis DTP w ¼ fw0 ¼ A;…;wT ¼ B;wv ¼ 0g, the Freidlin-

Wentzell action functional ST ½w� can be written as

ST ½w� ¼ 1

2

ðT
0

ð _w � FaÞ � fa�1½ _w � Fa�gdt

¼ 1

2

ðT
0

j _q �Gj2dt

�
ðT
0

j _qjjGjdtþWðBÞ �WðAÞ; (4)

where Fa ¼ ðð1� sÞðu� u3 � uv2Þ; ð1þ sÞð�v� u2vÞÞ �
ðFu

a;F
v
aÞ, _q ¼ ð _u=ð1� sÞ; _v=ð1þ sÞÞ, Gðu; vÞ ¼ ðFu

a=ð1� sÞ;
Fv
a=ð1þ sÞÞ, and s 6¼ 1. Here, we use j _qj2 þ jGj2 � 2j _qjjGj

to get the inequality. Note that, this inequality is actually an

equality, since the DTP w minimizes the action functional.

TheW(u, v) is given by

FIG. 1. The potential field and the minimum energy path (the bold solid

line) of the original Maier-Stein model.
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Wðu; vÞ ¼
ððu;vÞ

�G � _qdt

¼ 1

2ð1� sÞ
1

2
u4 � u2

� �
þ 1

2ð1þ sÞ v
2 þ 1

1� s2
u2v2:

(5)

The right-hand side of the inequality in Eq. (4) is a line inte-

gral along the directed curve w, which can be considered as a

geometric action functional Ŝ similar to the one in Ref. 5.

Ŝ ¼ Ð T
0
j _qjjGjdt ¼ Ð

w
1

cos hG � dq, where h is the angle

between G and _q. As both G and _q are always along the u
axis, cos h ¼ 1 or �1 for any point ðu; vÞ 2 w. Then, we can

expand the geometric action functional of the segment from

A to (u, v) near the u axis in powers of v as

Ŝ½fw0;…;wt ¼ ðu; vÞg� ¼
jWðu; vÞ �WðAÞj; u � 0

jWðu; vÞj þ jWðAÞj;u > 0

(

¼ m0ðuÞ þm2ðuÞv2 þ oðv2Þ; (6)

where m2ðuÞ is a measure of the transverse stability of the

transition path at the point (u, v). If m2ðuÞ < 0, any small

perturbation in the v or �v direction will lead to a smaller

value of the action functional, and the DTP along the u axis

will be unstable. Notice that the perturbations in both direc-

tions have no difference in decreasing the value of the action

functional, which indicates that, there will be two equivalent

DTPs, related by v ! �v, if m2ðuÞ < 0.

For the left segment of w where u � 0, we have

m2ðuÞ ¼
1

2ð1þ sÞ þ
1

ð1� s2Þ u
2; s < 1

� 1

2ð1þ sÞ �
1

ð1� s2Þ u
2; s > 1

;

8>><
>>: (7)

Then, a straightforward calculation shows that the instability

region of the on-axis DTP is

s > 1: (8)

Similarly, we find that, for any point with u > 0; m2ðuÞ > 0,

which means that small perturbations at the right segment do

not affect the stability of the on-axis DTP no matter what

value s takes.
It is noted that Eq. (3) is derived under small delay

assumption, and such an expansion has been shown to be

valid to quadratic order in s.25 As Eq. (8) is not small

enough, we cannot expect that the derived instability bound-

ary is the exact one. Even so, Eq. (8) suggests a guiding pic-

ture that, there will be a threshold above which the on-axis

DTP will undergo a bifurcation via transverse instability on

the left segment. What is more, as the geometric action func-

tional Ŝ is independent on T, the bifurcation of DTP and

instability condition Eq. (8) will also be independent on T.

III. NUMERICAL SIMULATION

To verify the analytical result, we now derive the DTP

by simulation using a recently developed minimum action

method.23 The extension of this method to a delayed system

is straightforward except for some details. One should note

that the delay time defines a upper limit of the step size Dt ¼
T=N when we discretize the time domain ½0; T� to a N-size
mesh. To consider the delay effect, Dt should be properly

chosen so that Dt ¼ s=m, where m > 0 is a positive integer.

We start from a test path U with U0 ¼ A and UT ¼ B, and

update the path till convergence by iterating on solving the

gradient dynamic as

@Ut

@k
¼ � dST ½U�

dUt
; 0 < t < T

@U0

@k
¼ @UT

@k
¼ 0: (9)

where k > 0 plays the role of pseudo time for the updating,

and the action functional of the path ST ½U� can be calculated

by the first equality of Eq. (4) by using U and F instead of w
and Fa, respectively. The resulting path(s) with minimum

action is(are) our DTP(s) w, and the rate constant P that the

transition from A to B occurs can be approximately esti-

mated by

P 	 lim
T!1

exp � 1

e
ST ½w�

� �
; (10)

where f ðeÞ 	 gðeÞ if log f ðeÞ=log gðeÞ ! 1 as e ! 0. When

the DTP bifurcates, P is calculated via summing ones of

each path.

The numerical DTPs for s ¼ 0:0; 0:3, and 1.2, and

T¼ 100 are plotted in Fig. 2. It can be observed that two

equivalent DTPs, symmetric under v ! �v, appear, which
means that the DTP does undergo a bifurcation in the trajec-

tory space when s is large enough. When s ¼ 0:3, only one

on-axis DTP exists. While s ¼ 1:2, two off-axis DTPs are

observed. For further quantitative analysis of the DTPs, we

define the life time, as defined by X. Zhou, etc.,8 to be the

(signed) time in the deterministic system starting from a

FIG. 2. The dominant transition pathways of delayed Maier-Stein model

when s ¼ 0:0; 0:3, and 1.2.
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given position to reach the j-neighborhood of A (negative

life time) or B (positive life time), where j ¼ 10�5 in our

simulation. A negative life time indicates that the point is in

the attraction basin of A, and a positive one implies that the

point will be attracted to B. Thus, the transition state wtran

can be determined by the middle of the last point with nega-

tive life time and the first point with positive life time. The

life times tlif e for each point on the numerical DTPs are pre-

sented in Fig. 3(a). We find that all the DTPs are separated

by the origin (0,0) into two segments which lie in basins of

attraction of A and B, respectively. The fluctuation of the

negative life time at s ¼ 1:2 may due to the fact that, the tra-

jectory back to A does not overlap with the DTP in off-axis

region, and it is easier for some point to return to A in the

deterministic delayed system. In addition, we have also cal-

culated the amplitude of optimal fluctuation forces boptm ¼
j _wt � Fðwt;wt�sÞj for each point on the numerical DTPs.

The forces are considered to be optimal is due to the fact

that, as they are calculated along the dominant transition

pathway w, we will get this dominant transition pathway

back by applying these forces to Eq. (1). Since boptm is pro-

portional to the deterministic force F which is 0 at A and the

transition state, its value will be near 0 for the points close to

A, then increases and reaches its maximum at some middle

point, and decreases to nearly 0 for the points close to the or-

igin, as presented in Fig. 3(b). Besides of this, several points

can be addressed. First, for all s, strong fluctuation force is

needed for the system to escape from the attraction of A. Just

after the system passes through the origin, boptm decreases to

zero, immediately. Second, the curve at s ¼ 0:3 is over-

lapped with its analog at s ¼ 0:0, which confirms that the

on-axis DTP is still stable when the delay time is small.

Finally, for s ¼ 1:2; boptm of the left segments show large

discrepancies from the one at s ¼ 0:0 obviously, but the right
segments do not. The results given by Figs. 2 and 3 are con-

sistent with our analytical results.

In order to quantitatively describe the bifurcation of

DTP, we introduce the maximal distance from DTP to u
axis, L, as follows:

L ¼ maxðltÞ; 0 � t � T; (11)

where lt is the distance from wt to the u axis. In Fig. 4(a), L
as a function of delay time s is shown. It can be seen that L
stays nearly zero for small delay time until s � sc � 1:1. We

note that the threshold sc is close to the result given by Eq.

(8). To make sure the bifurcation is not a result of small T in

our simulation, we test the scaling behavior of sc with T,
which is shown in Fig. 4(b). The independence of sc on T
implies that the bifurcation of DTP in trajectory space does

occur for large Ts, which also confirms our analysis. For infi-

nite T, it is not available to calculate DTP directly (A geo-

metric minimum action method has been developed by

Heymann et al.4 to deal with the infinite T problem, how-

ever, it is not suitable for delayed systems).

IV. DISCUSSION

An important quantity derived from the DTP is the

action functional ST ½w� which can be calculated by the first

equality of Eq. (4) by apply F instead of Fa and is related to

the transition rate constant by Eq. (10). ST ½w� as a function of

FIG. 3. (a) The life time tlif e and (b) the optimal fluctuational force boptm for

each point of the dominant transition pathways shown in Fig. 2.

FIG. 4. The bifurcation of the dominant transition pathway. (a) The maxi-

mal distance L from dominant transition pathway to the u axis as a function

of delay time s. L arises from nearly zero to a remarkable value while delay

time pass through the threshold sc � 1:1. (b) The scaling of threshold sc
with observation time T.
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s is shown in Fig. 5(a). When s is small, ST ½w� increases
almost linearly as s increases, however, when s is large,

ST ½w� departs from the linear relationship obviously. To

show this clearly, we plot the slope dST ½w�=ds in the inset of

Fig. 5(a). For s < 1:1; ðdST ½w�=dsÞ=s � 0:0 which means

the slope is nearly unchanged. When s > 1:1, the slope

decreases as s increases at a rate of ðdST ½w�=dsÞ=s � �4:5.
For comparison, we also run the dynamic equation Eq. (2)

directly involved with forward flux sampling (FFS)

approach26 to get the transition rate constant P at different s.
P at e ¼ 0:02 are plotted in Fig. 5(b). The nontrivial depend-

ence of P on s is also observed, which is consistent with the

result derived by DPT qualitatively. The quantitative differ-

ence is due to the fact that, while we estimate P by Eq. (10),

the crossing through the transition state is considered as bal-

listic, i.e., it assumes that every crossing gives rise to a suc-

cessful transition. For the diffusive crossing, some crossings

may turn back to A and P is overestimated. The true P
should include a prefactor C0, which evaluate the ratio of

successful transition to total crossing, as well as the exponen-

tial factor Eq. (10). Since FFS simulation samples the transi-

tion rate constant directly by system’s dynamics, we can

calculate C0 by the ratio between the two curves in Fig. 5(b).

Fig. 5(c) presents C0 as a function of s. The abrupt increas-

ing of C0 near the bifurcation point sc implies that the system

may undergo some sort of critical behavior as a result of

delay induced DTP bifurcation.

In the above simulation, we have fixed b ¼ 1 to avoid

the influence of non-conservative effects other than time

delay. It has been reported that, bifurcation of the DTP also

occurs when b is varied.1 To understand the dependence of

the DTP on the both parameters s and b, a two-dimensional

bifurcation diagram in the s� b plane can be plotted. By

extensive minimum action method simulations at different b
and s, we plot this diagram in Fig. (6). It seems that, the bifur-

cation curve asymptotically approaches the line b ¼ 0:5, i.e.,
the symmetry breaking bifurcation of DTP does not occur for

any delay time when b < 0:5. We have tried to figure out the

underlying mechanism theoretically, however, a potential-like

quantity similar to Eq. (5) is not available for the non-

conservation case b 6¼ 1, which may need further research.

V. CONCLUSION

In summary, the dominant transition pathway between

two metastable states of a delayed stochastic system is stud-

ied. To show the effect of delay, we consider a modified ver-

sion of the Maier-Stein model with linear delayed feedback

as an example, whose original model is a typical symmetric

“double well” system, to study the noise induced transition.

Our analysis by small delay approximation shows that, time

delay will induce a new DTP via a bifurcation in trajectory

space when the delay time passes through a threshold sc. By
employing a recently developed minimum action method,

we can calculate the DTP by minimizing the Freidlin-

Wentzell action functional for transition path, numerically.

The numerically derived DTP confirms that the bifurcation

does occur for s > sc ¼ 1:1. Other details of DTP bifurca-

tion are also verified by numerical results, including bifurca-

tion via transverse instability, bifurcation at left segment,

arising of two equivalent DTPs after bifurcation, etc. From

the DTP, the transition rate constant can be derived, which

shows distinct dependence on the delay time below and

FIG. 5. (a) The minimal action functional ST ½w�, (b) transition rate constant

P, and (c) its prefactor C0 as a function of delay time s. The inset panel of

(a) is the slope dST ½w�=ds as a function of delay time s. Here, e ¼ 0:02 for

the FFS simulation.

FIG. 6. The bifurcation diagram of dominant transition pathways in s� b
plane.
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above the threshold. This dependence is also observed by

directly running the dynamic. The bifurcation diagram is

also investigated. Since time delay is an important factor in

many real systems, we believe that the present study can

shed new light on understanding the mechanism of

fluctuation-driven transitions in experimental studies and

open more perspectives on the study of fluctuation-driven

phenomena in non-conservation systems.
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