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Noise-induced vortex reversal of self-propelled particles
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We report an interesting phenomenon of noise-induced vortex reversal in a two-dimensional system of self-
propelled particles (SPPs) with soft-core interactions. With the aid of forward flux sampling, we analyze the
configurations along the reversal pathway and thus identify the mechanism of vortex reversal. We find that the
reversal exhibits a hierarchical process: those particles at the periphery first change their motion directions, and
then more inner layers of particles reverse later on. Furthermore, we calculate the dependence of the average
reversal rate on noise intensity D and the number N of SPPs. We find that the rate decreases exponentially with
the reciprocal of D. Interestingly, the rate varies nonmonotonically with N and a local minimal rate exists for an
intermediate value of N .
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I. INTRODUCTION

In recent years, the collective dynamics of self-propelled
particles (SPPs) has been a subject of intense research due to
the potential implications in biology, physics, and engineering
(see [1,2] for recent reviews). Examples of SPPs are abundant
including traffic flow [3], birds flocks [4,5], insects swarms
[6,7], bacteria colonies [8,9], and active granular media
[10,11], just to list a few. Especially, inspired by the seminal
work of Vicsek et al. [12], many theoretical and experimental
studies reported that various systems of SPPs can exhibit a
wealth of emergent nonequilibrium patterns like swarming,
clustering, and vortex [13–19].

A fascinating phenomenon about SPPs is that they can
abruptly change their collective motion pattern, which may
be induced by either intrinsic stochasticity such as error in
communication among SPPs or a response to an external
influence such as a predator. For example, a recent experiment
showed that marching locusts can suddenly switch their
direction without any change in the external environment
[6]. Later, the experimental results were further explained
theoretically by mathematical modeling, highlighting the
nontrivial role of randomness or noise on this transition [20].
Also, noise-induced transitions between translational motion
and rotational motion of SPPs have been observed [21–24].
However, there are still many open questions on this research
topic that certainly deserves more investigations. In particular,
investigation of the mechanisms about these transitions is
lacking at present. As we know, identifying the underlying
mechanisms is key to understanding and controlling the
collective motion of SPPs.

In this paper, we report an interesting phenomenon of
noise-induced vortex reversal between two different rotational
directions in a two-dimensional model of SPPs interacting via
Morse potential [18]. The vortex pattern has been commonly
observed in nature, such as fish, ants [25,26], Bacillus subtilis
[27], Dictyostelium cells [28], vibrated polar disks [29], and
collectively moving microtubules [30], as well as some related
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mathematical models [14,17,31,32], including the model used
in the present paper [18]. By virtue of a recently developed
simulation method of rare events, forward flux sampling
(FFS) [33], we analyze the intermediate configurations along
the reversal path and compute the average reversal rate. We
find an important statistical property of the vortex reversal,
that is, the reversal first starts from peripheral particles and
then gradually to inner particles, so that almost all particles
change their rotational directions. Furthermore, we show that
the reversal rate decreases exponentially with the inverse
of noise intensity. Interestingly, the rate varies nonmono-
tonically with the number of particles and a local minimal
rate exists.

II. MODEL DESCRIPTION

We consider N identical SPPs in a two-dimensional space
with positions �xi , velocities �vi (i = 1, . . . ,N), and unit mass.
The equations of motion read [18]

�̇xi = �vi, (1)

�̇vi = (α − β|�vi |2)�vi −
∑

j �=i

∇iU (|�xi − �xj |) +
√

2D�ξi, (2)

where the first and second terms on the right hand side (rhs)
of Eq. (2) represent self-propelled force and friction force,
respectively, and the third term is pair interaction among SPPs
given by the generalized Morse potential

U (|�xi − �xj |) = Cre
−|�xi−�xj |/lr − Cae

−|�xi−�xj |/la . (3)

Here, la and lr represent the attractive and repulsive potential
ranges, respectively, Ca and Cr represent their respective
amplitudes. The last term on rhs of Eq. (2) is a stochastic
force of intensity D that are independent of particle index and
satisfy 〈ξi,m(t)〉 = 0 and 〈ξi,m(t)ξj,n(t ′)〉 = δij δmnδ(t − t ′) with
i,j ∈ 1, . . . ,N ; m,n ∈ x,y. Note that for D = 0 our model
recovers to the original one proposed by D’Orsogna et al.
in [18].

The model exhibits diverse dynamic patterns for different
model parameters, such as clumps, rings, and vortex. Here
we set α = 1.0, β = 0.5, la = 2.0, lr = 0.5, Ca = 0.6, and
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FIG. 1. (Color online) Long-time evolutions of L(t) at four
different noise intensity: D = 0.32 (a), D = 0.37 (b), D = 0.40
(c), and D = 0.46 (d). Time series in (b) and (c) show several
noise-induced vortex reversals. The inset in (b) depicts two typical
stable configurations of SPPs: vortex with CW rotation (L < 0) and
CCW rotation (L > 0). The number of particles is N = 40.

Cr = 1.0. This set corresponds to the case of the vortex.
However, due to the catastrophic characteristic of the pair
potential between particles, in the N → ∞ limit particles
will collapse and thus the vortex pattern will become unstable
[18]. Therefore, the following observation on vortex reversal
will be just a finite-size effect. To distinguish two different
rotational directions of vortex, we define an average angular
momentum of particles �L(t) as �L(t) = 1

N

∑N
i=1

�Li(t), where
�Li(t) = �xi(t) × �vi(t) is the angular momentum of particle i

at time t . Since particles’ motions are confined to a two-
dimensional space in our model, the direction of the vector
�L can only be perpendicular to the motion plane, i.e., �L = L�ez

with the unit vector �ez orthogonal to the plane of motion.
Thus, the sign of L can distinguish the rotational directions
of vortex: L < 0 and L > 0 indicate clockwise (CW) and
counterclockwise (CCW) vortex, respectively.

III. SIMULATION DETAILS

Equations (1) and (2) are numerically integrated using a
fourth order Adams-Bashforth method [34] with a time step
dt = 0.01 and allowing particles an infinite range of motion.
In order to observe the noise-induced effect on vortex motion,
we show in Fig. 1 long-time evolutions of L(t) by brute-force
simulations at N = 40 at four different noise intensity: D =
0.32 (a), D = 0.37 (b), D = 0.40 (c), and D = 0.46 (d). For
D = 0.32, the system is in vortex pattern and its rotational
direction does not change within our observation time. In this

FIG. 2. Average angular momentum L of SPPs (hollow circles)
and its variance 〈L(t)2〉 − 〈L(t)〉2 (dotted line) as a function of noise
intensity D. The number of particles is N = 50.

case, a longer observation time is desirable to observe the
nontrivial effect of this weak noise. For a larger D, D = 0.37,
one can observe that noise can induce the sudden transitions
of SPPs between two different rotational directions. The inset
in Fig. 1(b) depicts two typical configurations of SPPs: vortex
with CW and CCW rotations. If D is increased to D = 0.40,
the noise-induced transitions become more frequent. Further
increasing D to D = 0.46, the value of L fluctuates around
zero, implying that the vortex pattern is destroyed by the strong
noise and the motion of SPPs become disordered.

In Fig. 2, we plot the steady values of L as a function of
D. To obtain the steady values, we start from 20 different
initial configurations chosen randomly, and run 2 × 106 time
steps, where the first 106 time steps are discarded and the
following 106 time steps are used to calculate the steady
value of L. In the presence of a weak noise, the absolute
value of L is always much larger than zero, implying that
the vortex pattern is stable and the system certainly falls into
either of two branches depending on initial configurations. By
increasing D, the vortex will be destroyed and the motion of
SPPs become disordered (L = 0) if D is larger than a critical
value Dc � 0.44. We also note that the fluctuation of L(t),
〈L(t)2〉 − 〈L(t)〉2 is maximal at D = Dc (see the dotted line
in Fig. 2), where 〈·〉 denotes the average over time. Moreover,
we have changed the number of particles from 40 to 180, and
found that the results are similar and the value of Dc is almost
unchanged. Therefore, in this paper D is set be less than Dc to
study noise-induced vortex reversal.

From Fig. 1, one can see that noise-induced reversal
events occur rarely and the average waiting time between
reversal events is very long, especially for the case of weak
noise. In this situation, conventional brute-force simulation
becomes highly inefficient. To overcome this difficulty, we will
use the FFS method of Allen and co-workers [33] to compute
the rate of vortex reversal and evaluate statistical properties
of the reversal path, which is the main purpose of the present
work.

The FFS method was designed to study rare events both
in and out of equilibrium. This method first defines an order
parameter to distinguish between the initial state A and the
final state B, and then uses a series of interfaces to force the
system from A to B in a ratchetlike manner. In this paper, it
is convenient to select L as the order parameter, and consider
the CW vortex as A and the CCW vortex as B without loss of
generality since these two states are equivalent in our model.
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We consider that the system is in state A if L < L0 and it is
in state B if L > Lm. A series of nonintersecting interfaces Li

(0 < i < m) lie between states A and B, such that any path
from A to B must cross each interface without reaching Li+1

before Li . Starting from the configuration of the CW vortex, we
first run a long-time simulation to give an estimate of the flux
�̄A,0 escaping from the basin of A and generate a collection
of configurations corresponding to crossings of interface L0.
The next step is to choose a configuration from this collection
at random and use it to initiate a trial run which is continued
until it either reaches L1 or returns to L0. If L1 is reached,
store the configuration of the end point of the trial run. Repeat
this step, each time choosing a random starting configuration
from the collection at L0. The fraction of successful trial runs
gives an estimate of the probability of reaching L1 without
going back into A, P (L1|L0). This process is repeated, step by
step, until LM is reached, giving the probabilities P (Li+1|Li)
(i = 1, . . . ,m − 1). Finally, we get the transition rate R of
vortex reversal,

R = �̄A,0P (Lm|L0) = �̄A,0

∏m−1

i=0
P (Li+1|Li), (4)

where P (LM |L0) is the probability of reaching Lm from L0

without going into A. For detailed descriptions of the FFS
method see Ref. [35].

By storing SPP configurations {�xi,�vi} (i = 1, . . . ,N) at
each interface of FFS sampling, one can identify the statistical
properties of the vortex reversal pathway. All results below are
obtained by averaging ten independent FFS samplings. In each
FFS sampling, 1000 configurations are stored at each interface
to analyze the statistical properties of the configurations. Due
to slow random drift of vortex as a whole, the positions
of center of mass for these 1000 configurations are slightly
different. In order to facilitate the analysis of radial features
of the configurations, all quantities are calculated in the
center-of-mass coordinate.

IV. RESULTS

In Fig. 3, we show the velocity field of SPP at six different
interfaces along the pathway of vortex reversal. The velocity
field is indicated by the arrows in Fig. 3, which is obtained
by averaging 1000 configurations of particles stored at each
FFS interface. Figures 3(a) and 3(f) show the velocity field
before and after the reversal, indicating that the system is
in stable vortex with CW and CCW rotation, respectively,
while Figs. 3(b)–3(e) show the intermediate processes of the
reversal. One can clearly observe that along the pathway of
vortex reversal the velocity field gradually changes its sign
from the periphery to the center of the vortex. That is to say,
vortex reversal first starts from peripheral particles and then
gradually to inner particles, and finally almost all particles
change original rotational directions.

Further information on the pathway of vortex reversal
is provided by the radial distributions of average angular
momentum L(r) and average angular velocity ω(r), where r is
the distance to the center of mass. In Fig. 4, we plot L(r) and
ω(r) for five different interfaces along the pathway of vortex
reversal. From the variations of L(r) and ω(r) with interfaces
one can observe the whole process of the vortex reversal.

FIG. 3. (Color online) The velocity field of SPPs at six different
FFS interfaces, corresponding to (a) L = −1.95, (b) L = −1.6,
(c) L = 0, (d) L = 0.25, (e) L = 0.4, and (f) L = 1.0, respectively.
The bar in (a) indicates unit length. Other parameters are N = 50 and
D = 0.30.

Before the reversal (L = −1.95) the values of L(r) and ω(r)
are always negative, irrespective of r . That is, the system is
in a stable vortex with CW rotation before the reversal. When
the reversal happens, for example, for L = 0, the values of
L(r) and ω(r) become positive for r > 1.8, while for r < 1.8
they are always negative. With increasing L this situation
further goes until any values of L(r) and ω(r) become positive.
Finally, the vortex rotates with CCW direction. Therefore, this
further validates that the property of vortex reversal is that the
reversal process starts from the periphery of the vortex. Also,
we calculate the radial distributions of density of particles and

FIG. 4. (Color online) (a) Radial distributions of average angular
momentum L(r) and (b) average angular velocity ω(r) at five different
interfaces along the pathway of vortex reversal: L = −1.95 (squares),
L = −1.0 (circles), L = 0.0 (triangles), L = 1.0 (diamonds), and
L = 1.95 (crosses). Other parameters are the same as those in Fig. 3.
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FIG. 5. (Color online) The distributions of angular momentum
Li for those particles with r ∈ [0.6,1.0] (squares), r ∈ [1.6,2.0]
(circles), and r ∈ [2.6,3.0] (triangles) at five different FFS interfaces:
L = −1.95 (a), L = −1.0 (b), L = 0.1 (c), L = 1.0 (d), and L =
1.95 (e). Other parameters are the same as those in Fig. 3.

the absolute value of velocity of particles, and find that they
do not have a significant difference with the interfaces L.

It is informative to analyze the statistical properties of
angular momentum of particles at different distances to the
center of mass. In Fig. 5, we show the distributions of
Li of particles at r ∈ [0.6,1.0] (squares), [1.6,2.0] (circles),
and [2.6,3.0] (triangles) at five different FFS interfaces:
L = −1.95 (a), L = −1.0 (b), L = 0.1 (c), L = 1.0 (d), and
L = 1.95 (e). An interesting observation is that along the
reversal pathway the distributions of Li change from unimodal
to bimodal shape. Before the reversal, the distribution of Li

for particles at each layer is unimodal. During the reversal, the
distributions spread to the right and become bimodal. With the
progress of the reversal, the relative heights of the two peaks for
the distributions vary until the vortex is totally reversed and the
distributions become unimodal again. Importantly, as shown
in Fig. 5, the loci of the two peaks are coincident with those
before and after the reversal. This indicates that all the particles
still maintain the rotational property during the process of the
reversal, and just adjust their rotational directions. The same
results can be also obtained by measuring the distribution of
the angular velocity.

Since the vortex reversal is closely related to a barrier-
crossing process, it is possible to identify the so-called critical

configurations at the top of the barrier. Similar to the definition
of critical nucleus for studying nucleation in a first-order
phase transition [36], the critical configurations are determined
when the so-called committor probability PB(i) is 0.5, where
PB(i) = ∏m−1

j=i P (Lj+1|Lj ) is easily computed by the FFS
sampling. The meaning of PB(i) is the probability of reaching
the B state before returning to the A state starting from the ith
FFS interface. Namely, if the system evolves from the critical
configurations, there is an equal probability of returning to the
CW or CCW vortex. If the rotational directions of the initial
and final states are, respectively, CW and CCW, we find that
L � 0.08 at the critical configurations, that is, the average
angular momentum of all particles is slightly larger than zero
at the critical configurations. By varying noise intensity D and
the number of particles N , the value is almost unchanged. On
the contrary, if we swap the rotational directions of the initial
and final states, L � −0.08 at the critical configurations holds
simply due to the rotation symmetry. The results in Fig. 5(c)
are very close to the critical configurations. Furthermore, we
should note that although the parameters used in Figs. 3–5 are
fixed at N = 50 and D = 0.30, detailed analysis for different
N and D has been also performed and the results about the
reversal pathway are qualitatively the same.

Another key question in vortex reversal concerns the
dependence of average rate R of the reversal on noise intensity
D and the number of particles N . In Fig. 6(a) we plot the
natural logarithm of the rate ln R as a function of the inverse
of D for different N varying from N = 40 to N = 180. The
value of D we use changes from D = 0.20 to D = 0.40. The
obtained value of R varies from 10−5 to 10−37 that spans as
much as 32 orders of magnitude. If we further increase N or
decrease D, simulation will be very time consuming so that
our computational power is out of reach. The maximal value
of D is set be less than but close to Dc. This is because, as
mentioned above, if D > Dc � 0.44 vortex pattern will be no
longer stable and thus vertex reversal makes no sense. The
result in Fig. 6(a) shows that ln R decreases linearly with 1/D.
Interestingly, the slope for each N differs and it is varied
nonmonotonically with N . Furthermore, this result indicates
that if our model contains no noise, i.e., the model recovers
to the original one in Ref. [18], it does not exhibit vortex
reversal, highlighting the nontrivial effect of noise. In Fig. 6(b)
we show ln R as a function of N for different D. Interestingly,
we find that R varies nonmonotonically with N . With the
increment of N , R first decreases and then increases, and then
decreases again. Thus, R has a local minima at N = 48 for
low D and at N = 50 for high D. We should note that, as
mentioned above, the vortex pattern is stable only if N is
finite. Therefore, the present results do not simply generalize
to the infinite-size limit. From Fig. 6(a), one may speculate
that there seems to be an effective nonequilibrium potential
for describing the collective transition in rotational directions.
The potential barrier between the CW vortex and the CCW
vortex is fixed if N is unchanged, such that the transition
rate follows classical Kramers’ law. On the other hand, the
nonmonotonic variation trend between R and N implies that
a dependence of the effective nonequilibrium potential on N

is nontrivial if it exists. However, understanding these results
from the view of theoretical analysis, if not infeasible, is at
least a complex task at present.
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FIG. 6. (Color online) The natural logarithm
of rate of vortex reversal ln R as a function of the
inverse of noise intensity 1/D for different SPP
number N (a) and as a function of N for different
D (b). The dashed lines in (a) are plotted by
linear fitting.

V. DISCUSSION AND CONCLUSIONS

The phenomenon of vortex reversal has been observed in a
recent experiment on a monolayer of vibrated polar disks [29].
The experiment showed that these particles can exhibit alter-
nating transitions between the CW and CCW vortex, and the
intermediate states between these transitions are not disordered
but obviously have the domain shape as the trace of vortex
configuration. This may share a similarity with our finding.
As shown in the above analysis for the intermediate states,
particles during the reversals are also not disordered but still
preserve the rotational property. Also, we expect that further
experiments can be performed for the scrutiny of the interme-
diate configurations of particles during reversals. Furthermore,
it would be interesting to compare our results with previous
findings on one-dimensional models, both experimentally and
theoretically, where a swarm of marching particles can sud-
denly switch the direction of motion due to noise [6,20,37,38].
First, our model is two dimensional such that the analysis for
particles at different layers of vortex during the reversals is
possible. As shown in this paper, the analysis is essential for
the understanding of these reversal events. Besides, our results
showed that the transition rate exhibits a complex dependence
on the number of particles, significantly different from the case
of one-dimensional models where the transition rate decreases
exponentially with the number of particles.

In summary, using a two-dimensional model of SPPs
interacting via a soft-core potential, we have investigated the
mechanism of noise-induced changes of a vortex pattern in
the rotational direction. By virtue of the FFS method we
analyze the statistical property and compute the rate of the
reversal. We find that the reversal process is hierarchical: the
process is initially inspired by the peripheral particles, and
those particles gradually drive more inner layers of particles
into reverse motion directions. On the other hand, we show that
the rate of the reversal decreases exponentially with the inverse
of noise intensity. Interestingly, the reversal rate depends
nonmonotonically on the number of SPPs and a local minimal
rate exists at a moderate number of particles. Our findings
may provide some new understanding on the transitions of
collective patterns of SPPs.
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[12] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet,
Phys. Rev. Lett. 75, 1226 (1995).

[13] J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995).
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[27] A. Czirók, E. Ben-Jacob, I. Cohen, and T. Vicsek, Phys. Rev. E

54, 1791 (1996).
[28] W.-J. Rappel, A. Nicol, A. Sarkissian, H. Levine, and W. F.

Loomis, Phys. Rev. Lett. 83, 1247 (1999).
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