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It has been recently reported that explosive synchronization transitions can take place in networks of

phase oscillators [G�omez-Garde~nes et al. Phys. Rev. Lett. 106, 128701 (2011)] and chaotic

oscillators [Leyva et al. Phys. Rev. Lett. 108, 168702 (2012)]. Here, we investigate the effect of a

microscopic correlation between the dynamics and the interacting topology of coupled FitzHugh-

Nagumo oscillators on phase synchronization transition in Barab�asi-Albert (BA) scale-free networks

and Erd€os-R�enyi (ER) random networks. We show that, if natural frequencies of the oscillations are

positively correlated with node degrees and the width of the frequency distribution is larger than a

threshold value, a strong hysteresis loop arises in the synchronization diagram of BA networks,

indicating the evidence of an explosive transition towards synchronization of relaxation oscillators

system. In contrast to the results in BA networks, in more homogeneous ER networks, the

synchronization transition is always of continuous type regardless of the width of the frequency

distribution. Moreover, we consider the effect of degree-mixing patterns on the nature of the

synchronization transition, and find that the degree assortativity is unfavorable for the occurrence of

such an explosive transition. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818543]

Recently, discontinuous or explosive transitions in com-

plex networks have received growing attention, such as

competitive percolation, cascading failures in interde-

pendent networks. Along this line, it was shown very

recently that explosive synchronization transitions can

take place in scale-free networks of phase oscillators and

chaotic oscillators. In this paper, we report a phenom-

enon of explosive synchronization transition on complex

neural networks. We show the positive correlation

between degrees and oscillation frequencies and their

heterogeneities are both necessary conditions for such an

explosive transition. Moreover, we study the effect of

degree-mixing patterns on the nature of the synchroniza-

tion transition and find the degree assortativity is unfav-

orable for the occurrence of such an explosive transition.

I. INTRODUCTION

Synchronization is an emerging phenomenon of an en-

semble of interacting dynamical units that is ubiquitous in

nature, such as neurons, fireflies, or cardiac pacemakers.1–3

Inspired by the seminal works of small-world networks by

Watts and Strogatz4 and scale-free networks by Barab�asi and

Albert (BA),5 synchronization on complex networks has

been widely studied.6–8 These studies have revealed that the

topology of a network has strong influences on the onset of

synchronization,9–13 path towards synchronization,14 and the

stability of the fully synchronized state based on linear

stability15–18 and basin stability.19 However, the continuous

nature of the synchronization phase transition is not affected

by the topology of the underlying network, even in heteroge-

neous scale-free networks.

Recently, explosive transition in complex networks has

received growing attention since the discovery of an abrupt

percolation transition in random networks20,21 and scale-free

networks,22,23 although some later studies claimed this tran-

sition is actually continuous but with unusual finite size

behavior.24–26 Subsequently, a first-order discontinuous

phase transition was found in the dynamics of cascading fail-

ures in interdependent networks,27–29 in contrast to the

second-order continuous phase transition found in isolated

networks. Along this line, very recently it was shown that ex-

plosive synchronization transitions can take place in scale-

free networks of phase oscillators30 and chaotic oscillators.31

The mechanism responsible for such discontinuous synchro-

nization transitions is the presence of a positive correlation

between the heterogeneity of the connections and the natural

frequencies of the oscillators. Further study on the model

used in Ref. 30 showed that phase synchronization transition

is of first order if degree distribution exponent c of scale-free

networks satisfies 2 < c < 3 and is of second order if c > 3,

while for c ¼ 3, a hybrid phase transition was found.32 The

correlation between nodes degrees and oscillators frequen-

cies can also lead to some other interesting phenomena. It

was recently reported that if the variability of nodes degree

is correlated with the width of the oscillator’s frequency dis-

tribution, the critical coupling strength is increased with the

strength of the correlation that is solely determined by the

mean degree and is almost independent of the underlyinga)Electronic mail: hzhlj@ustc.edu.cn
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network topology.33 It was also shown in Ref. 34 that the

liner degree-frequency correlations give rise to a universal

critical coupling strength for the onset of global synchroniza-

tion and a full phase-locking state. These studies open new

perspectives on the research of synchronization transitions of

other dynamical systems. However, the research on this topic

is still in its infancy and deserves more investigations.

In the present paper, we investigate the property of

phase synchronization transition of coupled FitzHugh-

Nagumo (FHN) oscillators in BA scale-free networks5 and

Erd€os-R�enyi (ER) random networks.35,36 It is shown that a

positive correlation between degrees and natural frequencies

of nodes can lead to a clear hysteresis loop in synchroniza-

tion diagram of BA networks and thus signals the occurrence

of an explosive synchronization transition in heterogeneous

networks. The positive correlation and a sufficient wide fre-

quency distribution are both necessary to induce such an ex-

plosive transition in BA networks. In more homogenous ER

networks, the synchronization transition is always continu-

ous no matter how wide the distribution is. Furthermore, we

consider the effect of degree-mixing patterns on the nature

of the synchronization transition. We find that the degree

assortativity is unfavorable for the occurrence of such an ex-

plosive transition.

II. MODEL

Let us consider a network of N coupled non-identical

FHN oscillators, a representative model of excitable systems,

such as neurons, wherein the dynamics of the ith oscillator is

described by the following equations:37

e _xi ¼ xi � x3
i � yi þ C

XN

j¼1

Aijðxj � xiÞ þ nðxÞi ðtÞ; (1)

_yi ¼ xi þ ai þ nðyÞi ðtÞ: (2)

The two dimensionless variables x and y are a voltage-like

and a recovery-like variable, or in the terminology of physi-

cal chemistry and semiconductor physics, an activator and

an inhibitor variable, respectively. The time scale ratio e is

much smaller than one (we here set e ¼ 0:01), implying x is

the fast and y is the slow variable. The parameter ai describes

the excitability of the ith unit. If jaij > 1, the system is excit-

able, while jaij < 1 implies that the system is oscillatory.

The elements of adjacency matrix of the network take

Aij ¼ 1 if nodes i and j are connected, and Aij ¼ 0 otherwise.

C is the coupling constant, and nðaÞi ðtÞ is Gaussian noise that

is independent for different units and satisfies hnðaÞi ðtÞi ¼ 0

and hnðaÞi ðtÞn
ðaÞ
j ðt0Þi ¼ 2Dadijdðt� t0Þ with noise intensity Da

and a 2 fx; yg.
To establish a microscopic correlation between the dy-

namics and the topological properties of nodes, we assume

that the natural frequency xi of the ith unit is an increasing

function of its degree ki, where ki ¼
P

j Aij is the number of

nodes that are adjacent to the node. Since the oscillation fre-

quency is a decreasing function of ai, we thus consider ai

decreases linearly with ki for simplicity, i.e.,

ai ¼ 0:99� d
ki � kmin

kmax � kmin

; (3)

where kmax and kmin are the maximum and minimum degrees

in the network, respectively. The factor d determines the

slope of the linear expression. The larger d is, the wider dis-

tribution of ai has, or equivalently, a wider frequency distri-

bution. Other parameters N ¼ 200; Dx ¼ 0; Dy ¼ 0:005, and

the average degree hki ¼ 6 are fixed in this paper unless oth-

erwise specified.

To characterize synchronization behavior among the N
oscillators, we first define the phase of the oscillator i as38

/iðtÞ ¼ 2p
t� sk

i

sk
i � skþ1

i

þ 2pk; (4)

where sk
i is the time of the kth firing of the oscillator i, which

is defined in simulation by threshold crossing of xiðtÞ ¼ 1:0
and y(t) being negative. Thus, the degree of phase synchroni-

zation can be measured by calculating r ¼ hj 1
N

PN
j¼1 ei/j ji,

where the vertical bars denote the module and the angle

brackets a temporal averaging. For completely unsynchron-

ized motion r ’ 0, while for fully synchronized state r ’ 1.

III. RESULTS

The synchronization diagram is obtained by performing

both forward and backward simulations. The former is done

by calculating stationary value of r as varying C from 0 to

0.06 in steps of 0.001, and using the final configuration of the

last simulation run as the initial condition of the next run,

while the latter is performed by decreasing C from 0.06 to 0

with the same step. Fig. 1 shows the results of r as a function

of C for different values of d in a single BA scale-free net-

work (left panels) and in a single ER random network (right

panels). It should be pointed out that for different networks

realizations, the qualitative results do not change except for

the slight drift of the transition points. For BA networks, one

can find that the nature of synchronization transition drasti-

cally changes with d. For d ¼ 0:1 (Fig. 1(a)), the results on

the forward and backward simulations coincide, implying that

the synchronization transition is continuous and of a second-

order type. Increasing d to d ¼ 0:3 (Fig. 1(b)), one can see

that as C increases r abruptly jumps from r ’ 0 to r ’ 1 at

C ¼ 0:044, which show that a sharp transition takes place for

the onset of synchronization. On the other hand, the curve cor-

responding to the backward simulations also shows a sharp

transition from the synchronized state to the incoherent one at

C ¼ 0:021. The two sharp transitions occur at different values

of C, leading to a strong hysteresis loop with respect to the de-

pendence of r on C. Such a feature indicates that an explosive

first-order synchronization transition arises in BA networks

due to the positive correlation between degrees and natural

frequencies. Further increasing d to d ¼ 0:9 (Fig. 1(c)), the

nature of first-order phase transition is still present, but the

area of the hysteresis loop becomes smaller. While for ER

random networks (Figs. 1(d)–1(f)), the forward and backward

simulations always coincide regardless of d, and thus such a

correlation does not induce an explosive synchronization

033124-2 Chen et al. Chaos 23, 033124 (2013)
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transition in ER networks. Therefore, a wide enough distribu-

tion of natural frequencies and degree heterogeneity are both

necessary ingredients for the occurrence of such an explosive

synchronization transition.

To show how the property of synchronization transition

in BA networks changes with d, we calculate the area of the

hysteresis loop in synchronization diagram as a function of

d, as shown in Fig. 2. Note that the area for each d is

obtained by averaging over at least 20 different networks

realizations. One can see that this area equals to zero when

d � 0:2, implying that the synchronization transition is of

second-order. When d is increased to d ¼ 0:25, this area

drastically changes to a non-zero value. That is to say, the

synchronization transition changes from a second-order type

to a first-order one at between d ¼ 0:2 and d ¼ 0:25. With

further increasing d, this area shows a nonmonotonic de-

pendence on d and a maximum area occurs at d ¼ 0:35. This

is consistent with the observation in Fig. 1.

To further analyze the change of the order of the syn-

chronization transition, we have calculated the average fre-

quencies xk of nodes with degree k (k 2 ½kmin; kmax�) along

the forward simulation, defined as

xk ¼
1

Nk

X
ijki¼k

/iðtþ TÞ � /iðtÞ
2pT

; (5)

where Nk is the number of nodes that have degree k, and

T � 1. By monitoring the variation of xk with C, one can

clearly observe that how the full synchronization state is

achieved. Using the same networks realizations as those in

Fig. 1, we show in Fig. 3 xk as a function of C. In Fig. 3(a),

we plot xk as a function of C in the BA network with

d ¼ 0:3. Before the synchronization happened, the average

frequencies xk for nodes with small degrees and large degrees

FIG. 1. Phase synchronization degree r as a function of the coupling strength C for different d in a BA scale-free network (left panels) and a ER random net-

work (right panels). (a) and (d) for d ¼ 0:1, (b) and (e) for d ¼ 0:3, and (c) and (f) for d ¼ 0:9. Squares (circles) in (a)–(f) mark the forward (backward) simula-

tions, as C is increased (decreased) in steps of C ¼ 0:001. Other parameters are N¼ 200, e ¼ 0:01; Dx ¼ 0; Dy ¼ 0:005, and the average degree hki ¼ 6.

FIG. 2. Area of hysteresis loop in the synchronization diagram of BA scale-

free networks as a function of d. Other parameters are the same as Fig. 1.
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increase monotonically, while for those nodes with intermedi-

ate degree xk strongly fluctuate between two transition points.

At C ¼ 0:044, nodes with each degree class abruptly oscillate

synchronously, which signals the explosive synchronization

shown in Fig. 1(b). For comparison, in Figs. 3(b) and 3(c) we

also plot xk as a function of C in the BA network with

d ¼ 0:1 and in the ER network with d ¼ 0:3, respectively.

One can see that those nodes with large degree first become

locked in frequencies while nodes with the small degree

classes achieve full synchronization later on. This indicates

that the synchronization transition is continuous.

It is instructive to consider the effect of noise intensity

on the explosive synchronization since noise is inevitable in

real neural networks. To the end, we consider how the area

of hysteresis loop of synchronization diagram changes with

noise intensity. We first turn off the noise term in Eq. (1) (let

Dx ¼ 0) and calculate the area as a function of Dy, as shown

in Fig. 4(a). With the increment of noise intensity, the hyster-

esis loop shrinks and the area becomes smaller. For

Dy � 0:0075, the hysteresis loop disappears and the synchro-

nization transition becomes continuous. In addition, we let

Dy ¼ 0:0 and calculate the area of hysteresis loop as a func-

tion of Dx, as shown in Fig. 4(b). The result is similar to that

in Fig. 4(a), but the system is more sensitive to noise in vari-

able x since the hysteresis loop disappears for

Dx � 4:5� 10�4. Therefore, the explosive transition phe-

nomenon persists for low noise and is destroyed when rela-

tively strong noise is present.

Next, we will illustrate whether the positive correlation

between degrees and natural frequencies is responsible for

the explosive synchronization. In Fig. 5, we show the results

of r as a function of C in BA networks, where the correlation

is destroyed by randomly shuffle the values of ai. One can

see that the above-mentioned explosive synchronization tran-

sition disappears and the transition becomes a second-order

type. Furthermore, we consider the case of negative correla-

tion between degrees and natural frequencies. To the end, we

set ai ¼ ð0:99� dÞ þ dðki � kminÞ=ðkmax � kminÞ while other

parameters keep the same as those in Fig. 1. The results for

d ¼ 0:1; 0:3, and 0.9 are also shown in Fig. 5 and these tran-

sitions are continuous. Therefore, we can safely conclude

that such an explosive synchronization transition arises due

to the positive correlation between degrees and natural

frequencies.

Lastly, we will consider the effect of degree-degree cor-

relations on the property of the synchronization transition. It

has been witnessed that many real networks display different

degree–mixing patterns.39 To measure the degree of the cor-

relation, Newman defined a degree-mixing coefficient as39

rk ¼
M�1

X
i
jiki � M�1

X
i

1

2
ðji þ kiÞ

� �2

M�1
X

i

1

2
ðj2

i þ k2
i Þ � M�1

X
i

1

2
ðji þ kiÞ

� �2
; (6)

where ji and ki are the degrees of nodes at the two ends of

the ith link with i ¼ 1;…;M (M is the number of total links

in the network). rk ¼ 0 indicates that there is no degree

FIG. 3. The average frequencies xk for different degrees k along the forward

simulation. (a) BA networks: d ¼ 0:3; (b) BA networks: d ¼ 0:1; (c) ER net-

works: d ¼ 0:3. The arrows in (a)–(c) indicate the decreasing order of

degrees. Other parameters are the same as Fig. 1.

FIG. 4. Area of hysteresis loop in syn-

chronization diagram of BA networks

as a function of noise intensity Dy for

Dx ¼ 0 (a) and as a function of Dx for

Dy ¼ 0 (b). d ¼ 0:3 and other parame-

ters are the same as Fig. 1.
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correlation, while rk > 0 ð< 0Þ indicates that a network is

assortatively (disassortatively) mixed by degree. A previous

study has revealed that degree–mixing pattern plays an im-

portant role on synchronization.40 To generate different

degree–mixing networks, we employ an algorithm proposed

in Ref. 41. At each elementary step, two links in a given net-

work with four different nodes are randomly selected. To get

an assortative network, the links are rewired in such a way

that one link connects the two nodes with the smaller degrees

and the other connects the two nodes with the larger degrees.

Multiple connections are forbidden in this process. Repeat

this operation until an assortative network is generated with-

out changing the node degrees of the original network.

Similarly, a disassortative network can be produced with the

rewiring operation in the mirror method. We start from BA

scale-free networks with a neutrally degree-mixing pattern,

and produce some groups of degree-mixing networks by per-

forming the above algorithm. Fig. 6(a) plots the synchroniza-

tion diagram for different rk at a fixed d ¼ 0:5. One can see

that for rk ¼ �0:3, the explosive synchronization transition

persists. For rk ¼ 0:1, the discontinuous nature of the transi-

tion does not change, but the area of hysteresis loop becomes

rather small. While for rk ¼ 0:2, the forward and backward

simulations coincide and the synchronization transition

becomes continuous. In Fig. 6(b), we plot the area of hyster-

esis loop as a function of d for different rk. We find that the

case for rk ¼ �0:3 is similar to that of rk ¼ 0:0. For rk ¼ 0:1
the area is larger than zero when d > 0:045 but its value is

very small and has only the order of 10�3. While for

rk ¼ 0:2, the area is always zero regardless of d, implying the

nature of the synchronization transition has been changed

essentially. Therefore, the degree-mixing patterns have a signif-

icant impact on the property of the synchronization transition.

For a disassortative network, the explosive nature of the transi-

tion appears if d is larger than a threshold value, while for an

assortative network whose degree-mixing coefficient rk is

larger than 0.2, the explosive transition is absent and the transi-

tion becomes continuous. As mentioned above, the synchroni-

zation diagrams in Fig. 6(a) are done for a single network

realization by adiabatically increasing and decreasing the cou-

pling parameter, and the results in Fig. 6(b) are obtained by

averaging over many different networks realizations. Since dis-

sortativity implies nodes with larger degrees tend to connect to

those nodes with smaller degrees, local star configurations are

abundant in a disassortative network. Thus, it seems to suggest

that the local star configurations are important for resulting in

such an explosive phenomenon. In addition, an important point

is that assortative networks make that nodes with similar degree

(and thus similar frequencies) are connected. This pattern

destroys the explosive synchronization transition.

IV. SUMMARY

In summary, we have studied the effect of a microscopic

correlation between degrees and natural frequencies of FHN

oscillators on the property of synchronization transition in

networks of BA and ER models. We find that, when there

exists the positive correlation between node degrees and os-

cillation frequencies and the width of frequency distribution

is larger than a critical value, a first-order synchronization

transition arises in BA networks. While in more homogene-

ous ER network, such an explosive transition does not

appear. Therefore, the positive correlation between degrees

and oscillation frequencies and their heterogeneities are both

necessary conditions for such an explosive phenomenon.

Moreover, we have shown the patterns of degree-degree cor-

relations have a significant impact on the nature of the syn-

chronization transition. In a disassortative network such an

explosive phenomenon persists, while in an assortative net-

work, the transition becomes continuous type if the degree of

assortative correlation is relatively large. Our results general-

ize previous findings in phase30 and chaotic oscillators31 to

relaxation oscillators with time-scale separation, and suggest

that the mechanism for generating the discontinuous syn-

chronization transition may be universal. In addition, an ex-

plosive transition may imply that the unsynchronized

FIG. 6. Effect of degree-degree corre-

lations on the property of the synchro-

nization transition. (a) Synchronization

diagram at d ¼ 0:5 for different

degree-mixing coefficients rk. (b) Area

of hysteresis loop in synchronization

diagram as a function of d for different

rk. rk ¼ 0:0 (black squares), rk ¼ �0:3
(red circles), rk ¼ 0:1 (green triangles),

and rk ¼ 0:2 (blue diamonds). Other

parameters are the same as Fig. 1.

FIG. 5. Synchronization diagram in BA scale-free networks without any cor-

relation and with the negative correlation between degrees and natural fre-

quencies. Other parameters are the same as Fig. 1.
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oscillation state can be metastable with respect to the full

synchronized oscillation state near the synchronization tran-

sition point.42 The dynamics of spontaneous synchronization

from the metastable state to the stable full synchronized state

without any change of system parameters may be interesting

and deserves further investigations.
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