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Abstract. Nucleation is an initiating process of a stable phase from a
metastable phase in a first-order phase transition. Taking the Ising model as
a paradigm, we investigate the dynamics of nucleation on complex networks and
focus on the role played by the heterogeneity of degree distribution on nucleation
rate. Using Monte Carlo simulation combined with forward flux sampling, we
find that for a weak external field the nucleation rate decreases monotonically as
degree heterogeneity increases. Interestingly, for a relatively strong external field
the nucleation rate exhibits a nonmonotonic dependence on degree heterogeneity,
in which there exists a maximal nucleation rate at an intermediate level of degree
heterogeneity. Furthermore, we develop a heterogeneous mean-field theory for
evaluating the free-energy barrier of nucleation. The theoretical estimations are
qualitatively consistent with the simulation results. Our study suggests that
degree heterogeneity plays a nontrivial role in the dynamics of phase transitions
in networked Ising systems.
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1. Introduction

Since many social, biological, and physical systems can be properly described by complex
networks, dynamics on complex networks have received considerable attention in the
last decade [1]–[4]. In particular, phase transitions on complex networks have been a
subject of intense research in the field of statistical physics and many other disciplines [5].
Owing to the heterogeneity in degree distribution, phase transitions on complex networks
are drastically different from those on regular lattices in Euclidean space. For instance,
degree heterogeneity can lead to a vanishing percolation threshold [6], the whole
infection of disease with any small spreading rate [7], the Ising model to be ordered
at all temperatures [8]–[10], the transition from order to disorder in voter models [11],
synchronization to be suppressed [12, 13] and different paths towards synchronization in
oscillator network [14], to list just a few. However, there is much less attention paid to the
dynamics of phase transition itself on complex networks, such as the nucleation process
in a first-order phase transition.

Nucleation is a fluctuation-driven process that initiates the decay of a metastable state
into a more stable one [15]. Many important phenomena in nature, like crystallization [16],
glass formation [17], and protein folding [18], are closely related to the nucleation process.
In the context of complex networks, the study of the nucleation process is not only of
theoretical importance for understanding how a first-order phase transition happens in
networked systems, but also may have potential implications in real situations, such as
the transitions between different dynamical attractors in neural networks [19], the genetic
switch between high- and low-expression states in gene regulatory networks [20, 21], and
opinion revolution [22] as well as language replacement [23, 24] in social networks.

Recently, we have made a tentative step in the study of the nucleation process of
the Ising model on complex networks, where we have identified nucleation pathways
using a rare-event sampling technique, such as nucleating from nodes with smaller
degree on heterogeneous networks [25] and a multi-step nucleation process on modular
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networks [26]. In addition, we identified a size-effect of the nucleation rate on mean-
field-type networks [25] and a nonmonotonic dependence of the nucleation rate on the
modularity of networks [26]. As mentioned above, degree heterogeneity has a significant
effect on the dynamics on complex networks. Therefore, a natural question arises: how
does degree heterogeneity affect nucleation of the Ising model on complex networks?
To answer this question, in this paper, we study the dynamics of nucleation on various
network models whose heterogeneity of degree distribution can be continuously changed by
adjusting a single parameter. We use Monte Carlo (MC) simulation combined with forward
flux sampling (FFS) to compute the nucleation rate and consider the effect of degree
heterogeneity on the rate. Since the critical temperature of the Ising model on uncorrelated
random networks increases with the heterogeneity of degree distribution [5], [8]–[10], one
may come to the intuitive conclusion that if both the temperature and external field are
fixed, the nucleation rate will decrease monotonically as degree heterogeneity increases.
Here, we show that such an intuition is not the case: the nucleation rate can change
monotonically or nonmonotonically with degree heterogeneity depending on the level of
driving force, i.e., the value of external field. For a weak external field, the nucleation rate
decreases monotonically with degree heterogeneity, whereas for a relatively strong external
field there exists a maximal nucleation rate corresponding to a moderate level of degree
heterogeneity. Furthermore, we present a heterogeneous mean-field theory for calculating
the free-energy barrier of nucleation. The theoretical results qualitatively agree with the
simulation ones.

2. Model and simulation descriptions

The Ising model in a network comprised of N nodes is described by the Hamiltonian

H = −J
∑
i<j

aijsisj − h
∑
i

si, (1)

where spin variable si at node i takes either +1 (up) or −1 (down). J(> 0) is the coupling
constant and h is the external field imposed on each node. The elements of the adjacency
matrix of the network take aij = 1 if nodes i and j are connected and aij = 0 otherwise.

The simulation is performed by standard Metropolis spin-flip dynamics, in which we
attempt to flip each spin once, on average, during each MC cycle. In each attempt, a
randomly chosen spin is flipped with the probability min(1, e−β∆E), where β = 1/(kBT )
with the Boltzmann constant kB, temperature T , and ∆E the energy change due to the
flipping process. We set J = kB = 1, h > 0 and T < Tc, where Tc is the critical temperature.
The initial configuration is prepared with a metastable state in which si = −1 for most of
the spins. The system will stay in that state for a significantly long time before undergoing
a nucleating transition to the thermodynamic stable state with most spins pointing up.

Since nucleation is an activated process that occurs extremely slowly, brute-force
simulation is prohibitively expensive. To overcome this difficulty, we will use a recently
developed simulation method, FFS [27]. This method allows us to calculate nucleation rate
and determine the properties of ensemble towards nucleation pathways. This method uses
a series of interfaces in phase space between the initial and final states to force the system
from the initial state A to the final state B in a ratchet-like manner. Before the simulation
begins, an order parameter λ is first defined, such that the system is in state A if λ < λ0 and
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Figure 1. The logarithm of the nucleation rate lnR as a function of the strength
of degree heterogeneity δERBA for h = 0.5 (a), h = 0.8 (b), and h = 1.0 (c). Other
parameters are N = 1000, the mean degree 〈k〉 = 6, and T = 2.5.

it is in state B if λ > λM . A series of nonintersecting interfaces λi (0 < i < M) lie between
states A and B, such that any path from A to B must cross each interface without reaching
λi+1 before λi. The algorithm first runs a long-time simulation which gives an estimate
of the flux Φ̄A,0 escaping from the basin of A and generates a collection of configurations
corresponding to crossings of interface λ0. The next step is to choose a configuration from
this collection at random and use it to initiate a trial run which is continued until it either
reaches λ1 or returns to λ0. If λ1 is reached, store the configuration of the end point of the
trial run. Repeat this step, each time choosing a random starting configuration from the
collection at λ0. The fraction of successful trial runs gives an estimate of the probability
of reaching λ1 without going back into A, P (λ1|λ0). This process is repeated, step by
step, until λM is reached, giving the probabilities P (λi+1|λi) (i = 1, . . . ,M − 1). Finally,
we get the nucleation rate R from A to B, which is the product of the flux Φ̄A,0 and the

probability P (λM |λ0) =
∏M−1
i=0 P (λi+1|λi) of reaching λM from λ0 without going into A.

In the present work, we define the order parameter λ as the total number of up-spins
in the network. The spacing between adjacent interfaces is fixed at three up-spins, but
the computed results do not depend on this spacing. The simulation results below are
obtained by averaging over at least five independent FFS samplings and ten different
network realizations.

3. Results

To study the effect of degree heterogeneity on nucleation, we first adopt a network model
proposed in [28]. The network model allows us to construct networks with the same mean
degree, interpolating from Erdo–Reǹyi (ER) graphs to Barabas̀i–Albert (BA) scale-free
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networks by tuning a single parameter δERBA. For δERBA = 0 one gets ER graphs with
a Poissonian degree distribution whereas for δERBA = 1 the resulting networks are SF
with P (k) ∼ k−3. Increasing δERBA from 0 to 1, the degree heterogeneity of the network
increases. Figure 1 shows the logarithm of the nucleation rate, lnR, as a function of
δERBA for three different external fields: h = 0.5, 0.8, and 1.0. For h = 0.5, lnR decreases
monotonically with δERBA, implying that degree heterogeneity is unfavorable for the
occurrence of nucleation events. Interestingly, for h = 0.8, lnR is no longer monotonically
dependent on δERBA: as degree heterogeneity increases, lnR first increases slowly until
δERBA = 0.5 and then decreases rapidly. Further increasing h to h = 1.0, lnR clearly
exhibits a nonmonotonic change with δERBA. That is, there exists a maximal nucleation
rate that occurs at a moderate strength of degree heterogeneity.

To understand the above simulation results, we shall give a heterogeneous mean-field
theory on complex networks for evaluating the nucleation barrier. First, we define mk as
the average magnetization of a node with degree k, i.e., mk = N−1

k

∑
i|ki=k

si, where Nk is
the number of nodes with degree k. Furthermore, for a network without degree correlation,
the probability that a randomly chosen nearest-neighbor node has degree k is kP (k)/〈k〉,
where P (k) = Nk/N is degree distribution and 〈k〉 =

∑
kkP (k) is the mean degree. Thus,

the interaction energy between a node with degree k and its neighboring nodes can be
expressed as −Jkmk

∑
k′k′P (k′)mk′/〈k〉. The total energy of the network can be written as

E = −1

2
J
∑
k

Nkkmk

∑
k′

k′P (k′)mk′

〈k〉
− h

∑
k

Nkmk

= −1
2
NJ〈k〉m′2 −Nhm, (2)

where

m′ =
∑
k

kP (k)mk

〈k〉
(3)

is the average magnetization of a randomly chosen nearest-neighbor node, and m =∑
kP (k)mk is the average magnetization of a randomly chosen node. Note that m′

differs from m in general. Special cases for which m′ = m are provided by k-independent
quantities mk = m. In particular, for the all-spin-down configuration with mk = −1 for
all k and for the all-spin-up configuration with mk = 1 for all k, one has m′ = m = −1
and m′ = m = 1, respectively.

Defining Sk as the entropy of a node with degree k, the total entropy of the network
is

S =
∑
k

NkSk = N
∑
k

P (k)Sk, (4)

with

Sk = −kB

[
1 +mk

2
ln

(
1 +mk

2

)
+

1−mk

2
ln

(
1−mk

2

)]
. (5)

Combining equations (2) and (4), we can get the expression of free energy, i.e., F = E−TS.
At the minimum and maximum points of free energy, we have ∂F/∂mk = 0, which

yields the mean-field equation of mk [5, 9],

mk = tanh [βh+ βJkm′] . (6)
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Figure 2. Theoretical results of −β∆F as a function of δERBA for h = 0.5 (a),
h = 0.8 (b), and h = 1.0 (c). Other parameters are the same as those in figure 1.

Substituting equation (6) into (3), we get

m′ =
∑
k

kP (k)

〈k〉
tanh [βh+ βJkm′] . (7)

Equation (7) is a self-consistent equation of m′ that can be numerically solved. In the
present settings, equation (7) has three solutions: m′−, m′0, and m′+, where m′± are stable
solutions and m′0 is unstable one. Inserting the three solutions of m′ into the right-hand
side of equation (6), we can obtain mk, and then get Eα, Sα and Fα (α =−, 0,+) according
to equations (2) and (4). Since h > 0, we have F0 > F− > F+, which gives the free-energy
barrier from metastable to stable states ∆F = F0−F−, and thus we estimate the nucleation
rate R ∼ exp(−β∆F ).

Theoretical results of −β∆F as a function of δERBA are shown in figure 2, where the
parameters are the same as those in figure 1. It is clear that the theoretical results are
qualitatively consistent with the simulation ones.

In order to check the generality of the above results, we shall calculate nucleation
rate on some other network models by both numerical simulations and theory. Firstly, we
construct a network with uniform degree distribution in which node degree is randomly
selected in the range [〈k〉 − δuni, 〈k〉+ δuni], where δuni is an integer between 0 and 〈k〉 − 1
that controls the strength of degree heterogeneity. The network is generated according
to the Molloy–Reed algorithm [29]. This construction eliminates the degree correlations
between neighboring nodes. Figure 3 shows the simulation and theoretical results, in which
the same phenomenon is also present: for weak external field the nucleation rate decreases
monotonically with degree heterogeneity, while for strong external field the nucleation rate
varies nonmonotonically with degree heterogeneity. Moreover, we construct a network with
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Figure 3. Simulation (left panels) and theoretical (right panels) results on
networks with uniform degree distribution. The external fields from top to bottom
are h = 1.0, 2.0, and 3.0, respectively. Other parameters are N = 1000, the mean
degree 〈k〉 = 10, and T = 3.

Gaussian degree distribution with fixed mean degree 〈k〉 and variance δgau. As shown in
figure 4, both the simulation and theoretical results again display the same phenomenon.

4. Summary and discussions

In summary, using the Ising model on complex networks we have shown how degree
heterogeneity affects the rate of nucleation. The main results of the present paper are
that for a weak external field the nucleation rate decreases monotonically as degree
heterogeneity increases, whereas for a relatively strong external field the nucleation
rate first increases and then decreases with the increment of degree heterogeneity.
Therefore, the nucleation rate can change monotonically or nonmonotonically with degree
heterogeneity depending on the value of the external field. The results are robust to
different network models, thereby verifying the generality of the results. Moreover, we
have developed the so-called heterogeneous mean-field theory for calculating the free-
energy barrier to nucleate and thus estimate the nucleation rate. The theory is effective
in qualitatively predicting the simulation results. Our findings indicate that degree
heterogeneity plays a nontrivial role in the nucleation events of the Ising model on complex
networks.
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Figure 4. Simulation (left panels) and theoretical (right panels) results on
networks with Gaussian degree distribution. The external fields from top to
bottom are h = 1.0, 2.0, and 3.0, respectively. Other parameters are N = 1000,
the mean degree 〈k〉 = 10, and T = 3.

It is possible to find some practical implications of the present results in more realistic
networked systems in which nucleation or nucleation-like phenomena are also important.
This is because, on the one hand, the Ising model and its variants have been successfully
used to understand social and biological problems [30]–[32]. In the social context, binary
spins can represent two opposite opinions, or competitive language features, the concept
of physical temperature corresponds to a measure of noise due to imperfect information
or uncertainty on the part of the agent, and the external field imitates the effect of mass
media, yielding a bias of the agents in favor of either state. In the biological context,
the binary states may correspond to a neuron being fired or not, or a gene being on
or off. Furthermore, physical temperature can be interpreted as stochastic fluctuations
at the cellular level, and the external field naturally represents external stimuli. On the
other hand, some practical problems in social networks can be interpreted by nucleation
processes such as revolutions of opinion [22, 33], changes in a language feature [23, 24]
and swings in business confidence [34]. There are also some examples in biological
networks related to nucleation processes such as the functional transition between different
dynamical attractors in neural networks [19] and the genetic switch between high- and
low-expression states in gene regulatory networks [20, 21]. Our findings imply that when
considering the role played by degree heterogeneity on such nucleation or nucleation-like
processes on real networks the strength of external field should be delicately involved.

In particular, we have noticed two recent works that addressed the question of how one
language is replaced by another language [23] and the question of how a new scientific idea
replaces the old one [35], respectively. Therein, by simulating theoretical models on diverse
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networks the authors have shown that both the rate of language change and the mean
spreading time of a new scientific idea strongly depend on the topology of the underlying
networks. These social phenomena are reminiscent of our study on the nucleation process
of the networked Ising model. We hope that our theoretical findings will provide useful
hints for future studies by empirical data and experiments.
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