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Identifying nucleation pathway is important for understanding the kinetics of first-order phase

transitions in natural systems. In the present work, we study nucleation pathway of the Ising model

in homogeneous and heterogeneous networks using the forward flux sampling method, and find

that the nucleation processes represent distinct features along pathways for different network

topologies. For homogeneous networks, there always exists a dominant nucleating cluster to which

relatively small clusters are attached gradually to form the critical nucleus. For heterogeneous

ones, many small isolated nucleating clusters emerge at the early stage of the nucleation process,

until suddenly they form the critical nucleus through a sharp merging process. Moreover, we also

compare the nucleation pathways for different degree-mixing networks. By analyzing the

properties of the nucleating clusters along the pathway, we show that the main reason behind the

different routes is the heterogeneous character of the underlying networks. VC 2013 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4790832]

Nucleation is essential for many dynamical processes on

real-world scenarios, such as crystallization, fractures,

glass formation, and protein folding. Since complex net-

works can model many real systems, in this contribution,

therefore, we show how local patterns of nucleation

emerge differently in homogeneous and heterogeneous

complex networks, driving the critical nucleus come into

being following different pathways. Furthermore, the

effects of degree correlation on nucleation pathway are

also studied. The dependence of the dynamics on the to-

pology is unveiled. This study provides a new perspective

and approach to understand many first-order phase tran-

sitions in natural and social systems.

I. INTRODUCTION

Nucleation is a fluctuation-driven process that initiates

the decay of a metastable state into a more stable one.1 It is

usually involved in first-order phase transitions and along

with growth of a new phase.2–4 Many important phenomena

in nature, including crystallization,5,6 fractures,7,8 glass for-

mation,9 and protein folding,10 to list just a few, are associ-

ated with nucleation. Despite much attention, many aspects

of nucleation processes in complex systems are still unclear

and deserve more investigation.

The Ising model is a paradigm for many phenomena in

statistical physics. It has also been widely used to study the

nucleation process. For instance, in two-dimensional lattices,

Allen et al. discovered that shear can enhance the nucleation

rate and the rate peaks at an intermediate shear rate.11 Sear

found that a single impurity may considerably enhance the

nucleation rate.12 Page and Sear reported that the existence

of a pore may lead to two-stage nucleation, and the overall

nucleation rate can reach a maximum level at an intermedi-

ate pore size.13 The nucleation pathway of the Ising model in

three-dimensional lattices has also been studied by Sear and

Pan.14,15 In addition, the Ising model has been frequently

used to test the validity of classical nucleation theory

(CNT).16–22 Nevertheless, all these studies are limited to reg-

ular lattices in Euclidean space.

Since many real systems can be properly modeled by

network-organized structure,23–25 it is thus an interesting

topic to explore nucleation process in complex networks.

Very recently, our group has studied nucleation dynamics on

scale-free (SF) networks26 and modular networks.27 In these

two papers, we mainly focused on the nucleation rate and

system size effects. We found that, for SF networks, the

nucleation rate decays exponentially with network size,

while the critical nucleus size increases linearly. For modular

networks, as the network modularity worsens the nucleation

undergoes a transition from a two-step to one-step process

and the nucleation rate shows a nonmonotonic dependence

on the modularity. As we know, network topology could

play an important role in the system’s dynamics, involving

not only the stationary properties but also the dynamical

pathways. For example, it was shown that network heteroge-

neity could drastically influence the path to oscillator syn-

chronization.28 Nevertheless, how network topology would

influence the nucleation pathway is still an open question.

Motivated by this, we will study the different roles of net-

work architectures in the formation of nucleating clusters,

which can reveal the nucleation pathways of the Ising model

in the underlying networks.

Since nucleation is an activated process, it can be

extremely slow. Therefore, direct simulations can take ex-

cessive amounts of time. To overcome this difficulty, in the

present work, we adopt the forward flux sampling (FFS)29a)Electronic address: hzhlj@ustc.edu.cn.
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approach proposed recently, which is efficient and easy to

implement to study rare events. We employ Erd€os-R�enyi

(ER) and SF networks as the paradigm of homogeneous and

heterogeneous networks respectively. By using FFS, we

obtain lots of configurations at each interface along the

nucleation pathway. From these configurations we scrutinize

and compare the nucleating clusters in ER and SF networks.

It is found that the processes of forming the critical nucleus

are qualitatively different between the two cases of networks.

For the former, a dominant cluster arise first, and groups

smaller clusters gradually, while for the latter, many small

clusters emerge at first and then abruptly turn into the critical

nucleus. Interestingly, both the cluster size distributions fol-

low power-law distributions and the slopes are nearly the

same at early nucleation stage.

The paper is organized as follows. Section II presents

the details of our simulation model and the numerical meth-

ods we employ to sampling the nucleation pathway. In Sec.

III, the numerical results are compared for SF networks and

ER ones, as well as for different degree-mixing networks. A

brief summary and discussion are given in Sec. IV.

II. MODEL AND METHOD

A. Network-organized Ising model

We consider the Ising model on complex networks con-

sisting of N nodes. Note that there exists a number of simula-

tions and analytical results for the Ising model in ER and SF

networks.30–32 Each node is endowed with a spin variable si

that can be either þ1 (up) or �1 (down). The Hamiltonian of

the system is given by

H ¼ �J
X
i< j

Aijsisj � h
X

i

si; (1)

where J is the coupling constant and h is the external mag-

netic field. For convenience, we set J ¼ 1 in the following

discussions. The elements of the adjacency matrix of the net-

work take Aij ¼ 1 if nodes i and j are connected and Aij ¼ 0

otherwise. The degree, that is the number of neighboring

nodes, of node i is defined as ki ¼
PN

j¼1 Aij.

The system evolves in time according to single-spin-flip

dynamics with Metropolis acceptance probabilities,33 in

which we attempt to flip each spin once, on average, during

each Monte Carlo (MC) cycle. In each attempt, a randomly

chosen spin is flipped with the probability minð1; e�bDEÞ,
where b ¼ 1=ðkBTÞ with kB being the Boltzmann constant

and T is the temperature, and DE is the energy change due to

the flipping process. In the absence of an external magnetic

field, the system undergoes an order-disorder phase transi-

tion at the critical temperature. Above the critical tempera-

ture, the system is disordered where up- and down-pointing

spins are roughly equally abundant. Below the critical tem-

perature, the system prefers to be in either of the two states:

one state with predominantly up spins, and the other with

almost down spins. In the presence of a small external field,

one of these two states becomes metastable, and if initiated

predominantly in this metastable state, the system will

remain for a significantly long time before it undergoes a

nucleation transition to the thermodynamically stable state.

We are interested in the pathways for this transition.

B. FFS method

The FFS method has been successfully used to calculate

rate constants and transition paths for rare events in equilib-

rium and nonequilibrium systems.11–13,29,34,35 For clarity, we

describe the method again here, together with some relevant

details with our work. This method uses a series of interfaces

in phase space between the initial and final states to force the

system from the initial state A to the final state B in a ratchet-

like manner. Before the simulation begins, an reaction coor-

dinate k is first defined, such that the system is in state A if

k < k0 and it is in state B if k > kM. A series of nonintersect-

ing interfaces ki ð0 < i < MÞ lie between states A and B,

such that any path from A to B must cross each interface

without reaching kiþ1 before ki. The algorithm first runs a

long-time simulation which gives an estimate of the flux

escaping from the basin of A and generates a collection of

configurations corresponding to crossings of interface k0.

The next step is to choose a configuration from this collec-

tion at random and use it to initiate a trial run which is con-

tinued until it either reaches k1 or returns to k0. If k1 is

reached, the configuration of the end point of the trial run is

stored. This process is repeated, step by step, until kM is

reached. For more detailed descriptions of the FFS method

please see Ref. 36.

In this work, we will use FFS to study nucleation path-

ways of the equilibrium phase from the metastable spin

phase. Specifically, we let h > 0 and start from an initial

state with si ¼ �1 for most of the spins. We define the order

parameter k as the total number of up spins in the network.

The spacing between adjacent interfaces is fixed at 3 up

spins. We perform 1000 trials per interface for each FFS

sampling, from which at least 200 configurations are saved

in order to investigate the statistical properties along the

nucleation pathway. The results are obtained by averaging

over 10 independent FFS samplings and 50 different network

realizations.

III. NUMERICAL RESULTS

A. Uncorrelated networks

In what follows, we employ a Barab�asi-Albert (BA) SF

network, whose degree distribution follows a power law

PðkÞ � k�c with the scaling exponent c ¼ 3,37 and the well-

known ER random network.38

In Figure 1, we present schematically the evolution of

local nucleating clusters in ER and SF networks at different

stages (for clarity only show 100 nodes). Here, a nucleating

cluster is defined as the component of connected nodes with

up spins. Qualitatively, it shows distinct features along

nucleation stages. In the ER case, there always exists a domi-

nant cluster, which groups smaller ones gradually. While for

SF networks, no dominant cluster appears at the early stage,

but then a giant cluster emerges suddenly. This demonstrates

that nucleation follows different pathways on ER and SF

013112-2 Shen et al. Chaos 23, 013112 (2013)
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networks, indicating that heterogeneity of the network topol-

ogy may play an important role.

To further elucidate detailed characteristics along the

nucleation pathway, we use FFS to generate configurations

and perform detailed analysis on the nucleating clusters,

including the largest cluster size, average degree of the clus-

ter nodes, the number of clusters and cluster size distribution.

According to CNT, there exists a critical nucleus size kc of

the new phase, above which the system grows rapidly to the

new phase. Herein, we mainly focus on the nucleation stage

where k < kc. In our simulation, we determine kc by compu-

tation of the committor probability PB, which is the probabil-

ity of reaching the thermodynamic stable state before

returning to the metastable state. As commonly reported in

the literature,15,21 the critical nucleus appears at PBðkcÞ
¼ 0:5. Since kc are different for different networks, we thus

introduce k=kc as the control parameter.

For consistent comparison, we introduce Smax as the ra-

tio of the size of the largest nucleating cluster to the total

number of up spins, and plot Smax (averaged over the ensem-

ble at each interface) as a function of k=kc in Figure 2.

Clearly, one can see that Smax for ER networks is always

larger than that for SF ones. Specifically, at k=kc ¼ 0:5, Smax

is already more than 70% for ER networks, while it is only

about 30% for SF ones, as shown by the dashed gray lines in

Figure 2. But when k=kc ¼ 1 they almost tend to 100%

together.

To show our results more explicitly, we investigate the

average degree Kn of the nodes inside the nucleating clusters,

and plot Kn as a function of k=kc in Figure 3. As shown, Kn

increases monotonically with k=kc for both ER and SF net-

works, which means the new phase tends to grow from those

nodes with smaller degrees. For ER networks, Kn grows fast

at the very beginning following by a relatively slow increas-

ing. For SF networks, Kn increases slowly at first and jumps

sharply when approaching the critical nucleus. Such a sce-

nario is consistent with Figures 1 and 2.

To better understand the aforementioned differences, we

present the number Ns of the nucleating clusters as a function

of k=kc in Figure 4(a). We observe that Ns non-

monotonically depends on k=kc and the numbers of clusters

in SF networks are always more than that in ER ones. On the

FIG. 1. Typical nucleating clusters for several values of k for the two different topologies studied (ER and SF). These shown networks contain 100 nodes and

4 mean degree, in order to have a sizeable picture of the system. Up spins and down spins are indicated by blue and yellow circles, respectively.

FIG. 2. The relative size Smax of the largest cluster as a function of k=kc.

Parameters are N¼ 1000, the average network degree K¼ 6, h¼ 0.5,

T=Tc ¼ 0:3; k0 ¼ 130, and kM ¼ 880.

FIG. 3. Average degree Kn of new phase nodes as a function of k=kc. Other

parameters are the same as in Fig. 2.

013112-3 Shen et al. Chaos 23, 013112 (2013)
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other hand, Ns for both networks approach the same magni-

tude near the formation of critical nucleus, but it decreases

much more sharply in SF networks which is also consistent

with the picture shown in Figures 1 to 3. In Figure 4(b), the

cluster size distributions P(s) for k=kc ¼ 0:2 and 0.3 are

shown. Interestingly, P(s) follow apparent power-law distri-

butions in the small size range for both types of networks,

and in addition, the exponents are nearly equivalent for the

same k=kc. The power law breaks in the large size range,

where large clusters dominate.

The above results can be qualitatively understood in

terms of CNT. CNT assumes that the formation of a nucleus

lies in two competing factors: the bulk energy gain of creat-

ing a new up spin which favors the growth of the nucleus,

and the interfacial energy cost, an opposing factor, which is

due to the creation of new boundary links between up and

down spins. That is, the change of free energy �F may be

written as �FðkÞ ¼ �2hkþ rk, where r denotes the effec-

tive interfacial free energy, which mainly depends on the av-

erage number of boundary links that an up-spin node has.

Obviously, a node with more boundary links is more difficult

to change its spin state. For SF networks, it is thus always

easier for the leaf nodes with small degrees to change state

than the hubs with large degrees. Since the degree distribu-

tion follows power-law, there exist a lot of hubs with inter-

mediate degrees, as well as a few hubs with very large

degrees. Usually, many leaf nodes are connected to relatively

small hubs, which are further connected to large hubs. There-

fore, only small nucleating clusters, consisted of leaf nodes

and small hubs, can form at the early stage of the nucleation

process. These small clusters are either away from each other

on the network or separated by those crucial hubs with very

large degrees. In the final stage of the nucleation, once the

crucial hubs connecting these small clusters change their

states, a giant nucleation cluster will emerge abruptly. This

picture is consistent with those results shown in the above

figures. For ER networks, however, the degree distribution

follows Poisson distribution and no crucial hub exists, such

that those new-formed clusters are usually connected to-

gether and one would not expect a sharp increase in the clus-

ter size, which is observed in SF networks.

B. Degree correlated networks

It is worthy noting that the above numerical demonstra-

tions are carried out on degree uncorrelated networks. As we

know, in real-world networks, degree correlation is an ubiqui-

tous feature. For instance, social networks show that nodes

with large degrees tend to connect together, a property referred

to as “assortative mixing”.39 In contrast, many technological

and biological networks show “disassortative mixing,” i.e.,

connections between high-degree and low-degree nodes are

more probable.40,41 Previous studies showed that correlations

may play important roles in network dynamics.39–43 To

measure the degree of the correlation, in Ref. 39 Newman

introduced a degree-mixing coefficient

r ¼
m�1

X
i
jiki � m�1

X
i
ðji þ kiÞ=2

h i2

m�1
X

i
ðj2

i þ k2
i Þ=2� m�1

X
i
ðji þ kiÞ=2

h i2
: (2)

Here m is the total number of edges in the network, ji and ki

are the degrees of the two end-nodes of the i-th edge. r is

zero for networks with no degree-correlation, such as BA-SF

networks, and positive or negative for assortative or disassor-

tative mixing networks, respectively.

In the following, we will show that the effects of

degree-degree correlation on the nucleation pathways. We

first generate a regular SF network by using the BA model37

with power-law degree distribution PðkÞ � k�3. Then using

the algorithm as proposed in Ref. 39, we convert this uncor-

related SF network into a correlated one.

Figure 5 displays the relative Smax, Kn, Ns, and the aver-

age size of nucleating cluster hSi as a function of k=kc for

three different degree-mixing networks. It is shown that, the

four quantities exhibit different behaviors for different

degree-mixing cases. First, Smax in assortative mixing net-

work grows faster than the others in the early nucleation

stage, and then it increases slower, as shown in Figure 5(a).

Second, the jump of Kn in assortative network is sharper than

that in uncorrelated network at the critical nucleus forming,

while for disassortative network it becomes gradually, as

shown in Figure 5(b). Third, Ns in disassortative mixing net-

work is the largest (shown by the solid blue line in Figure

5(c)) but in assortative one the smallest. Lastly, hSi in assor-

tative network is much larger than that in the others, espe-

cially, it is smallest for disassortative network. As mentioned

above, nucleation always starts from nodes with smaller

degree, and nodes with higher degree are more stable. There-

fore, the high-degree nodes in a assortative network, which

FIG. 4. (a) The number Ns of nucleating clusters as a function of k=kc. (b)

Size distribution P(s) of nucleating clusters, on a log-log scale, s denote the

size of nucleating clusters. Other parameters are the same as in Fig. 2.
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preferring to connect together, always hard to flip. Once

these connected hubs flip together, the nucleating cluster

increases explosively, which is shown by the steep jump in

Figures 5(b) and 5(d). While for disassortative networks,

wherein the low-degree nodes separate the high-degree

nodes, the hubs does not flip simultaneously, so the nucleat-

ing cluster grows gradually.

IV. DISCUSSION AND CONCLUSIONS

The nucleation phenomenon is closely related to the front

propagation in bistable reaction-diffusion systems. In a very

recent paper,44 Kouvaris et al. have studied the traveling and

stationary patterns in bistable one-component systems placing

on various networks. They showed nodes with small degrees

favor the fronts propagation and the fronts propagate smoothly

in the ER (homogeneous) networks, whereas in the SF (heter-

ogeneous) networks the fronts first propagate to nodes with

small degrees and when a critical number of such nodes is

activated, the front spreads rapidly in the rest of the system.

This rapid change in the SF networks seems to share similar-

ities with the present results of nucleation in the Ising model.

However, Barth�elemy et al.45 revealed a different mechanism

about the propagation of infections in heterogeneous net-

works. The infection first affects the hubs and next it invades

rapidly the other nodes, affecting progressively the nodes with

decreasing degrees. This means that nodes with smaller

degrees will change their state to infected later. This mecha-

nism seems to be opposite to the present one in this paper, but

the rapid behavior still exists in the SF networks. Furthermore,

we should note that in our previous work, we mainly investi-

gated the effect of network size on nucleation size and the

size of critical nucleus. While in the present study, we focus

on the identification of the pathway of nucleating clusters on

diverse networks that is equally important aspect of nucleation

phenomenon.

In summary, we have studied nucleation pathways of the

Ising model with Metropolis spin-flip dynamics in ER and SF

networks using the FFS method. Concerning the former, there

always exists a dominant cluster which groups small clusters

gradually until the critical nucleus is formed; while concern-

ing the latter, many isolated small clusters grow separately

which suddenly merge together into the critical nucleus. We

have performed detailed analysis involving the nucleating

clusters along the nucleation pathway, including the cluster

size as well as its distribution, the mean degree inside the clus-

ter, and so on, to further demonstrate the above scenario. In

addition, the nucleation pathways for different degree-mixing

networks are also compared. The distinct nucleation pathways

further emphasize the very important role of network topol-

ogy. Our study may provide a better understanding of how

first-order phase transitions take place on complex networks,

which could be of great importance not only for physical sys-

tems but also for social and biological networks.
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