
J. Chem. Phys. 138, 204102 (2013); https://doi.org/10.1063/1.4801331 138, 204102

© 2013 AIP Publishing LLC.

Kinetics of molecular transitions with
dynamic disorder in single-molecule pulling
experiments
Cite as: J. Chem. Phys. 138, 204102 (2013); https://doi.org/10.1063/1.4801331
Submitted: 10 February 2013 . Accepted: 26 March 2013 . Published Online: 23 May 2013

Yue Zheng, Ping Li, Nanrong Zhao, and Zhonghuai Hou

ARTICLES YOU MAY BE INTERESTED IN

Stretching of single poly-ubiquitin molecules revisited: Dynamic disorder in the non-
exponential unfolding kinetics
The Journal of Chemical Physics 140, 125102 (2014); https://doi.org/10.1063/1.4869206

Transition paths in single-molecule force spectroscopy
The Journal of Chemical Physics 148, 123309 (2018); https://doi.org/10.1063/1.5004767

Distance fluctuation of a single molecule in Lennard-Jones liquid based on generalized
Langevin equation and mode coupling theory
The Journal of Chemical Physics 140, 154109 (2014); https://doi.org/10.1063/1.4870824

https://images.scitation.org/redirect.spark?MID=176720&plid=1401534&setID=378408&channelID=0&CID=496958&banID=520310234&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=ed5dd4029e63a2f75704dfd96619305ac85f9c8d&location=
https://doi.org/10.1063/1.4801331
https://doi.org/10.1063/1.4801331
https://aip.scitation.org/author/Zheng%2C+Yue
https://aip.scitation.org/author/Li%2C+Ping
https://aip.scitation.org/author/Zhao%2C+Nanrong
https://aip.scitation.org/author/Hou%2C+Zhonghuai
https://doi.org/10.1063/1.4801331
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4801331
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.4801331&domain=aip.scitation.org&date_stamp=2013-05-23
https://aip.scitation.org/doi/10.1063/1.4869206
https://aip.scitation.org/doi/10.1063/1.4869206
https://doi.org/10.1063/1.4869206
https://aip.scitation.org/doi/10.1063/1.5004767
https://doi.org/10.1063/1.5004767
https://aip.scitation.org/doi/10.1063/1.4870824
https://aip.scitation.org/doi/10.1063/1.4870824
https://doi.org/10.1063/1.4870824


THE JOURNAL OF CHEMICAL PHYSICS 138, 204102 (2013)

Kinetics of molecular transitions with dynamic disorder in single-molecule
pulling experiments

Yue Zheng,1 Ping Li,1 Nanrong Zhao,1,a) and Zhonghuai Hou2,b)

1College of Chemistry, Sichuan University, Chengdu 610064, China
2Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology
of China, Hefei, Anhui 230026, China

(Received 10 February 2013; accepted 26 March 2013; published online 23 May 2013)

Macromolecular transitions are subject to large fluctuations of rate constant, termed as dynamic
disorder. The individual or intrinsic transition rates and activation free energies can be extracted from
single-molecule pulling experiments. Here we present a theoretical framework based on a generalized
Langevin equation with fractional Gaussian noise and power-law memory kernel to study the kinetics
of macromolecular transitions to address the effects of dynamic disorder on barrier-crossing kinetics
under external pulling force. By using the Kramers’ rate theory, we have calculated the fluctuating
rate constant of molecular transition, as well as the experimentally accessible quantities such as the
force-dependent mean lifetime, the rupture force distribution, and the speed-dependent mean rupture
force. Particular attention is paid to the discrepancies between the kinetics with and without dynamic
disorder. We demonstrate that these discrepancies show strong and nontrivial dependence on the
external force or the pulling speed, as well as the barrier height of the potential of mean force.
Our results suggest that dynamic disorder is an important factor that should be taken into account
properly in accurate interpretations of single-molecule pulling experiments. © 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4801331]

I. INTRODUCTION

Single-molecule pulling experiment is brilliantly de-
signed to directly probe the intrinsic kinetic information of
key processes in the living cell. This manipulation method has
been intensively applied to the fundamental understanding of
the inner world of molecular interactions in a wide variety
of biological problems, ranging from the mechanical proper-
ties of protein unfolding1–3 and ligand dissociation4, 5 to the
dynamics associated with enzymatic catalysis.6, 7 Such exper-
iments, at a constant speed or at a constant force, allow mon-
itoring of the response of a single biomolecule to the exter-
nal pulling force F, and therefore, can directly measure the
force-dependent rate coefficient k(F) of the system. In order
to extract from the experimental data the intrinsic kinetic in-
formation about the apparent rate and free-energy landscape
in the absence of loading force, two approaches so far have
been widely adopted. One is the celebrated phenomenologi-
cal Bell’s formula8 which scales k(F) with the exponential of
F according to kBell(F) = k0exp (βFx‡), where β−1 = kBT with
kB being Boltzmann’s constant and T the absolute tempera-
ture. The intrinsic reaction rate constant k0 and the distance
between the free-energy minimum and the transition-state x‡

are parameters of the system in the absence of the applied
force. This formula is proven to be accurate only for suffi-
ciently low forces.9 Another approach is the application of
Kramers’ theory based on Langevin equation description9–11

to study the rate of rupture in the presence of pulling. As a
result, it provides a generalization of Bell’s formula which
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can reveal richer information about not only k0 and x‡, but
also the apparent free-energy of activation �G‡. In this micro-
scopic interpretation of kinetics, pulling direction is assumed
to be in accordance with the reaction coordinate of molecular
transition, and the transition process is treated as a Brown-
ian motion on the potential of mean force along this coor-
dinate. The underlying barrier crossing process is assumed
empirically on an ad hoc basis, to be Markovian governed
by Langevin dynamics, resulting in an ever constant reaction
rate.

Nevertheless, proteins are complex systems with many
degrees of freedom and motions on a wide range of time
scales, hence their biological reactions often exhibit dy-
namic disorder (DD)12 with fluctuating rate. In particular, it
has been recently found that the distance between a donor
and an acceptor of electron transfer within a single pro-
tein molecule undergoes subdiffusion exhibiting typically
non-Markovian characteristics of long-time memory.13 Mean-
while, the enzymatic rate constants of single molecules are
found to have large-amplitude fluctuations over a broad range
of time scales.14, 15 The connection between fluctuations in
protein conformation and those in reaction rate has also been
investigated.16–18 Taking these facts into account, the pulling
coordinate, e.g., the end-to-end distance of a biopolymer,19

which is in general in accordance with conformation co-
ordinate, might be subject to subdiffusion, generating DD
of the molecular transitions under pulling. However, most
recent works on the analysis and interpretation of single-
molecule pulling experiments were based on normal diffu-
sion assumption9–11 and thus did not account for the non-
Markovian nature of conformational changes. Therefore, it
is interesting to ask how the DD effects, resulting from
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subdiffusion of the conformation coordinate, would influence
the kinetics associated with the pulling experiments.

To this end, in the present paper, we adopt a gener-
alized Langevin equation (GLE) with fractional Gaussian
noise (fGn) to describe the kinetics of the pulling coordinate.
Compared with the fundamental Zwanzig’s direct approach,20

which assumes the fluctuating rate constant to be phenomeno-
logically dependent on time-varying control parameters, GLE
facilitates incorporating directly the subdiffusive nature of
pulling coordinate, introduced via a power-law friction ker-
nel K(t) ∼ t−γ with γ < 1, into the resulting DD of reaction
rate.17, 18 By using the Kramers’ rate theory, we analytically
calculate the fluctuating rate constants of molecular transi-
tion, as well as the experimentally accessible quantities such
as the force-dependent mean lifetime, the rupture force dis-
tribution, and the speed-dependent mean rupture force. The
discrepancies between the kinetics with DD and that without
DD are particularly elaborated. We found that these discrep-
ancies show strong and nontrivial dependence on the external
force or the pulling speed. Our results therefore suggest that
DD might be an important factor that should be taken into ac-
count in accurate interpretations of single molecular pulling
experiments.

The remainder of the paper is organized as follows. In
Sec. II, we introduce our model and method based on GLE
and Kramers’ rate theory. The barrier crossing rate, the mean
lifetime at constant force, the rupture force distribution at con-
stant pulling speed, as well as the relevant kinetic quantities
will be explicitly derived. In Sec. III, we numerically calcu-
late the specific results for two cases with and without DD.
The DD effect will be specifically elucidated. Section IV con-
cludes the paper.

II. MODEL AND METHOD

Force-induced biomolecular transition involves a vast
number of degrees of freedom both of the molecule be-
ing pulled and of the surroundings. To make it a tractable
problem, the instantaneous configuration of the molecule is
coarse-grained by a single variable x(t), for example, the
end-to-end distance of the biopolymer chain. Moreover, the
pulling coordinate that is acted on by force F is assumed
to be in accordance with the reaction coordinate of config-
urational change in most cases.9–11, 21 It is worth noting here
that this simple one-dimensional (1D) scenario only applies if
the dynamics along the pulling coordinate x(t) is slower than
that along any other coordinate. In the case of more complex
biomolecules where the pulling coordinate x(t) might not be a
good reaction coordinate, higher-dimensional approach may
be considered.22 In the present paper, however, for simplicity,
we limit ourselves to 1D description. We assume the dynam-
ics of x(t) is governed by the following GLE:

m
d2x(t)

dt2
= −

∫ t

0
dt ′K(t − t ′)

dx(t ′)
dt ′

− ∂U (x, F )

∂x
+ θ (t),

(1)

where m is the reduced mass of the particle, U(x, F) is the
potential of mean force in the presence of force F, θ (t) is

the random fluctuating force originating from the bath ther-
mal motions. The friction kernel K(t) is related to θ (t) by the
fluctuation-dissipation theorem23

〈θ (t)θ (t ′)〉 = β−1K(|t − t ′|), (2)

with 〈 · 〉 denoting trajectory averaging.
Equation (1) is the starting point for the treatment of con-

formational fluctuations24 and barrier crossing problem.17 In
these works, this equation is simplified further by neglecting
the inertial contribution term, which is generally valid if the
friction is high. This actually corresponds to an overdamped
limit, which will be adopted here as well. The neglect of iner-
tia in Eq. (1) leads to

∂U (x, F )

∂x
= −

∫ t

0
dt ′K(t − t ′)

dx(t ′)
dt ′

+ θ (t). (3)

As a free-energy surface of an applied force, U(x, F) is a
combination of a bare potential U0(x) and a force modification
term, reading

U (x, F ) = U0(x) − Fx, (4)

where we choose U0(x) a single-well free-energy surface in a
specific linear-cubic form,11

U0(x) = 3

2
�G‡x/x‡ − 2�G‡(x/x‡)3, (5)

which is characterized by a barrier height �G‡, a distance x‡

between native state (well) and transition state (barrier), and
an identical harmonic frequency ω in both well and barrier
regions. According to Eq. (5), mω2 = 6�G‡/x‡2. Two situ-
ations will be considered in this paper: F is a constant, and
F grows linearly with time t at a constant pulling speed V

as F (t) = V t . It is assumed that under an external loading,
U(x, F) keeps its shape but is tilted relative to the natural
profile. For convenience, we introduce a force correction fac-
tor ε(F ) = √

1 − F/Fc, where Fc = 3�G‡/2x‡ is the critical
force at which the barrier disappears. Permissible values of
the force are limited by Fc. Figure 1 depicts the bare free-
energy surface U0(x) and the force-modified free-energy sur-
face U(x, F). As can be seen, due to the effect of F, the barrier

x

U
(x

)

ΔG‡
ω2 (F )

U(x,F )

U0(x)

x‡

−x‡
2

x‡ (F )
2

x‡
2

ω2

ΔG‡ (F )3

−x‡ (F )
2

x‡ (F )

FIG. 1. The free energy profile with and without external force. See the con-
text for details.
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height and the well-barrier distance are decreased according
to �G(F) = �G‡ε(F)3 and x‡(F) = x‡ε(F), respectively. In
addition, the frequency at well and barrier is reduced to be
ω(F)2 = ω2ε(F).

On the other hand, in view of that many studies up to
date17, 18, 24 have suggested that a GLE with a power-law fric-
tion kernel can describe well the protein conformational fluc-
tuations and can account for the dynamic disorder in the rel-
evant complex kinetics of biochemical reactions, we assume
that the same friction kernel might hold for the dynamics in-
volving the pulling coordinate, i.e., the reaction coordinate of
configurational change. Following Refs. 24, 25, K(t) in Eq.
(1) takes the form

K(t) = βη(2 − γ )(1 − γ )|t |−γ , (6)

with 0 < γ < 1. The friction coefficient η(2 − γ )(1 − γ ) de-
pends on the exponent γ and includes a parameter η reflect-
ing the interaction strength between system and bath.26 Note
that this power-law friction kernel has been observed by di-
rect single molecule experiments,13 and can be inferred from
molecular dynamic (MD) simulations.27 Besides, its micro-
scopic origin has been also investigated in terms of polymer
dynamics28 and the fractal nature of protein.29 Specifically, as
γ → 1−, K(t) in Eq. (6) behaves as a delta function. Thus, the
GLE (1) reduces to a conventional Langevin equation with
white noise.

To investigate the single-molecule mechanics under ex-
ternal force, we regard the irreversible molecular transition
as a thermally activated barrier crossing process in a force-
modified free-energy surface. By applying Kramers’ theory,30

the escape-over-a-barrier rate can be explicitly derived from
the ratio of the stationary particle flux over the barrier top to
the equilibrium particle population in the region of the poten-
tial well. To proceed further, Eq. (3) is now transformed to an
equivalent generalized Smoluchowski equation for the proba-
bility density P(x, t) that the particle is at the point x at time t.
By using standard methods of functional calculus (see details
in Ref. 18), we have near the barrier region18

∂P (x, t)

∂t
= D(t, F )

{
β

∂

∂x

[
∂U (x, F )

∂x
P (x, t)

]

+ ∂2

∂x2
P (x, t)

}
, (7)

where D(t, F) is the diffusion coefficient which is in general
dependent on time. In the above expression, it follows

D(t, F ) = 1

mω2βε(F )

χ̇ (t, F )

χ (t, F )
, (8)

where χ̇(t, F ) = dχ (t, F )/dt and χ (t, F) is given by the in-
verse Laplace transform of

χ̂ (s, F ) = K̂(s)

sK̂(s) − mω2ε(F )
, (9)

with K̂(s) the Laplace transform of the friction kernel K(t).
Taking into account Eq. (6), it takes a power law form
with respect to s, i.e., K̂(s) = βη�(3 − γ )sγ−1 (note that as
γ = 1, K̂(s) becomes a constant, of which the inverse Laplace
transformation is a delta function, representing a white noise).

Thus, Eq. (9) can be carried out exactly to produce

χ (t, F ) = Eγ [(t/τ (F ))γ ], (10)

where Eα is the Mittag-Leffler function defined by the se-
ries expansion Eα(x) = ∑∞

j=0 xk/�(αj + 1), with �(z) the
gamma function. τ (F) is the relaxation time in form of

τ (F ) = τ0ε(F )−1/γ , (11)

where τ0 = ( η�(3−γ )
mω2 )1/γ roughly sets the system’s character-

istic time scale in the absence of external force F. Obviously,
this relaxation time scale is lengthened due to the effect of F.

On the basis of Eq. (7), following Kramers30 and
Hanggi,31 we derive the time-dependent barrier crossing rate
under external loading, given by

k(t, F ) = 1

2π

χ̇ (t, F )

χ (t, F )
e−β�G‡ε(F )3

. (12)

Under adiabatic approximation,10 the survival probability
S(t), which is defined as the probability that a given particle
has not crossed the barrier up to time t, follows the first order
rate equation: Ṡ(t, F ) = −k(t, F )S(t, F ). Thus,

S(t, F ) = exp

[
−

∫ t

0
dt ′k(t ′, F )

]
. (13)

Taking into account the specific expression of the reaction rate
(12), S(t, F) can be further expressed as

S(t, F ) = χ (t, F )−
1

2π
e−β�G‡ε(F )3

. (14)

Equations (12) and (13) [or (14)] describe molecular transi-
tion kinetics at both constant force and time-dependent linear
force.

If the force F is a constant, what we concern is the dis-
tribution of barrier crossing time, i.e., the waiting time dis-
tribution f(t, F), following f (t, F ) = −Ṡ(t, F ). In view of
Eq. (14), f(t, F) is easily found to be

f (t, F ) = 1

2π
e−β�G‡ε(F )3 χ̇ (t, F )

χ (t, F )[ 1
2π

e−β�G‡ε(F )3 +1]
. (15)

Consequently, the mean waiting time is given by

t̄(F ) =
∫ ∞

0
t ′f (t ′, F )dt ′

=
∫ ∞

0
dtχ (t, F )−

1
2π

e−β�G‡ε(F )3

. (16)

In addition, if the force F grows linearly with time as
F = V t , the key quantity is the distribution of rupture forces
p(F) which is assumed to be related to the survival probability
by9

−Ṡ(t, F )dt = p(F )dF. (17)

From Eq. (13), p(F) can be calculated from

p(F ) = k(t, F )|t→F/V

V
e− 1

V

∫ F

0 [k(t ′,F ′)|t ′→F ′/V ]dF ′
. (18)

Then, the mean rupture force is given by F̄ (V )
= ∫

Fp(F )dF .
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III. SPECIFIC RESULTS AND DISCUSSIONS

On the basis of the general formulations given in Sec. II,
we go forward to evaluate the specific results for the waiting
time distribution and its resulting mean lifetime at constant
force, as well as for the rupture force distribution and the re-
sulting mean rupture force at constant pulling speed. The DD
effect can be therefore quantitatively estimated. It is evident
that all the kinetic quantities mentioned above are related to
a common function χ (t, F) defined as Eq. (10), in terms of a
Mittag-Leffler function where there is a factor γ introduced
originally from the friction kernel Eq. (6). As a special case,
γ = 1/2 will be explicitly analyzed, for which x(t) undergoes
subdiffusion and DD takes effect. In addition to it, for com-
parison, we will also evaluate the DD-free results. As already
mentioned above, one can reproduce the white noise results
by letting γ = 1, which is also adopted in Refs. 18 and 32,
leading to a time-independent reaction rate, i.e., the DD-free
case. We will compare the results with DD to those without
DD, with particular attention to the dependence on F or V .

A. The case γ = 1

In this case, fGn reduces to white noise and the Mittag-
Leffler function reduces to an exponential one. Thus, χ (t, F)
= et/τ (F), where τ (F) = τ 0/ε(F) with τ0 = η

mω2 . The reaction
rate given by Eq. (12) will reduce to a well-defined Kramers’
rate constant as follows:

k(F ) = k0ε(F )eβ�G‡(1−ε(F )3), (19)

where k0 = 1
2πτ0

e−β�G‡
is the reaction rate constant in the

absence of external force, which is determined by the sys-
tem’s characteristic time scale τ 0 as well as the barrier height
β�G‡.

In case of a constant force F, the survival probability
and the waiting time distribution follow an obvious single-
exponential decay: S(t, F) = e−k(F)t and f(t, F) = k(F)e−k(F)t.
The mean lifetime is just the reciprocal of k(F),

t̄(F ) = 1/k(F ). (20)

While, in case of a linearly growing force F = V t , the distri-
bution of rupture force follows from Eqs. (18) and (19) ana-
lytically as

p(F ) = k(F )

V
exp

[
k0[1 − eβ�G‡(1−ε(F )3)]

βx‡V

]
. (21)

Equations (19)–(21) recover the expressions in literatures so
far9–11 based on Kramers theory under Langevin dynamics de-
scription, leaving out DD consideration, which we call there-
fore DD-free results in this paper.

B. The case γ = 1/2

When γ 	= 1, the derivative of the Mittag-Leffler func-
tion can no longer be expressed in a closed form, in general.
However, there are some values of γ , for which such closed
forms are known.33 In particular, the case γ = 1/2 is of spe-
cial significance. For this value, the friction kernel K(t) decays
following |t|−1/2 [cf. Eq. (6)]. This exponent of γ has shown

a highly satisfactory fit to experimental data on the time cor-
relation function of distance fluctuations in proteins.24 For γ

= 1/2, the Mittag-Leffler function in Eq. (10) can be rewritten
as E1/2(x) = exp (x2)erfc(−x), where erfc(x) is the comple-
mentary error function. Therefore, we have

χ (t, F ) = E1/2(
√

t/τ (F )) = et/τ (F )erfc(−
√

t/τ (F )),

(22)

χ̇ (t, F ) = 1

τ (F )

[
et/τ (F )erfc(−

√
t/τ (F )) + 1√

π
√

t/τ (F )

]
,

where τ (F) = τ 0/ε(F)2 with τ0 = ( 3
√

π

4
η

mω2 )2. Substituting
Eq. (22) into (12), we immediately have

k(t, F ) = k∗(F )

[
1 + 1√

π
√

t/τ (F )et/τ (F )erfc(−√
t/τ (F ))

]
,

(23)

where the coefficient k∗(F) is expressed as

k∗(F ) = 1

2πτ0
ε(F )2e−β�G‡ε(F )3

, (24)

which can be thought as an effective or modified Kramers’
rate constant. It is the last term in the square bracket in
Eq. (23) that is responsible for the time dependence of the re-
action rate, resulting in DD. This time-dependence behavior is
closely related to the ratio of time t to the relaxation time scale
τ (F). In particular, over a long time period, or more specifi-
cally, as t/τ (F) � 1, k(t, F) will effectively reduce to the mod-
ified Kramers’ rate constant k∗(F). Particularly, for the case
F = 0, k∗(F) will be exactly k0.

The survival probability S(t, F) and waiting time distri-
bution f(t, F) under a constant force loading are straightfor-
wardly derived by inserting Eq. (22) into Eqs. (14) and (15).
As a result, we have

S(t, F ) = E1/2(
√

t/τ (F ))−k∗(F )τ (F ),

f (t, F ) = k(t, F )E1/2(
√

t/τ (F ))−k∗(F )τ (F ),
(25)

where k(t, F) is given by (23). Both S(t, F) and f(t, F) are func-
tions with respect to the ratio t/τ (F), and evidently exhibit
non-exponential decay. According to Eq. (25), we can read-
ily establish their short-time and long-time approximations as
follows:

(a) t/τ (F) � 1:

S(t, F ) ≈
(

1 + 1√
π

√
t/τ (F )

)−k∗(F )τ (F )

, (26a)

f (t, F ) ≈ k∗(F )
1√
π

√
t/τ (F )

−1/2
. (26b)

(b) t/τ (F) � 1:

S(t, F ) ≈ 2−k∗(F )τ (F )e−k∗(F )t , (27a)

f (t, F ) ≈ k∗(F )2−k∗(F )τ (F )e−k∗(F )t . (27b)

These approximations indicate S(t, F) and f(t, F) will be
initially non-exponential and then change to exponential at
long times. Note here that the time scale is measured by the ra-
tio t/τ (F) rather than t itself. To investigate the influence of the
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FIG. 2. The survival probability S(t, F) for γ = 1/2 and F = 10, 30, and
50 pN. Other parameters are β�G‡ = 5, x‡ = 0.4 nm, T = 300 K, and
τ 0 = 0.001 s.

external force on the behavior of these quantities, we vary the
value of F, but keep the intrinsic characteristic time τ 0 and the
bare free energy profile to be unaltered. According to Eq. (11),
at small forces, the ratio t/τ (F) is relatively large for any fixed
interval of time t, so the system is effectively in the long time
regime, where S(t, F) and f(t, F) behave as an exponential. At
large forces, the ratio t/τ (F) is relatively small for any fixed
interval of time t, so the system is in the short time regime,
where S(t, F) and f(t, F) decay non-exponentially initially,
until the time t is sufficiently large that the system crosses
over into the long time regime. As an illustration, Fig. 2
depicts the time evolution of the survival probability at dif-
ferent values of F, but common parameters τ 0, �G‡, and x‡.
Indeed, it is evident from this figure that as force is small, a
clear time scale separation t/τ (F) � 1 that holds almost over
the whole time scales results in single exponential S(t, F) [in
accordance with Eq. (27a)], while as force is large, time scale
overlap, i.e., t ∼ τ (F), leads to multiexponential S(t, F), the
signature of DD. Moreover, this DD effect becomes more pro-
nounced for larger forces.

Furthermore, the mean waiting time under the influence
of a constant force can be obtained from Eqs. (16) and (22)1,
yielding

t̄(F ) =
∫ ∞

0
dte−k∗(F )t [1 + erf(−

√
t/τ (F ))]−

1
2π

e−β�G‡ε(F )3

.

(28)

If the barrier height is large and the external force is small,
such that the exponent − 1

2π
e−β�G‡ε(F )3

is small, Eq. (28) re-
duces to

t̄(F ) = 1/k∗(F ) (29)

in close analogy to DD-free expression (20). Nevertheless, in
general cases, if the barrier height of the free-energy is not
very large and/or the external force is not very small, the
last term in Eq. (28) will cause a certain deviation of t̄(F )
from Eq. (29), demonstrating the DD effect. In particular, if
�G‡ is enough small, this deviation is observable even at null
force.17, 18

Finally, at a constant speed pulling, the distribution of
rupture forces p(F) in this case of γ = 1/2 can be directly eval-
uated by inserting Eq. (12) into the general expression (18),
i.e.,

p(F )= k∗(F )

V

[
1 + 1√

π
√

t/τ (F )et/τ (F )erfc(−√
t/τ (F ))

]
t→F/V

× e
− 1

V

∫ F

0 k∗(F ′)[1+ 1
√

π
√

t ′/τ (F ′ )et ′/τ (F ′ )erfc(−
√

t ′/τ (F ′ ))
]t ′→F ′/V dF ′

.

(30)

Unlike γ = 1 case, the evaluation of p(F) is not analyti-
cally tractable, and a numerical integration is thus necessary.
Equations (23)–(30) can account for the DD effect, which we
call therefore DD results.

C. The comparison between γ = 1/2 and γ = 1

To roughly estimate how the DD affects on the reaction
kinetics under external force, we go forward to numerically
evaluate the mean lifetime at constant forces, as well as the
rupture force distribution and the corresponding mean rupture
force at constant pulling speeds, in both γ = 1/2 and γ = 1
cases. The relevant quantities will be compared quantitatively.
In comparison, we assume that both cases are prescribed by
an identical characteristic time scale τ 0.

We first consider the constant force situation. Now the
most relevant quantity is the mean lifetime t̄(F ). For com-
parison, we introduce the absolute and relative differences re-
garding t̄(F ) as follows:

�t̄(F ) = t̄(F )DD − t̄(F )DD-free (31)

and

αt̄ (F ) = t̄(F )DD − t̄(F )DD-free

t̄(F )DD-free
, (32)

where the superscripts denote the results with and without
DD, given by Eqs. (28) and (20), respectively.

Figure 3 presents the dependence of �t̄(F ) (a) and αt̄ (F )
(b) for relatively low barrier heights, β�G‡ = 1.5, 2, 3, 4.
Both �t̄(F ) and αt̄ (F ) increase monotonically with F. Note
that even for F = 0, large discrepancies already exist between
the two cases γ = 1 and 1/2. We emphasize here that this
depends on the choice of criteria to compare the two situa-
tions, i.e., we have chosen that the characteristic time scale
τ 0 should be the same with or without DD. Physically, this
means that in the long time limit, the system under consider-
ation, described by simple Langevin equation or GLE, should
have the same rate constant (see the context around Eq. (24)).
With this choice, the mean lifetime t̄(F ) might be different
for F = 0. Our results show that t̄(F = 0)DD is smaller than
t̄(F = 0)DD-free for these small barrier heights. When exter-
nal force is present, the inset in Fig. 3(a) shows that t̄(F )
decreases quickly with F. This is reasonable because F will
reduce the barrier height and make the barrier-crossing easier.
Interestingly, when DD is present (γ = 1/2), t̄(F ) decreases
more slowly than the DD-free case (γ = 1). This seems to
imply that DD can weaken the effects of barrier-reducing in-
duced by force, which might be due to the subdiffusion nature.
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FIG. 3. The absolute (a) and relative (b) deviations of the mean lifetime as functions of external force for β�G‡ = 1.5, 2, 3, 4. The inset shows the mean lifetime
with and without DD for �G‡ = 1.5. Other parameters are x‡ = 0.4 nm, T = 300 K, and τ 0 chosen so that k0 = 10−4 s−1.

Consequently, at a certain value of F, �t̄(F ) will go across
zero from below, and a further increasing F will increase
�t̄(F ). Thus, for small barrier heights, DD seems to play a
nontrivial role to the barrier-crossing process: for small ex-
ternal forces, DD tends to accelerate the transition compared
to the DD-free case, but it tends to slow down the transition
process if external force is large.

The situation is different if the free energy barrier is
high. In Fig. 4, we show the results for β�G‡ = 5, 10, 15, 25.
In these cases, the differences at small forces are negligibly
small. We may understand this as follows. If the barrier is
high, the system bears a clear time scale separation between
the barrier-crossing process and the inside-well dynamics, at
least for small enough forces. Therefore, the system behaves
like in the long-time limit, such that the DD does not take ef-
fect and �t̄(F = 0) � 0. This picture may also illustrate why
�t̄(F ) is so evident for F = 0 in Fig. 3, where time scale
separation is not so remarkable if barrier height is low. With
increasing F, we observe an interesting variation of �t̄(F ),

i.e., it shows a clear-cut maximum at a certain force. This
is not observed for αt̄ (F ), which grows monotonically with
F, demonstrating an ever-increasing relative discrepancy be-
tween DD and DD-free results. For these relatively large bar-
rier heights, �t̄(F ) is always positive, indicating that DD is
not favorable for the barrier crossing compared to the DD-free
case. We can also see that the discrepancy is more pronounced
for smaller barrier heights.

In addition to the constant force situation, we have also
considered the case when the external force is loaded at a
constant speed. Now the relevant quantities are the rupture
force distribution and the mean rupture force. Similarly, re-
sults for both DD and DD-free cases are evaluated for compar-
ison. We first obtain the rupture force distribution according to
Eqs. (30) and (21), and then calculate the mean rupture force
via averaging over all permitted forces. Similar to Eqs. (31)
and (32), we analyze the absolute difference of mean rupture
force

�F̄ (V ) = F̄ (V )DD − F̄ (V )DD-free (33)
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FIG. 4. The absolute (a) and relative (b) deviations of the mean lifetime as functions of external force for β�G‡ = 5, 10, 15, 25. Other parameters are the same
as those in Fig. 3.
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FIG. 5. The rupture force distribution for V = 0.1 pN/ms and β�G‡ = (a) 1.5, (b) 5, (c) 8, (d) 15. DD and DD-free results are shown by solid and dashed lines.
Other parameters are x‡ = 0.4 nm, T = 300 K, and τ 0 = 0.001 s.
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as well as its relative deviation

αF̄ (V ) = F̄ (V )DD − F̄ (V )DD-free

F̄ (V )DD-free
. (34)

F̄ (V )DD is obtained from the distribution given by Eq. (30)
and F̄ (V )DD-free from Eq. (21).

As a result, Fig. 5 displays the comparison of the
rupture force distribution for varying barrier height β�G‡

= 1.5, 5, 8, 15. We see that the distribution is exponential-like
if the barrier is low. With increasing barrier height, the distri-
bution evolves to a Gaussian-like shape. The physical insight
underlying these observations is still open to us. Compared
to the DD-free case, the distribution is lowered with a right-
shifted peak when DD is accounted for, corresponding to a
relatively larger mean rupture force. In accordance with this,
the results of �F̄ (V ) and αF̄ (V ) for varying barrier heights
β�G‡ = 5, 8, 15, 25 are shown in Fig. 6. Clearly, the devi-
ation is negligible for small speed V , while remarkable de-
viation appears at fast speeds. In addition, the DD curve lies
above the DD-free curve, which means that DD tends to in-
crease the mean rupture force. Remarkably, the deviation is
more pronounced for larger barrier heights, which is quite dif-
ferent from the case of constant force as show in Fig. 4.

IV. CONCLUDING REMARKS

In summary, we have proposed a theoretical framework
based on a GLE with fGn and power-law memory kernel to
study the kinetics of macromolecular transitions in the pres-
ence of external force relevant to single molecular pulling
experiments. By applying Kramers’ theory, we have derived
an analytical expression for the reaction rate which fluctuates
in time in general, presenting DD. This expression and the
resultant reaction kinetics are determined by a key function
χ (t, F) in terms of a factor γ , the exponent of the memory
kernel. Two cases of γ = 1 and γ = 1/2, respectively, cor-
responding to results without and with DD effects, are par-
ticularly analyzed. We explicitly evaluate the mean lifetime
at a constant force, the rupture force distribution at constant
pulling speed, and the resulting speed-dependent mean rup-
ture force. Significant discrepancies are observed between the
DD and DD-free results, especially for large force or large
loading speeds. Generally, DD will slow down the barrier-
crossing, thus leading to a relatively larger mean lifetime
or larger mean rupture force compared to the DD-free case.
Nevertheless, barrier height may have a subtle influence on
this picture, in that the mean lifetime with consideration of
DD could be smaller, when the barrier height is small and the
force is small enough. Our analysis thus reveals a nontrivial
role played by DD in macromolecular conformation transi-
tion, which should be taken into account carefully in proper
interpretation of single molecular pulling experiments.
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