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Abstract We study the fluctuation-activated transition process in a system of two coupled forced bistable oscillators

with a mismatch σ in the force constants. As the coupling strength µ is increased, the transition pathway undergoes four

stages changes from a two-step process with two candidate pathways to a mixture of a two-step pathway and a one-step

pathway to a one-step process with also two candidate pathways and then to a one-step process with a single pathway.

Interestingly, we find that the total transition rate depends nonmonotonically on σ in the weak coupling: a maximal rate

appears in an intermediate magnitude of σ. Moreover, the rate also exhibits an unexpected maximum as a function of

µ. The results are in an excellent agreement with our numerical simulations by forward flux sampling.

PACS numbers: 05.40.-a, 05.45.Xt, 89.75.-k, 77.80.Fm
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1 Introduction

Fluctuation-activated transition between coexisting
stable states underlies many important physical, chemical,

biological, and social phenomena. Examples include diffu-

sion in solids, switching in nanomagnets[1] and Josephson

junctions,[2] nucleation,[3−4] chemical reactions,[5−6] pro-
tein folding,[7−9] and epidemics.[10−11] A detailed theory

of transition rates was first developed by Kramers in 1940

for systems close to thermal equilibrium,[12] wherein the
transition rate is determined by the free energy barrier be-

tween the states. Consequently, many generalizations of

Kramers’ theory have been widely exploited. For a com-
prehensive review see Ref. [13]. Nowadays, these theories

have been commonly utilized for a great many applica-

tions in diverse fields.[14−17]

In recent years, there is growing interest in the study
of the activated transition in spatially extended systems

with two or more coupled subsystems. Each subsystem

has more than one stable state or conformation. This
is because that many natural and artificial systems can

be viewed as a coarse representation of coupled subsys-

tems, like arrays of Josephson junctions,[18] the power

grid,[19] neural and gene regulatory networks,[20−22] and
metapopulations.[23−25] However, most of the previous

studies focused on the case where the subsystems are iden-

tical. A more realistic case for some natural systems, espe-

cially in biology, is that the subsystems display a mismatch

in the values of some characteristic parameters. This prob-

lem has received some recent attention. For example, Tes-

sone et al. found that an appropriate level of the mismatch

in external forces can induce a resonant collective response

to a subthreshold periodic signal in a system of globally

coupled bistable oscillators.[26] With regard to the topic

on fluctuation-activated transition where the periodic sig-

nal is absent, some interesting problems arise: How does

the transition rate depend on the force mismatch in cou-

pled bistable system? Whether or not a maximal tran-

sition rate exists for a certain force mismatch under the

constraint that the average force is fixed? These prob-

lems are of practical importance in controlling a coupled

nonlinear system from an undesirable state into a desir-

able state, as one always wants to use the minimal cost to

achieve this control goal.

To the end, in the present work we consider the

fluctuation-activated transition process in a system of two

coupled bistable oscillators where each oscillator is subject

to one constant force and an independent Gaussian white

noise. We focus on how force mismatches and coupling

strength affects the pathway and the rate of the transi-

tion. By theory and a rare-event simulation, we find that

the transition process exhibits diverse pathways in differ-

ent parametric regions that can include multiple transition
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pathways and multi-step transition processes. Interest-

ingly, the transition rate behaves a nontrivial dependence

on the coupling and the force mismatch. In particular, in

the region of weak coupling there exists a maximal rate at

an intermediate magnitude of force mismatch. Otherwise,

the rate increases monotonically with the force mismatch.

Moreover, the rate peaks at a certain coupling strength.

The peak becomes more and more clear-cut as the force

mismatch increases.

2 Model

We consider a system of two mutually coupled bistable

overdamped oscillators, which are forced by statistically

independent noises and constant forces. The system un-

der consideration is governed by the following stochastic

differential equations,

ẋ1 = x1 − x3
1 + ǫ1 + µ(x2 − x1) +

√
2Dξ1(t) ,

ẋ2 = x2 − x3
2 + ǫ2 + µ(x1 − x2) +

√
2Dξ2(t) , (1)

where ǫ1(2) is the external force constant in the subsys-

tem 1(2), µ is the coupling strength, and D is the inten-

sity of the Gaussian white noises with 〈ξi(t)〉 = 0 and

〈ξi(t)ξj(t
′)〉 = δijδ(t − t′) (i, j = 1, 2). To our knowledge,

coupled bistable oscillators have wide applications in mod-

eling enzyme-catalyzed reactions, ion channels, the semi-

conductor laser, etc.[27] In this paper, we set ǫ1 = 0.1 − σ

and ǫ2 = 0.1+σ, where σ ∈ [0, 0.1] measures the difference

between the external forces acted on the two oscillators.

For σ = 0, the two oscillators are identical; otherwise they

are nonidentical. Initially, we place both the two oscilla-

tors on the left potential wells located on x1(2) ≃ −1, and

study the transition process from this metastable state

to the most stable state in which the two oscillators are

both right potential wells near x1(2) ≃ 1 in the presence of

weak noises. Here, we are interested in how the coupling

strength µ and the mismatch σ in external forces affect

the pathway and rate of the transition.

3 Results

To proceed our theoretical analysis, we rewritten

Eq. (1) as

~̇x = −∇V (~x) +
√

2D~ξ(t) , (2)

where ~x = (x1, x2) and ~ξ(t) = (ξ1(t), ξ2(t)) are the two-

dimensional state variable and noise, respectively. V (~x) is

the effective potential that can be expressed as

V (x1, x2) =

2
∑

i=1

(

−1

2
x2

i +
1

4
x4

i − ǫixi

)

+
µ

2
(x1 − x2)

2 . (3)

To give the stationary solutions of the system in

the absence of noises, we numerically solve the equa-

tion ∇V (~x) = 0. The solutions are classified into three

types according to the stabilities of the solutions: stable

node points (potential minima), saddle points (transition

states), and unstable node points (potential maxima). To

distinguish among them, one needs to calculate the eigen-

values of the so-called Hessian matrix Jij = ∂2V/(∂xi∂xj)

(i, j = 1, 2). If the two eigenvalues are both positive (neg-

ative), the solutions are (un)stable node points. If the

signs of the two eigenvalues are opposite, the solutions

are saddle points.

Fig. 1 (Color online) The stationary solutions of Eq. (1)
in the absence of noises for σ = 0.0 (a) and σ = 0.05
(b). Stale node points, saddle points, and unstable node
points are marked by solid squares, empty circles, and
empty triangles, respectively.

The results for two different typical cases: σ = 0 and

σ = 0.05 6= 0 are shown in Fig. 1. For σ = 0, there are

nine solutions when the coupling strength µ is sufficiently

small, denoted by ~x
(i)
∗ with i = 1, . . . , 9. Four of them,

~x
(i)
∗ (i = 1, 2, 3, 4), are stable node points, corresponding

to four stable states where both the two oscillators locate

at one of two potential wells. Specifically, ~x
(1)
∗ and ~x

(2)
∗

represent that both the two oscillators locate at left po-

tential wells and right potential wells, respectively. ~x
(3)
∗

represents that the first oscillator locate at right poten-

tial well and the second one locate at left potential well.

And ~x
(4)
∗ represents that the first oscillator locate at left

potential well and the second one locate at right poten-

tial well. There are four saddle points, ~x
(i)
∗ (i = 5, 6, 7, 8)

that are transition states for connecting neighboring sta-

ble states. The remaining one point ~x
(9)
∗ is unstable node

whose location lies in two potential barrier of the two os-

cillators. With the increment of µ, the stable node point



No. 5 Communications in Theoretical Physics 577

~x
(3)
∗ and the saddle point that connects ~x

(3)
∗ and ~x

(2)
∗ ap-

proach each other, and collide and annihilate at µ = µ1.
Simultaneously, ~x

(4)
∗ and the saddle point that connects

~x
(4)
∗ and ~x

(2)
∗ approach each other till they collide and an-

nihilate at µ = µ2. Interestingly, we find that µ1 = µ2 if
σ = 0 and µ1 < µ2 if σ 6= 0. Thus, for σ = 0 the number
ns of solutions decreases to ns = 5 from ns = 9 when
µ passes µ1(= µ2). While for σ 6= 0, ns changes from
9 to 7 at µ = µ1 and then to 5 at µ = µ2. Meanwhile,
as µ is further increased the saddle point connecting ~x

(1)
∗

and ~x
(3)
∗ and the unstable node point ~x

(9)
∗ approach each

other, and cease to exist at µ = µ3 > µ2, such that ns

changes from 5 to 3 at µ = µ3.

Fig. 2 (Color online) The property of solutions in the µ–
σ plane. The plane is divided into four different regions
according to the number of solutions, and boundary lines
among neighboring regions are indicated by µ1(σ), µ2(σ),
µ3(σ), respectively.

To get a global view, in Fig. 2 we plot the phase di-
agram in the µ–σ plane. The plane is divided into four
different regions according to the number of solutions. As
mentioned above, µ1(σ), µ2(σ), and µ3(σ) are the sepa-

ratrix between the region ns = 9 and the region ns = 7,
between the region ns = 7 and the region ns = 5, and
between the region ns = 7 and the region ns = 3, respec-
tively. Both the region ns = 7 and the region ns = 5 have
the shape of tongue. With decreasing σ the region ns = 7
shrinks until it vanishes when the lines µ1(σ) and µ2(σ)
get across at µ = 0.195 and σ = 0. As σ is increased, the

region ns = 5 is reduced. For σ = 0.1 the lines µ2(σ) and
µ3(σ) are very close to each other.

In order to clearly exhibit the transition process at dif-

ferent regions, in Fig. 3 we give the contour plots of the
effective potential V for four representative points (µ, σ)
marked by stars in Fig. 2. In the region ns = 9, there are
two possible transition pathways, each of which contains a
two-step transition process via an intermediate metastable
state. Let ∆V

(α)
1 and ∆V

(α)
2 denote the energy barrier of

the first step and the second step for the α-th transition

pathway (α = 1, 2), respectively. The corresponding tran-
sition rates are

R(α) =
1

1/R
(α)
1 + 1/R

(α)
2

, (4)

with

R
(α)
1,2 = Z exp(−∆V

(α)
1,2 /D) . (5)

Here the prefactor Z is given by[28]

Z =
ω

(1)
n ω

(2)
n ω

(1)
s

2πω
(2)
s

. (6)

Here ω
(1,2)
s =

√

|e(1,2)
s | and ω

(1,2)
n =

√

|e(1,2)
n | are the

vibrational frequencies at the saddle point and at the

node point from which the system escapes, where e
(1,2)
s

(e
(1)
s < 0) and e

(1,2)
n are the eigenvalues of Hessian matrix

at the saddle point and at the node point, respectively,
The total transition rate is

R = p(1)R(1) + p(2)R(2) , (7)

where

p(1,2) =
R

(1,2)

1

R
(1)

1 + R
(2)

1

(8)

are the probabilities of the two transition pathways hap-

pening.

In the region ns = 7, there are also two possible tran-

sition pathways. However, one pathway also contains a

two-step process, but the other one becomes a one-step

process. Let ∆V
(1)
1 and ∆V

(1)
2 denote the energy barrier

of the first step and the second step for the two-step tran-

sition pathway, respectively, and ∆V (2) the energy barrier

for the one-step transition pathway. The total transition

rate is also expressed by Eq. (6), but we have

R(2) = Z exp(−∆V (2)/D) ,

p(1) =
R

(1)

1

R
(1)

1 + R(2)
, p(2) =

R(2)

R
(1)

1 + R(2)
. (9)

In the region ns = 5, there are also two possible tran-

sition pathways, but both of them contain a one-step pro-

cess. Let ∆V (1) and ∆V (2) denote the energy barrier of

the two transition pathways. The terms in the total tran-

sition rate by Eq. (6) become

R(1,2) = Z exp(−∆V (1,2)/D) , p(1,2) =
R(1,2)

R(1) + R(2)
.(10)

Note that for the case σ = 0, the two oscillators are

identical and the two possible transition pathways are

equivalent. However, as σ is increased, the probability

of the nucleation pathway marked by the solid line in

Fig. 3 quickly approaches one due to a larger force acted on

the second oscillator, such that the total transition rate is

mainly determined by this dominant transition pathway.
Lastly, in the region ns = 3 there is a single one-

step transition pathway. The nucleation rate is R =

Z exp(−∆V /D), where ∆V is the energy barrier of the

transition process.

So far, we have theoretically obtained the pathway and

the rate of the transition in various parameters regions.

For identical oscillators (σ = 0), the system undergoes

a transition from a two-step transition process with two

possible pathways (transition in a serial way) to a one-step



578 Communications in Theoretical Physics Vol. 63

process with also two possible pathways at µ = µ1 = µ2

(transition in a synchronized way) to a one-step process

with a single pathway at µ = µ3. For nonidentical oscilla-

tors (σ 6= 0), a new transition way emerges at µ1 < µ < µ2

that is a candidate of a two-step pathway and a one-step

pathway. In a word, there exists a critical coupling in

which the transition changes from a two-step process to a

one-step one. Interestingly, similar phenomenon was also

reported in disturbed coupled nonlinear oscillators with

purely deterministic dynamics.[29−32]

Fig. 3 (Color online) Contour plots of the effective potential V for four representative points marked by stars in
Fig. 2: (µ, σ) = (0.1, 0) (a), (0.2, 0.05) (b), (0.3, 0.02) (c), and (0.6, 0.02) (d). Stale node points, saddle points, and
unstable node points are marked by solid squares, empty circles, and empty triangles, respectively. The transition
pathways are distinguished by the solid and dashed arrows. There is one saddle point for connecting any two
stable node points.

Fig. 4 (Color online) The logarithm of the total tran-
sition rate lnR as a function of σ for different µ. The
theoretical results and FFS simulations are indicated by
lines and symbols, respectively. The noise intensity is
fixed at D = 0.01.

To validate the theory, we have performed extensive

numerical simulations for Langevin equation (1). How-

ever, the transition is an activated process that occurs

extremely slow, and brute-force simulation is thus pro-

hibitively expensive. To overcome this difficulty, we will

use a recently developed simulation method, forward flux

sampling (FFS).[33−34] All the simulation results are ob-

tained via averaging over 20 independent FFS simulations.

In Fig. 4, we show that the dependence of lnR on σ

at different µ. The theoretical results and FFS simula-

tion ones are indicated by lines and symbols, respectively.

There are an excellent agreement between them. Clearly,

lnR behaves significantly different dependence trend with

σ for different µ. For µ < 0.1, lnR depends nonmonoton-

ically on σ. There exists a maximal rate at a moderate

magnitude of force disorder σ. On the other hand, for

µ ≥ 0.1, lnR increases monotonically with σ. This im-

plies that in the presence of a weak coupling a proper

level of force mismatch can accelerate the occurrence of

the transition process. While for a relatively strong cou-
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pling, a larger magnitude of force mismatch is favorable

to advance the process.

Fig. 5 (Color online) The logarithm of the total tran-
sition rate lnR as a function of µ for different σ. The
theoretical results and FFS simulations are indicated by
lines and symbols, respectively. The noise intensity is
fixed at D = 0.01.

In Fig. 5, we show that the logarithm of the total tran-

sition rate lnR as a function of µ for different σ: 0, 0.05,

and 0.1. For σ = 0, lnR slightly increases and then de-

creases monotonically as µ is increased. Interestingly, if σ

becomes larger, for example σ = 0.5, lnR clearly exhibits

a nonmonotonic dependence on σ: lnR peaks at µ ≃ 0.06.

With further increasing σ, such a peak becomes more clear

and the location of the peak shifts to a larger µ. The re-

sults reported in Fig. 5 can be qualitatively understood

as follows. For µ = 0, the two bistable oscillators are

uncoupled. Each oscillator passes independently through

the potential barrier and thus the transition event is a

two-step process. The total transition rate is mainly de-

termined by the larger potential barrier, namely the oscil-

lator with the smaller driving force. When the weak cou-

pling between the oscillators is present, the oscillator with

the larger driving force first passes through the barrier and

then pushes the other oscillator due to the coupling effect.

This will lead to the increase of the total transition rate.

If the coupling is strong enough, the oscillators become

fully synchronized and they pass simultaneously through

the potential barrier. In this case, the transition event will

become a one-step process, and the total transition rate

will be determined by the sum of the potential barriers of

all the subsystems, resulting in the decrease of the rate.

Therefore, one can expect that the total transition rate

shows a maximum at a small but nonzero value of µ. This

phenomenon has been observed by Neiman[35] in a previ-

ous study of two coupled bistable system and later been

found in the same system when a periodic signal is simul-

taneously added.[36] Similar phenomenon has also been re-

ported in several other systems, such as extinction risk[23]

and mean fixation time[25] of migrated metapopulations,

nucleation of Ising model[37] and information diffusion[38]

on modular networks. Our study shows that the para-

metric mismatch is a necessary ingredient for the occur-

rence of the nonmonotonic dependence of the transition

rate on coupling between subsystems. Furthermore, the

present results may find their potential implications in

understanding and controlling the propagation failure of

coupled bistable chloride-iodide reactions[39] and the tran-

sition of molecular conformations.[29]

4 Conclusions

To conclude, we have studied the transition process in

a system of two mutually coupling forced bistable oscil-

lators. By constructing the effective potential, we have

shown that how the pathway and the rate of the tran-

sition change with the force mismatch and the coupling

strength. We have identified four types of transition pro-

cess at different parametric regions: (i) two possible tran-

sition pathways each containing a two-step transition pro-

cess; (ii) two possible transition pathways one containing

a two-step transition process and the other containing a

one-step transition process; (iii) two possible transition

pathways each containing a one-step transition process;

(iv) a single one-step transition pathway. Furthermore,

the total transition rate shows a rich dependence on cou-

pling and force mismatch. On the one hand, the rate also

shows a nonmonotonic dependence on the force mismatch

for a weak coupling. While for a relatively strong coupling,

the rate increases monotonically with the force mismatch.

On the other hand, as the coupling is strengthened the

rate increases and then decreases, i.e., a maximal rate ex-

ists for an intermediate magnitude of coupling. All the

results have been validated to be in an excellent agree-

ment with the extensive FFS simulations. Our findings

might suggest that for practical implications of control-

ling transition events in coupled systems the delicately

chosen parametric mismatch and coupling are vital.
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