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We have proposed a theoretical formalism to study the long-time diffusion behavior of nanoparticles
in polymer solutions by using mode-coupling theory (MCT). The non-hydrodynamic part Dmicro of
the total diffusion coefficient D is calculated in the MCT framework where the polymer dynamic
scattering function Γpp(k, t) in the solution plays an important role. By introducing an approximate
summation form for Γpp(k, t), where both limits of short and long length scales are properly accounted
for, we can compute Dmicro straightforwardly and investigate explicitly how D depends on the volume
fraction φ of the polymer solution, the nanoparticle size R, the degree of polymerization N , as well as
the entanglement effects. For illustration, we adopt our theoretical approach to analyze the diffusion of
gold nanoparticles in semidilute poly(ethylene glycol) (PEG)-water solutions which has been studied
in detail experimentally. We find that our theoretical results show very good quantitative agreements
with the experimental data in many aspects, such as the strong dependence on φ, the large deviation
from Stokes-Einstein relation particularly for small particles, as well as the effects of the PEG molec-
ular weight. Such good agreements clearly demonstrate the validity of our MCT framework, which
may serve as a good starting point to study many more complex dynamical behaviors associated with
polymer solutions. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4926412]

I. INTRODUCTION

Understanding the transport properties of nanoparticles
(NPs) in complex fluids and gel networks is a problem of broad
importance in diverse fields ranging from materials science
to cellular biophysics and even drug delivery.1–8 In partic-
ular, in biophysics, there is a growing interest to understand
how macromolecules such as proteins move through crowded
cytoplasmic environments.9 The diffusive dynamics in such
complex environments is crucially important for the modeling
of cellular processes, the formation of protein complexes, and
the self-assembly of various supramolecular structures like
fibrillar aggregates.10 Experimentally, dynamic light scatter-
ing11,12 and fluctuation correlation spectroscopy (FCS)13–15 are
most popular in this area of research.

For polymer melts and solutions, the mobility of NPs
has received a lot of attention.16–26 Generally, there is a good
understanding of the diffusion motion of very large NPs in
polymer solutions or melts. When the particle radius (R) is
much greater than the correlation length (ξ) of the polymer,
the diffusion coefficient (D) follows the well-known Stokes-
Einstein (SE) relation,27 D = DSE = kBT/( f πηmacroR), where
kB is the Boltzmann constant, T is the absolute temperature,
ηmacro is the macroscopic viscosity of the solution which is
commonly measured by standard rheometers, and f = 4 or
6 for slip or stick boundary conditions, respectively. If the
particle size is comparable to the characteristic length scale

a)Electronic mail: zhaonanr@scu.edu.cn
b)Electronic mail: hzhlj@ustc.edu.cn

of the system, such as the correlation length ξ or the entan-
glement tube diameter dT , large deviations from DSE have
been observed, by recent experiments7,20–23,26 and molecular
dynamics (MD) simulations.28–30 Interestingly, it was argued
that if one replaces the macroscopic viscosity by a so-called
microscopic viscosity ηmicro which may depend on the size
of the probe particle, the SE relation might be valid for all
length scales.11,26 Nevertheless, for a ternary mixture contain-
ing polymer chains, solvent, and the nanoparticle, multiple
length scales are relevant which leads to the understanding of
diffusive dynamics of NPs rather complicated or even contro-
versial. Many open problems still remain.

Very recently, an important theoretical framework based
on mode-coupling theory (MCT) has been proposed to study
the long-time diffusion coefficient of NPs in complex solutions,
from a microscopic level explicitly accounting for the solute-
solvent interactions. It starts from the calculation of the friction
kernel ζ(t), defined as the time correlation function of the
random force exerted on the NP. Generally, the friction may
result from the short-time binary collisions between the NP
and the surrounding particles, the coupling to the solvent
structural relaxation modes, and the coupling to the long-
time transverse hydrodynamic currents. With standard mode-
coupling approximation, one can express ζ(t) as a function of
the static and dynamic structure factors of the system. This
approach is concise and self-consistent and does not require
large computational cost such as MD simulations. With the
calculated ζ(t), the diffusion coefficient D can be obtained
directly via fluctuation-dissipation theorem. Thanks mainly to
the excellent works of Schweizer and coworkers,31,32 MCT has
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been successfully applied to polymer melts, being both unen-
tangled and entangled, which provides deep physical insights
and is really helpful to understand many important experi-
mental observations. Egorov33 performed a slightly different
MCT study on the anomalous diffusion behavior of NPs in
polymer melts and solutions, but only unentangled regime was
considered and the effect of solvent was implicitly accounted
for. To the best of our knowledge, a unified MCT study of NPs
diffusion in polymer solutions, with systematic investigation of
the dependence on volume fraction, particle size, and polymer
molecular weight, is still lacking.

In the present paper, we establish a consistent MCT anal-
ysis of the long-time diffusion coefficient of a single spher-
ical NP dissolved in a semidilute polymer solution. A uni-
fied polymer-polymer dynamic scattering function valid for
semidilute and entangled polymer solutions is proposed so that
the dependence of diffusion coefficient D on the volume frac-
tion φ and particle size R as well as the entanglement effect can
be addressed explicitly. The obtained diffusion coefficient D
can be separated into a microscopic part Dmicro, which mainly
results from the coupling of the NP dynamics with the density
fluctuation of polymer solution, and a macroscopic part Dhydro,
which is due to the coupling to the hydrodynamic current.
This partitioning facilitates us to investigate the deviation of
diffusion coefficient D from the traditional SE relation in a
simple way. We have applied our theory to study the diffu-
sion of gold NPs in semidilute poly(ethylene glycol) (PEG)-
water solutions which has been measured by FCS.26 Excellent
agreements with the experimental data are obtained with only
necessary parameters of the PEG molecule as input and no
additional parameter fitting is required.

The remainder of the paper is organized as follows. In
Sec. II, we elaborate our theoretical formulation. MCT
approach employed to compute the long-time diffusion coef-
ficient D in semidilute polymer solutions is elaborated. In
Sec. III, we apply our theory to analyze the diffusion of NPs
in semidilute PEG-water solutions. The effect of polymer
concentration, the effect of NP size, as well as the deviation
from SE relation are particularly addressed. To demonstrate
the validity of MCT approach for polymer solutions, our
theoretical results are compared with the experimental data.
Section IV concludes the paper.

II. THEORETICAL FORMULATION

We consider a single tagged spherical NP dissolved in a
semidilute polymer solution under good solvent conditions.
As already well-established in the literature,31 the long-time
diffusion coefficient D has microscopic and hydrodynamic
contributions,

D = Dmicro + Dhydro. (1)

As mentioned above, the microscopic part Dmicro results from
the coupling to the density fluctuation mode of polymer solu-
tions, while the hydrodynamic part Dhydro is due to the coupling
to the transverse hydrodynamic current mode. For the latter
part, one can employ the SE relation,

Dhydro ≈
kBT

6πηmacroR
, (2)

with ηmacro being the macroscopic shear viscosity of the poly-
mer solution. The microscopic part can be expressed in terms
of a non-hydrodynamic friction constant, which is related to
the total time integral of the correlation function of the random
force exerted on the NP. The force-force correlation function
can be approximately computed using MCT based on several
simplifications, including replacement of the projected force
by the total force, projection of the force onto bilinear products
of the slow solvent density fluctuation mode, and factorization
of four-point correlations into products of two-point correla-
tions. These standard procedures finally lead to 34,35

Dmicro =
kBT
ζmicro

, (3)

with

ζmicro =
ρpkBT

6π2

 ∞

0
dt

 ∞

0
dkk4C2

np(k)Spp(k)Γpp(k, t), (4)

where ρp = φdNA/M0 is the number density of polymer
segment, with M0 being the molecular weight of a segment,
d the polymer mass density, and NA the Avogadro’s number.
Cnp(k) is the site-site nanoparticle-polymer direct correlation
function in the Fourier space. Spp(k) is the static structure
factor. Γpp(k, t) is the dynamic scattering function of the poly-
mer solution normalized to Spp(k). Note here, we have applied
the simplification that the self-intermediate dynamic structure
factor of the NP is nearly unity.

Usually, the equilibrium properties Cnp (k) and Spp (k) ap-
peared in Eq. (4) can be determined using polymer refer-
ence interaction site model integral equation theory which has
been discussed in depth elsewhere.36 In the present work, we
mainly address the diffusion of a single spherical nanopar-
ticle dissolved in an unentangled (short chain) or entangled
(long chain) semidilute polymer solution under good solvent
conditions. The polymer is modeled as a chain composed of N
statistical segments with length σ which interact intermolecu-
larly via pair-decomposable hard core repulsions of diameter
dpp. In general, the particle size R is much larger than dpp.
For simplicity, here, we take an analytic thread model cor-
responding to take the limit dpp → 0, to calculate the static
properties. By using the Percus-Yevick site-site closure and
the Lorentzian approximation to the intrachain structure factor,
one can easily derive the static structure factor Spp(k) as well as
the nanoparticle-polymer total correlation function in Fourier
space hnp(k) as37

Spp(k) = 12
k2σ2 + σ2/ξ2 , (5a)

hnp(k) = 4πk [R cos (kR) − sin (kR)]
k3

− 4πRξ [kξ cos (kR) + sin (kR)]
k (1 + k2ξ2) . (5b)

Herein, ξ denotes the correlation length of the polymer chain
in the solution which may depend on the volume fraction φ.
The direct correlation function Cnp(k) can then be calculated
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through

Cnp(k) = hnp(k)/Spp(k). (6)

On the other hand, a full understanding of the dynamic
structure factor, the intermediate-scattering function Γpp(k, t)
of polymer solutions, valid for both unentangled and entan-
gled chains, is an open and difficult theoretical problem, in
particular, for polymers in semidilute regime. For polymer
melts, Yamamoto and Schweizer31 have proposed a useful
summation form, where the total scattering function is sepa-
rated into two parts, one accounting for the time correlation in
the small length-scale (large wave vector k) limit, and the other
for large-scale (small k) limit with a further Debye-Waller
(DW) factor addressing polymer chain localization and the
spatial dependence or constraint porosity of the slowly relaxing
density fluctuations. Nevertheless, that formula cannot apply
to polymer solutions directly, in particular, when the role of
concentration φ needs to be clarified.

In the present paper, we propose an approximate summa-
tion formula for Γpp(k, t) applicable for polymer solutions, by
properly taking into account both the small and large limits of
the length scale. Importantly, the role of polymer concentration
φ may be appropriately incorporated, and both unentangled
and entangled regimes are included. Finally, our formula reads

Γpp(k, t) = exp
(
− kBT

16η0
k3t

)
+ exp

(
−

kBT ρp

3S0ηs
t
)

× exp
(
− k2a2

3π2Spp(k)
)
, (7)

where η0 is the neat solvent viscosity, S0 ≡ Spp (k = 0), ηs is
the microscopic shear viscosity of polymer solution as will
be discussed below, and a is a length scale characterizing the
localization of the polymer chain.

The first term in Eq. (7) describes collective density
fluctuation relaxation on relatively small length scales kξ ≫ 1.
In this regime, the dynamics is dominated by the single chain
behavior and one can see the internal motion of the chain. Un-
der Gaussian approximation, the dynamic scattering function
of semidilute polymer solutions has been argued analytically,38

following the single exponential form. Particularly, the k3

dependence in this limit has been well confirmed experimen-
tally. Note that for polymer melts, single exponential decay is
also expected in this regime; however, a k2 dependence was
adopted as a natural consequence of the k-dependent viscosity
of the melt. The second term in Eq. (7) describes Γpp(k, t) in the
limit kξ ≪ 1, where the dynamics is determined by the overall
translational motion beyond a certain localization length scale
a. One should note that the explicit form of Γpp(k, t) in this
regime is rather complicated and approximations must be
made for tractable purpose. Herein, we have adopted a form
similar to that proposed by Yamamoto and Schweizer,31 but
with necessary extensions to polymer solutions. The second
term shown in Eq. (7) includes two factors: an exponentially
time-dependent part exp

(
− kBT ρp

3S0ηs
t
)

accounting for the long
time diffusion of the whole chain over a large length scale and
a second spatial-dependent part exp

(
− k2a2

3π2Spp(k)
)

called DW
factor describing the localization within the “local enough”
scale a.

To proceed, one needs to pay close attentions to the two
important parameters appeared in Eq. (7), namely, the shear
viscosity ηs of the solution and the localization length a. We
note here that for a complex fluid like polymer solution where
diverse length scales coexist, the viscosity ηs may depend upon
the length scale at which it is probed. If the probe size is very
large compared to the polymer radius of gyration, the detected
viscosity reaches the macroscopic value ηmacro, wherein each
polymer can be viewed as a small solvent particle. On the other
hand, for a probe with size comparable to the characteristic
length of the polymer chain, the relevant viscosity should be the
so-called microscopic one ηmicro, which is neither the viscosity
of the neat solvent η0 nor ηmacro. In the present paper, we are
interested in the diffusion behavior of a NP with radius R.
Therefore, it is quite reasonable to consider ηs in Eq. (7) as
the microscopic viscosity experienced by a probe with size R,
rather than the macroscopic value. According to these consid-
erations, we can adopt the following size-dependent scaling
formula for ηs, which has been widely validated for polymer
solutions by FCS and electrophoresis:5,11,17

ηs = η0 exp *
,
λ

(
R
ξ

)δ
+
-

(R < R(0)
g ), (8a)

ηs = η0 exp *.
,
λ*
,

R(0)
g

ξ
+
-

δ

+/
-

(R > R(0)
g ), (8b)

where R(0)
g denotes the polymer radius of gyration under dilute

condition, λ and δ are system dependent parameters.39 Note
that for R > R(0)

g , ηs recovers the macroscopic viscosity ηmacro.
Another parameter is the localization length a involved in

the DW factor, which accounts for the kinetically arrested den-
sity fluctuations within a certain “local enough” length scale.
The DW factor is estimated as the normalized single chain
dynamic structure factor at the onset time when a diffusing
segment hits the boundary of this localization length.31 For
entangled polymer melts, it was argued that this localization
length scale could be just the tube diameter dT . For polymer
solutions considered in the present paper, however, this length
scale should be concentration dependent. As already well es-
tablished in polymer physics, there exists a critical volume
fraction φe for entanglement in polymer solutions. For volume
fraction above φe, polymer entanglement becomes relevant and
the localization length should be chosen as the tube diameter
dT as expected. For relatively dilute solutions with φ < φe,
entanglement is not relevant. However, the diffusing behavior
of a polymer segment should still be confined, at least within
the end-to-end distance Rc of a single chain. Therefore, it
is reasonable for us to choose a to be Rc for φ < φe. As a
consequence, we propose that

a =



Rc (φ∗ < φ < φe),
dT (φe < φ < φ∗∗), (9)

where φ∗ denotes an overlap volume fraction marking the onset
of semidilute regime and φ∗∗ denotes a crossover concentration
from semidilute to concentrated regimes. We note that Rc

is actually identical to dT at φe, such that this choice of a
facilitates us to investigate the dependence on volume fraction
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φ systematically with continuous crossover from unentangled
to entangled regimes.

Based on above discussions, we suggest that Eq. (7) can be
an appropriate approximation for dynamic scattering function
applicable for polymer solutions with proper considerations of

the entanglement effects. Consequently, combining Eqs. (3)-
(7), we can calculate the microscopic contribution to the long-
time diffusion constant, Dmicro. Together with the hydrody-
namic contribution Dhydro given by Eq. (2), we finally obtain
the total diffusion coefficient

D =
η0

ηmacro
D0 + D0




 ∞

0
dkk

h2
np(k)

Spp(k)


4ρp

9π3R
+

S0ηs

12π3Rη0
k3 exp

(
− k2a2

3π2Spp(k)
)


−1

, (10)

where D0 = kBT/(6πη0R) is the diffusion coefficient of the
nanoparticle in the neat solvent. The first term in the right side
corresponds to Dhydro and the second term refers to Dmicro.

To calculate the diffusion constant by using Eq. (10),
especially to investigate its dependence on the volume fraction
φ, we need to introduce several scaling relations regarding
the characteristic length scales involved. Note here that the
effective segment diameter σ, correlation length ξ, end-to-end
distance Rc, and tube diameter dT are all dependent on the
volume fraction φ. As already well-established in the litera-
ture,40 one has for φ∗ < φ < φ∗∗,

σ = σ(0)
(
φ

φ∗

)−1/8

, (11a)

ξ = R(0)
g

(
φ

φ∗

)−3/4

, (11b)

Rc = R(0)
c

(
φ

φ∗

)−1/8

, (11c)

dT = d(1)
T φ−3/4. (11d)

Herein, σ(0), R(0)
g , and R(0)

c are, respectively, the segment diam-
eter, polymer radius of gyration, and end-to-end distance under
dilute condition, while d(1)

T is the tube diameter in the melt. In
addition, these parameters can be determined by the degree of
polymerization N and the properties of polymer melts accord-
ing to

d(1)
T =


N (1)
e σ(1), σ(0) = σ(1)N0.1, R(0)

g =


N/6σ(0)

and

R(0)
c =

√
Nσ(0), (12)

where σ(1) and N (1)
e denote, respectively, the segment diameter

and the number of monomers in an entangled strand in the melt.
σ(1) is assumed to be independent of N and φ. The overlap
volume fractions φ∗ can be calculated easily from

φ∗ =
3M0N

4πdNAR(0)3
g

. (13)

The critical volume fraction φe for entanglement can be deter-
mined by the condition when the tube diameter dT equals to
the end-to-end distance Rc, which yields

φe =

(
N

Ne(1)

)−5/4( 11M0

πdNAσ(1)3

)−1/5

. (14)

For a given polymer solution, M0, d, N (1)
e , σ(1) are determined

by the polymer molecule itself and are input parameters from
which we can obtain the required parameters to calculate the
diffusion constant. Our theoretical formulation thus provides a
systematic framework to investigate the diffusion of nanoparti-
cles in semidilute polymer solutions, with particular attentions
paid on its dependence on the volume fraction φ, the degree of
polymerization N , and the NP size R, without any other fitting
parameters.

We would like to point out that the requirement to use ηs as
an input in Eq. (10) could potentially limit the use of our MCT
formulation. It would be very helpful if one can separately get
ηs as a function of the probe size R, which definitely deserves
more theoretical work. At the current stage, nevertheless, we
only use scaling forms for ηs given by Eq. (8).

III. RESULTS

As mentioned above, experimentally, many works have
been devoted to the diffusion dynamics of nanoparticles in
various polymer solutions. For example, by using FSC, Kohli
and Mukhopadhyay26 used gold nanoparticles to investigate
the length-scale-dependent dynamics in semidilute PEG-water
solutions. In Sec. II, we have established a theoretical frame-
work based on MCT. In this section, we will apply it to the PEG
systems to check its validity.

For the PEG system, the basic parameters are shown in
Table I, where the parameters λ and δ for microscopic viscosity
in Eq. (8) are obtained from experimental data.11 PEG samples
of two different molecular weights 5 kg/mol (PEG 5K) and
35 kg/mol (PEG 35K) will be explicitly analyzed. Key param-
eters for these two polymer systems, including the relevant
length scales under dilute conditions σ(0), R(0)

g , and R(0)
c , as

well as the critical volume fraction for the onset of semidilute
regime φ∗ and that for entanglement φe are listed in Table II,
which are obtained according to Eqs. (12)–(14). Besides, we
have η0 = 0.85 × 10−3 Pa S for the shear viscosity of the neat
solvent (water) at room temperature. With these values, we are
ready to calculate the diffusion coefficient D for a nanoparticle
in the PEG semidilute solutions by using Eq. (10).

A. The effect of polymer concentration

First of all, we investigate how the total diffusion coeffi-
cient D depends on the polymer concentration, here denoted
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TABLE I. Parameters for PEG.

M0 (kg/mol) d (kg/m3) σ(1) (nm) N
(1)
e d

(1)
T (nm) λ δ

0.12 1126 0.7 33 4 1.6 0.89

by the volume fraction φ. The macroscopic viscosity ηmacro
of PEG-water solutions at various concentrations, required
in Eq. (10), is obtained from Eq. (8b) combining the scaling
relation of ξ with φ given by Eq. (11b). We mainly consider
a concentration range from φ∗ to 0.4, in accordance with
that taken into account by experiments in Ref. 26, as shown
in Table II, φ∗ = 0.08 and 0.02 for PEG 5K and PEG 35K,
respectively. Furthermore, for PEG 5K, the polymer chain is
short and entanglement does not matter (φe = 0.68), therefore
the localization length a = Rc in the considered range of
volume fraction. For PEG 35K, however, the chain is long
and entanglement occurs for volume fraction larger than φe

= 0.16. In such a case, a is a piecewise function according
to Eq. (9), shifting its value from φ-dependent end-to-end
distance Rc for φ < 0.16 to φ-dependent tube diameter dT for
φ > 0.16.

We have calculated the diffusion coefficient for three
different radii of nanoparticle, i.e., R = 2.5, 5, and 10 nm which
have been investigated by experiments. Fig. 1 shows the plot of
D as a function of φ based on Eq. (10) (lines), for both PEG 5K
and 35K systems. The experimental data (symbols) obtained
by fluctuation correlation spectroscopy26 are also presented
for comparison. Strikingly, our theoretical results show perfect
agreements with the experimental ones. Note that in our frame-
work, one only needs to input the specific system parameters,
such as those in Tables I and II for PEG, and then can calculate
D at various concentrations in an explicit and straightforward
way. We would like to emphasize here that the agreement is not
the resultant of a parameter fitting. The perfect coincidence of
our calculated results with the experiments justifies our theory
to be a good microscopic strategy to understand the diffusivity
of nanoparticles in polymer solutions. In particular, it justifies
the validity of the summation form of the dynamic scattering
function Γpp (k, t) we propose in Eq. (7).

Moreover, as pointed out by Kohli and Mukhopadhyay,26

the phenomenological Phillies’ equation of stretched expo-
nential function D/D0 ∝ exp(−γφν) with adjustable param-
eters γ and ν fails to fitting the experimental data at high
concentrations for PEG 35K and R = 10 nm (dashed-dotted
line in Fig. 1). In fact, this deviation occurs in entangle-
ment regime, where the simple Phillies’ equation cannot ac-
count for the entanglement effect which becomes significant.
In contrast, our theory is applicable for both unentangled
and entangled polymer solutions, within a unified formalism
Eq. (10).

TABLE II. Parameters for solutions of PEG 5K and PEG 35K.

Symbol N σ(0) (nm) R
(0)
g (nm) R

(0)
c (nm) φ∗ φe

PEG 5K 46 1.0 2.8 7.0 0.08 0.68
PEG 35K 292 1.2 8.6 21.1 0.02 0.16

FIG. 1. Theoretical results based on Eq. (10) (lines) for the diffusion coef-
ficient D as a function polymer volume fraction φ, for nanoparticles with
radii R = 2.5, 5, and 10 nm in solutions PEG 5K and PEG 35K. The corre-
sponding experimental data (symbols) are also shown for comparison. The
dashed-dotted line refers to a fitting of the experimental data for PEG 35K
and R = 10 nm using Phillies’ equation D ∝ exp(−γφν).

B. The effect of nanoparticle size

We go further to study the effect of nanoparticle size on
the diffusion coefficient. As an example, we consider a PEG
35K solution with volume fraction φ = 0.2 which is in the
entangled regime. Accordingly, the required length scales at
this volume fraction are ξ = 1.5 nm, Rg = 6.4 nm, and a = dT

= 13.4 nm. The macroscopic viscosity is ηmacro = 1.73 Pa S
which is several orders of magnitude larger than that of neat
solvent. The microscopic viscosity ηs is dependent on the
particle size R according to Eqs. (8a) and (8b). We consider
nanoparticles with R/R(0)

g ranging from 0.1 to 2, where R(0)
g

= 8.6 nm as shown in Table II.
As illustrated in Eq. (10), the total diffusion coefficient

is the sum of Dhydro and Dmicro. In Fig. 2, the total diffu-
sion coefficient and the two parts of contributions, calcu-
lated from Eq. (10), are presented. For comparison, experi-
mental data reproduced from Ref. 26 are also shown. Clearly,
our theoretical results are in very good agreements with the

FIG. 2. The total diffusion coefficient D (solid line), the microscopic contri-
bution (Dmicro) (dashed line), and the hydrodynamic contribution (Dhydro)
(dashed-dotted line) are plotted as functions of nanoparticle radius scaled
by the polymer radius of gyration R/R

(0)
g for PEG 35K at φ = 0.2. The

experimental data (squares) reproduced from Ref. 26 are also shown.



024903-6 Dong et al. J. Chem. Phys. 143, 024903 (2015)

experimental results. In addition, we find there are three typical
size regimes wherein the microscopic and hydrodynamic
contributions exhibit alternative roles. As R/R(0)

g < 1, it is
obvious that the microscopic contribution Dmicro largely domi-
nates the diffusivity of the nanoparticle. It exceeds the hydro-
dynamic contribution Dhydro up to several orders of magnitude,
such that Dhydro is negligible. As R increases, the signifi-
cance of Dmicro decreases, while Dhydro becomes more and
more important. As R approaches R(0)

g , both microscopic and
hydrodynamic terms give comparable contributions to the total
diffusion coefficient. Finally, for even larger nanoparticles with
R/R(0)

g > 1, D is largely determined by the hydrodynamic
contribution Dhydro, while the contribution from Dmicro is negli-
gible. We have also applied our theory to study the PEG 5K
system, similar behaviors (not shown here) have been found
as in Fig. 2.

In the experimental studies of diffusion behavior of
nanoparticles in complex solutions, one of the main concerns
is whether the conventional SE relation is violated or not.
Actually, many evidences have shown that large deviation from
SE may occur especially for small particles. Generally, SE says
that the diffusion coefficient D should be inversely propor-
tional to the macroscopic viscosity of the solution, which can
be derived from macroscopic hydrodynamics. According to
Eq. (10), such a SE should be satisfied if the macroscopic part
Dhydro dominates. As already shown in Fig. 2, this should take
place for large nanoparticles with R/R(0)

g & 1. But for small
particles, Dmicro plays an important role and one expects that
large deviation from conventional SE should be observed.

To quantitatively investigate the deviation of the total
diffusion coefficient D from the SE relation, we have studied
the situations that R = 2.5 and 5 nm for PEG 35K (R(0)

g

= 8.6 nm) and R = 2.5 nm for PEG 5K (R(0)
g = 2.8 nm), for

which R/R(0)
g ≈ 0.3, 0.6, and 0.9, respectively. Fig. 3 pres-

ents the ratio D/DSE, where DSE is just obtained via Dhydro,
as a function of volume fraction φ for these three typical
values of R/R(0)

g . The upper two curves describe PEG 35K,
and the lowest curve is for PEG 5K. The experimental data
obtained by FCS26 are also shown for comparison. As already

FIG. 3. The ratio D/DSE calculated by MCT (lines) and obtained by ex-
periments (symbols)26 is plotted versus polymer volume fraction φ, for three
typical size ratios R/R

(0)
g = 0.3, 0.6, and 0.9. The particular onset volume

fractions for semidilute and entangled regimes are denoted.

demonstrated in Fig. 1, the total diffusion coefficient D by our
analysis coincides with the experimental results excellently.
Thus, the good agreement of D/DSE with the experimental
data here is not surprising. We see that as φ increases, the
deviation of D from DSE relation becomes more and more
remarkable. Moreover, for nanoparticles much smaller than
the polymer gyration radius R(0)

g (squares and circles), the
deviation of DSE from D can exceed up to several orders of
magnitude. In such cases, it is just the microscopic contribution
Dmicro rather than Dhydro which plays dominant role on the
diffusivity of nanoparticles in polymer solutions. While for
R/R(0)

g = 0.9 (triangles), the ratio D/DSE is approximately
unity and changes little with the polymer concentration. We
emphasize again that in our analysis, both unentangled and
entangled concentrations for PEG 35K are included.

C. D versus microscopic viscosity

Figs. 2 and 3 have demonstrated as R > R(0)
g , SE relation

works well. While for small particles R < R(0)
g , the deviation

of diffusion coefficient from this relation is evident. Recently,
several works11,26 have pointed out that the SE relation is
well sustained once we replace the macroscopic viscosity in
Eq. (2) by the microscopic viscosity which depends on the
nanoparticle size in case of R < R(0)

g . Previously, this under-
standing is mainly based on a phenomenological deduction
and lack of theoretical interpretation. It is therefore desirable
for us to check the relationship between diffusion coefficient
and the microscopic viscosity by using our MCT analysis.
As mentioned above, by fluorescence correlation spectroscopy
and capillary electrophoresis,11 the scaling form of micro-
scopic viscosity at all length-scales in PEG system (see Eq. (8))
is proposed. In view of it, we directly investigate how the
diffusion coefficient depends on the microscopic viscosity,
taking the advantage of our microscopic study based on MCT.
Note that in explicit expression (10), the equilibrium structure
functions Spp(k) and hnp(k), the segment number density ρp,
the localization length a, as well as the microviscosity ηs are all
dependent on the volume fraction φ. Thus, we can choose φ as a
variable parameter and then calculate D versus ηs. As a result,
Fig. 4 presents the scaled diffusion coefficient D0/D (remind
here D0 is the diffusion coefficient in neat solvent) as a func-
tion of the scaled viscosity ηs/η0, which includes two cases:
R > R(0)

g , which corresponds to R = 5 and 10 nm for PEG 5K
and R = 10 nm for PEG 35K; and R < R(0)

g , corresponding to
R = 2.5 nm for PEG 5K and R = 2.5 and 5 nm for PEG 35K.
The experimental data for these cases are presented also for
comparison. If DSE holds, one should have D0/D = ηs/η such
that the curves should collapse into a single line with slope one,
shown as the dashed-dotted line in Fig. 4.

We can make a couple of remarks from Fig. 4. First,
our theoretical results show good agreements with the experi-
mental data. Both theoretical and experimental data although
display a clear tendency to degenerate to the SE relation but
do not exactly collapse into the dashed line, indicating that
there do exist deviations from the exact SE relation. Second,
the curves show good linear dependence, except for some
obvious deviations for small particles R/R(0)

g = 0.3 in the range
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FIG. 4. Theoretical results based on Eq. (10) (lines) for the dependence of
the scaled diffusion coefficient D0/D on the scaled viscosity ηs/η0, for
nanoparticles with radii R = 2.5, 5, and 10 nm in solutions PEG 5K and PEG
35K. The corresponding experimental data (symbols) are also shown. The
dashed-dotted line refers to the SE-relation D0/D =ηs/η0.

where ηs/η0 is small, indicating that D0/D = κ (ηs/η0), with
κ slightly different from one which holds for relatively large
particles. Therefore, although our formulation is quite different
from the simple SE form, the calculated D does show rather
good consistence with SE-prediction using the microviscosity
ηs given that the particle size is not too small. For small
particles, the deviations are expected to be more remarkable.
This is because, for small nanoparticles, it might experience
a non-homogenous environment composed of polymer chains
and solvent molecules. Such a non-homogeneity might induce
the decoupling of diffusion coefficient from the viscosity of the
solution.41

IV. CONCLUSION

In summary, we have applied a MCT theoretical formalism
to study the long time diffusion behavior of nanoparticles
in polymer solutions. The total diffusion constant can be
separated into the summation of a macroscopic hydrodynamic
term Dhydro and a microscopic non-hydrodynamic contribution
Dmicro. The hydrodynamic term can be obtained via the tradi-
tional SE relation, while the microscopic term is calculated
using MCT framework where the polymer dynamic scattering
function Γpp (k, t) in the solution plays an important role. We
propose a particular approximate summation form for this
correlation function, wherein one term mainly describes the
diffusion behavior of polymer segments in short length and
time scale and another term accounts for the diffusion of the
polymer as a whole over large length scale. The former is
just a single exponential decay function with time but with an
interesting k3 dependence for polymer solutions compared to
k2 dependence for pure polymer melts. The latter also contains
an exponentially time-decaying factor involving the so-called
microscopic viscosity ηs of the solution, but with a necessary
DW factor characterizing the kinetical arrest of the polymer
segments within a local enough length scale a, which reads the
end-to-end distance Rc of the polymer chain in the unentangled
regime and crosses over to the tube diameter dT within the

entangled regime. By properly employing the scaling relations
of ηs with the volume fraction φ and the particle size R, we can
calculate the long-time diffusion constant D in a systematic
and straightforward way, with certain parameters specific to
the polymer molecule as input. In particular, the formalism
facilitates us to investigate how D depends on the volume
fraction φ of the solution, the nanoparticle size R, and the
degree of polymerization N , in both unentangled and entangled
situations, which can be compared directly to experimental
results. We can also use the theory to study the deviation from
traditional SE relation in a quantitative manner. For illustration,
we apply our theoretical approach to analyze the nanoparticle
diffusion in PEG-water system which has been studied in
detail experimentally. We find that our theoretical results show
very good quantitative agreements with the experimental data
in many aspects, such as the dependence of D on φ and R,
and the deviation from SE relation, for different nanoparticle
sizes and PEG molecular weights. Such good agreements
clearly demonstrate the validity of our MCT framework as
well as the particular form of the polymer dynamic scattering
function Γpp (k, t). We believe that our present work here
provides a sound starting point for future studies about time-
dependent diffusion behaviors of nanoparticles in complex
polymer solutions.
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