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Critical noise of majority-vote model on complex networks
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The majority-vote model with noise is one of the simplest nonequilibrium statistical model that has been
extensively studied in the context of complex networks. However, the relationship between the critical noise
where the order-disorder phase transition takes place and the topology of the underlying networks is still lacking.
In this paper, we use the heterogeneous mean-field theory to derive the rate equation for governing the model’s
dynamics that can analytically determine the critical noise fc in the limit of infinite network size N → ∞. The
result shows that fc depends on the ratio of 〈k〉 to 〈k3/2〉, where 〈k〉 and 〈k3/2〉 are the average degree and the 3/2
order moment of degree distribution, respectively. Furthermore, we consider the finite-size effect where the
stochastic fluctuation should be involved. To the end, we derive the Langevin equation and obtain the potential of
the corresponding Fokker-Planck equation. This allows us to calculate the effective critical noise fc(N ) at which
the susceptibility is maximal in finite-size networks. We find that the fc − fc(N ) decays with N in a power-law
way and vanishes for N → ∞. All the theoretical results are confirmed by performing the extensive Monte Carlo
simulations in random k-regular networks, Erdös-Rényi random networks, and scale-free networks.
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I. INTRODUCTION

Equilibrium and nonequilibrium phase transitions in en-
sembles of complex networked systems have been a subject
of intense research in the field of statistical physics and many
other disciplines [1–4]. Owing to the inherent randomness
and heterogeneity in the interacting patterns, phase transitions
on complex networks are drastically different from those on
regular lattices in Euclidean space. Examples range from
the anomalous behavior of Ising model [5–9] to a vanishing
percolation threshold [10,11] and the absence of epidemic
thresholds that separate healthy and endemic phases [12–14]
as well as explosive emergence of phase transitions [15–27].
So far, unveiling the relationship between the onset of phase
transitions and the topology of the underlying networks is still
a topic of considerable attention.

The majority-voter (MV) model is a simple nonequilibrium
Ising-like system with up-down symmetry that presents an
order-disorder phase transition at a critical value of noise [28].
Since Oliveira pointed out that the MV model on a square
lattice belongs to the universality class of the equilibrium Ising
model [29], the model has been extensively studied in the con-
text of complex networks, including random graphs [30,31],
small world networks [32–34], scale-free networks [35,36],
and some others [37–42]. These results showed that the
critical exponents are generally dependent on the underlying
interacting substrates. However, the studies of previous works
are mainly based on numerical simulations. Especially the
analytical determination of the critical noise, which is still
lacking at present.
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For this purpose, in this paper we employ the heterogeneous
mean-field theory to derive the rate equation for governing the
MV model’s dynamics on undirected networks. According
to linear stability analysis, we determine the critical point of
noise fc, the onset of an order-disorder phase transition in the
limit of infinite-size networks N → ∞. The analytical result
shows that fc is related to the ratio of the first moment to
the 3/2 order moment of degree distribution. Furthermore, we
derive the Langevin equation to study the effect of stochastic
fluctuation on finite-size networks. By solving the potential
of the corresponding Fokker-Planck equation, we calculate
the susceptibility as a function of noise and determine the
effective critical noise fc(N ) on finite-size networks at which
the susceptibility is maximal. We find that the difference fc −
fc(N ) decays in power-law ways with N . Extensive Monte
Carlo (MC) simulations are performed on diverse network
types to validate the theoretical results.

II. MODEL

We consider the MV model with noise on complex networks
defined by a set of spin variables {σi} (i = 1, . . . ,N), where
each spin is associated to one node of the underlying network
and can take the values ±1. The system evolves as follows:
for each spin i, we first determine the majority spin of i ′s
neighborhood. With probability f the node i takes the opposite
sign of the majority spin; otherwise, it takes the same spin as the
majority spin. The probability f is called the noise parameter
and plays a similar role of temperature in equilibrium spin
systems. In this way, the single spin-flip probability can be
written as

w(σi) = 1

2

⎡
⎣1 − (1 − 2f )σiS

⎛
⎝∑

j

aij σj

⎞
⎠

⎤
⎦ , (1)
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where S(x) = sgn(x) if x �= 0 and S(0) = 0. In the latter case
the spin σi is flipped to ±1 with probability equal to 1/2. The
elements of the adjacency matrix of the underlying network
are defined as aij = 1 if nodes i and j are connected and
aij = 0 otherwise. In the case f = 0, the majority-vote model
is identical to the zero temperature Ising model [43,44].

III. RESULTS

To proceed a mean-field treatment, we first define qk as the
probability that a node of degree k is in +1 state, and Q as
the probability that for any node in the network, a randomly
chosen nearest-neighbor node is in +1 state. Furthermore,
for any node the probability that a randomly chosen nearest-
neighbor node has degree k is kP (k)/〈k〉, where P (k) is degree
distribution defined as the probability that a node chosen at
random has degree k and 〈k〉 is the average degree [2]. It is
supposed to be reasonable only in networks without degree
correlation. The probabilities qk and Q satisfy the relation

Q =
∑

k

kP (k)qk/〈k〉. (2)

Thus, we can write rate equations for qk as

q̇k = −qk(1 − ψk) + (1 − qk)ψk

= −qk + ψk, (3)

where ψk is is the probability that a node of degree k takes the
+1 value, which can be expressed as

ψk(Q) = (1 − f )ϕk(Q) + f [1 − ϕk(Q)]. (4)

Here, ϕk(Q) is the probability that a node of degree k with
+1 state takes the majority rule, which can be written by a
binomial distribution,

ϕk(Q) =
k∑

n=�k/2	

(
1 − 1

2
δn,k/2

)
Cn

k Qn(1 − Q)k−n, (5)

where �·	 is the ceiling function, δ is the Kronecker symbol,
and Cn

k = k!/[n!(k − n)!] are the binomial coefficients. By
introducing Eq. (3) into Eq. (2) we obtain a closed-rate
equation for the quantity Q,

Q̇ = −Q + �(Q), (6)

where

�(Q) =
∑

k

kP (k)ψk(Q)/〈k〉. (7)

In the steady state Q̇ = 0, we have Qs = �(Qs). Figure 1
shows that the two typical examples of graphic solutions of Qs .
One can easily find that a trivial stationary solution, Qs = 1

2 ,
always exists irrespective of the value of f (corresponding
to a disordered phase 〈σi〉 = 0), as ϕk( 1

2 ) = 1
2 and �( 1

2 ) = 1
2 .

However, the other two solutions are possible if f is less
than a critical value fc, and they represent the existence of two
ordered phases with up-down symmetry. Therefore, the critical
noise fc is determined by the condition that the derivation of
�(Q) with Q equals to one at f = fc, i.e.,

d�(Q)

dQ

∣∣∣∣
Q= 1

2

= 1. (8)

FIG. 1. (Color online) Graphic demonstration of steady-state so-
lutions of Q. When f is less than a critical value fc, there are
three solutions. One is at Q = 1

2 corresponding to a disordered phase
and the other two correspond to two symmetric ordered phases. For
f > fc, there is only one solution at Q = 1

2 .

To do this, we rewrite approximately Eq. (5) as

ϕk(Q) = ϕk

(
1
2 + y

) = 1
2 + 1

2 erf (y
√

2k), (9)

where erf(x) is the error function. Note that this approximation
is plausible for large values of k as the binomial distribution
can be approximated by a normal distribution and the sum
over n in Eq. (5) can be substituted by an integral [43]. The
derivation of �(Q) with Q can be expressed analytically by

d�(Q)

dQ

∣∣∣∣
Q= 1

2

=
∑

k

kP (k)

〈k〉 (1 − 2f )
dϕ

(
1
2 + y

)
dy

∣∣∣∣∣
y=0

=
∑

k

kP (k)

〈k〉 (1 − 2f )

√
2k

π
e−2ky2

∣∣∣∣∣
y=0

= (1 − 2f )

√
2

π

〈k3/2〉
〈k〉 , (10)

where 〈kn〉 = ∑
k knP (k) is the nth moment of degree distribu-

tion. Inserting Eq. (10) into Eq. (8), we arrive at the analytical
expression of fc,

fc = 1

2
− 1

2

√
π

2

〈k〉
〈k3/2〉 . (11)

Note that the dependence of fc on the 3/2 order moment
of degree distribution is particularly unusual. Unlike the
equilibrium Ising model and nonequilibrium epidemic model,
their critical points are both dependent on the first and second
moments of degree distribution [6,12].

To validate the theoretical results on fc, we shall consider
the three network types: the random k-regular networks
(RkRN) and Erdös-Rényi random networks (ERRN), as
the representations of degree homogeneous networks, and
scale-free networks (SFN) as the representations of degree
heterogeneous networks. For RkRN, each node has the same
degree k and degree distribution follows the δ-like function
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P (k) = δ(k), and thus Eq. (11) can be reduced to

f RkRN
c = 1

2
− 1

2

√
π

2

1√
k
. (12)

From Eq. (12), we see that fc is a decreasing function of k.
For k = N − 1 → ∞, fc = 1

2 , and RkRN thus become the
globally connected networks. For ERRN, degree distribution
follows Poisson P (k) = 〈k〉ke−〈k〉/k! with the average degree
〈k〉, and the theoretical value of fc for ERRN can be
numerically calculated according to Eq. (11).

For SFN, degree distribution follows a pow-law function
P (k) ∼ k−γ , with degree exponent γ > 2. In the thermody-
namic limit N → ∞, 〈k3/2〉 diverges for γ � 5/2, such that
the critical noise becomes fc = 1

2 according to Eq. (11). For
γ > 5/2, both 〈k〉 and 〈k3/2〉 are finite in the limit of N → ∞,
and they are γ -dependent given by 〈k〉 = (γ − 1)k0(γ − 2)
and 〈k3/2〉 = (γ − 1)k3/2

0 (γ − 5/2) with k0 being the minimal
node degree. By the above analysis, we immediately obtain
the critical noise fc for SFN

f SFN
c =

{
1
2 − 1

2

√
π
2

γ−5/2
γ−2

1√
k0

, γ > 5/2
1
2 , γ � 5/2

. (13)

We first generate the networks according to the Molloy-
Reed model [45]: each node is assigned a random number of
stubs k that is drawn from a given degree distribution. Pairs
of unlinked stubs are then randomly joined. We then run the
standard MC simulation: at each MC step, each node is first
randomly chosen once on average and then make an attempt
to flip spin with the probability according to Eq. (1).

In order to numerically obtain the fc, we need to calculate
the Binder’s fourth-order cumulant U , defined as

U = 1 − [〈m4〉]
3[〈m2〉]2 , (14)

where m = ∑N
i=1 σi/N is the average magnetization per node,

〈·〉 denotes time averages taken in the stationary regime, and [·]
stands for the averages over different network configurations.
The critical noise fc is estimated as the point where the curves
U ∼ f for different network sizes N intercept each other. In
our simulations, fc is determined by five different network
sizes: N = 500, 1 000, 2 000, 5 000 and 10 000.

For comparison, in Fig. 2 we plot the fc obtained from the
theoretical prediction (lines) and the MC simulation (symbols),
respectively. In Figs. 2(a) and 2(b), we show the results on
RkRN and on ERRN, respectively. In Figs. 2(c) and 2(d), we

show the results on SFN and plot the fc as a function of k0 for
some fixed γ in Fig. 2(c) and of γ for some fixed k0 in Fig. 2(d).
It is clearly observed that for large values k there are an excel-
lent agreements between the theory and simulation. However,
for relatively small k the used approximation in Eq. (9) is not
very valid, such that the discrepancy between them exists.

So far, we have obtained the analytical expression of fc

and confirmed its validity by performing MC simulations on
different networks. The expression is only valid for infinite size
networks N → ∞, where the finite-size fluctuation is ignored.
For finite-size networks, the fluctuation is unavoidable and the
actual phase transition never happens. However, one can define
an effective critical noise fc(N ) at which the susceptibility (the
variance of an order parameter) is maximal. Obviously, fc(N )
is size-dependent and recovers fc in the limit of N → ∞.
To get fc(N ), we will derive the fluctuation-driven Langevin
equation for Q [46,47]:

Q̇ = E[	Q] +
√
V[	Q]ξ (t), (15)

where E[	Q] and V[	Q] are the mean value and the variance
of the variation of Q, respectively, and ξ (t) is a Gaussian
white-noise satisfying 〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t ′)〉 = δ(t − t ′).
For the present model,E[	Q] andV[	Q] can be computed as

E[	Q] = N
∑

k

P (k)qk[1 − ψk(Q)]

(
− k

N〈k〉
)

+N
∑

k

P (k)(1 − qk)ψk(Q)

(
k

N〈k〉
)

= −Q + �(Q), (16)

and

V[	Q] = N
∑

k

P (k)qk[1 − ψk(Q)]

(
− k

N〈k〉
)2

+N
∑

k

P (k)(1 − qk)ψk(Q)

(
k

N〈k〉
)2

=
∑

k

k2P (k)

N〈k〉2 [qk(1 − ψk(Q)) + (1 − qk)ψk(Q)].

(17)

Equation (17) is not yet a closed equation for Q because the dif-
fusion term V[	Q] involves degree-dependent quantities qk .
To close it, we use the quasistatic approximation obtained from
the rate Eq. (3), imposing q̇k � 0, i.e., qk � ψk(Q) [46,47].

FIG. 2. (Color online) The critical noise fc obtained from the theory (lines) and MC simulation (symbols) on (a) RkRN, (b) ERRN, and
(c, d) SFN.
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The approximation assumes that Q(t) varies much more
slowly with respect to the dynamics of the microscopic degrees
of freedom qk(t). By the approximation, Eq. (17) becomes

V[	Q] = 2

N〈k〉2

∑
k

k2P (k)ψk(Q)[1 − ψk(Q)]. (18)

Therefore, we obtain the fluctuation-driven Langevin equation
with a closed form,

Q̇ = −Q + �(Q) +
√

2D(Q)ξ (t), (19)

with multiplicative noise D(Q) = 1
N〈k〉2

∑
k k2P (k)ψk(Q)

[1 − ψk(Q)]. Clearly, in the limit of N → ∞, the fluctuation
term D(Q) → 0, and Eq. (19) thus recovers to the mean-field
equation derived in Eq. (6).

Furthermore, let P (Q,t) denote the probability density
distribution of Q at time t . Then, the Fokker-Planck equation
of P (Q,t) corresponding to Eq. (19) can be given by

∂P (Q,t)

∂t
= − ∂

∂Q
[−Q + �(Q) +

√
D(Q)D′(Q)]P (Q,t)

+ ∂2

∂2Q
D(Q)P (Q,t). (20)

FIG. 3. (Color online) The susceptibility χ ′ as a function of noise
f for some different network sizes: N = 1 000,2 000,5 000,10 000.
(a) RkRN: k = 20, (b) ERRN: 〈k〉 = 20, (c) SFN: γ = 2.4 and k0 =
20, and (d) γ = 3 and k0 = 20. Lines and symbols indicate the results
from theory and MC simulation, respectively.

The stationary distribution is P (Q) = CeUFP(Q), where C is
the normalized constant and

UFP(Q) = 1

2
ln[D(Q)] −

∫ Q −S + �(S)

D(S)
dS (21)

is called the potential of the Fokker-Planck equation [48].
The critical noise fc(N ) for finite-size networks is deter-

mined using the modified susceptibility χ ′ defined as

χ ′ = N [〈y2〉 − 〈|y|〉2], (22)

where y = Q − 1
2 , 〈|y|〉 and 〈y2〉 are calculated by the integrals

〈|y|〉 =
∫ 1

0

∣∣∣∣Q − 1

2

∣∣∣∣P (Q)dQ (23)

and

〈y2〉 =
∫ 1

0

(
Q − 1

2

)2

P (Q)dQ, (24)

respectively. We expect that χ ′ have a peak at f = fc(N ) that
diverges and fc(N ) converges to fc when the network size
increases.

In Fig. 3, we show that χ ′ as a function of noise f

for some different network sizes N on RkRN, ERRN, and
SFN. For comparison, the values of χ ′ obtained from the
theoretical calculations for Eq. (22) and from MC simula-
tions are indicated by the lines and symbols, respectively.
The theoretical calculations can give a good prediction for
simulation results. As mentioned above, the point correspond-
ing to the maximal χ ′ lies in the effective critical noise fc(N )
for finite-size networks. In addition, we should note that we

FIG. 4. (Color online) Log-log plot of the differences of the
effective critical noise fc for finite size networks with fc, 	f (N ) =
fc − fc(N ), with N on (a) RkRN: k = 20, ERRN: 〈k〉 = 20, and
(b) SFN: k0 = 20. 	f (N ) power law decays with N : 	f (N ) ∼
N−ν . Lines and symbols indicate the results from theory and MC
simulation, respectively. The inset of Fig. 4(b) shows the exponent ν

as a function of γ .
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find that from MC simulations the commonly used suscep-
tibility χ = N [〈m2〉 − 〈|m|〉2] and our used susceptibility χ ′
defined in Eq. (22) share the same locations where they are
maximal (results not shown here).

In Fig. 4, we plot the difference 	f (N ) = fc − fc(N ) as a
function of N in double logarithm coordinates. The lines and
symbols also indicate the results of theoretical calculations
from Eq. (22) and MC simulations, respectively. As pointed
out by many previous studies, 	f (N ) scale with N in a power-
law way: 	f (N ) ∼ N−ν . With the increment of N , 	f (N )
decreases and tends to zero in the limit N → ∞, recovering
the result of Eq. (11). For RkRN and ERRN, we find that the
exponents ν are independent of k and 〈k〉. For SFN, ν is also
almost independent of k0 but is an increasing function of γ

[see the inset of Fig. 4(b)].

IV. CONCLUSIONS

In conclusion, we have used heterogeneous mean-field
theory to derive the rate equation of an order parameter Q

for the MV model defined on complex networks. By the linear
stability analysis, we have analytically obtained the critical
noise fc at which the order-disorder phase transition takes
place in the limit of infinite size networks. We find that that

fc is determined by both the first and 3/2 order moments
of degree distribution of the underlying networks. Moreover,
we have incorporated the effect of stochastic fluctuation on
finite-size networks via the derivation of the Langevin equation
of Q. By solving the corresponding Fokker-Planck equation,
we have obtained the effective critical noise fc(N ) where the
susceptibility is maximal. The results show that fc − fc(N )
power law decreases with N and reduces to zero in the
limit of N → ∞. To validate the theoretical results, we have
performed the extensive MC simulations on RkRN, ERRN,
and SFN. There is excellent agreement between the theory
and simulations. However, our theory does not perform well
on very sparse networks. Therefore, in the future it will
be desirable to develop high-order theories (such as pair
approximation [49–52]) to obtain more accurate estimation
of the critical point of the networked MV model.
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