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Abstract – We study the heterogeneous nucleation of Ising model on complex networks under
a nonequilibrium situation where the impurities perform degree-biased motion controlled by a
parameter α. Through the forward flux sampling and detailed analysis on the nucleating clusters,
we find that the nucleation rate shows a nonmonotonic dependence on α for small number of
impurities, in which a maximal nucleation rate occurs at α = 0 corresponding to the degree-
uncorrelated random motion. Furthermore, we demonstrate the distinct features of the nucleating
clusters along the pathway for different preference of impurities motion, which may be used to
understand the resonance-like dependence of nucleation rate on the motion bias of impurities.
Our theoretical analysis shows that the nonequilibrium diffusion of impurities can always induce a
positive energy flux that can facilitate the barrier-crossing nucleation process. The nonmonotonic
feature of the average value of the energy flux with α may be the origin of our simulation results.

Copyright c© EPLA, 2015

Introduction. – Nucleation is an activated process
which initiates the decay of a metastable state into a more
stable one [1] driven by fluctuation. Many important dy-
namical processes on real-world scenarios, such as crys-
tallization [2,3], fractures [4,5], glass formation [6], and
protein folding [7], to list just a few, are concerned with
nucleation. For many decades, our understanding of nu-
cleation has been dominated by the classical nucleation
theory (CNT), and it has been applied not only to the
liquid-gas and liquid-solid systems, but also to regular lat-
tices in Euclidean space. For instance, in two-dimensional
lattices, Allen et al. discovered that shear can enhance
the nucleation rate and the rate peaks at an intermediate
shear rate [8]. Sear found that a single impurity may con-
siderably enhance the nucleation rate [9]. Page and Sear
reported that the existence of a pore may lead to two-
stage nucleation, and the overall nucleation rate can reach
a maximum level at an intermediate pore size [10]. In
three-dimensional lattices, the nucleation pathway of the
Ising model has also been studied by Sear and Pan [11,12].

(a)E-mail: hzhlj@ustc.edu.cn

In addition, the validity of CNT has been tested in other
Euclidean space [13–19].

Since many real systems can be properly modeled by
network-organized structure [20–22], it is thus an inter-
esting topic to explore nucleation process in complex net-
works. Recently, we have studied nucleation dynamics of
the Ising model on scale-free (SF) networks [23], Erdös-
Rényi (ER) networks [24] and modular networks [25]. We
found that, for homogeneous nucleation on SF networks,
many small isolated nucleating clusters emerge at the early
stage of the nucleation process, until suddenly they form
the critical nucleus through a sharp merging process, and
the nucleation rate decays exponentially with network size.
For homogeneous nucleation on ER networks, there always
exists a dominant nucleating cluster to which relatively
small clusters are attached gradually to form the critical
nucleus. For modular networks, as the network modular-
ity worsens the nucleation undergoes a transition from a
two-step to one-step process and the nucleation rate shows
a nonmonotonic dependence on the modularity. For het-
erogeneous nucleation, target impurities are shown to be
much more efficient to enhance the nucleation rate than
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random ones. However, in our previous work, impurities
are considered to be fixed in some nodes with the new
phase. As we know, mobility is a ubiquitous feature of real
systems [26–30], including the mobility of impurities, and
may drastically influence the dynamical evolution. For ex-
ample, it has been reported that mobility promotes syn-
chronization [31,32], enhances signal response [33], affects
contagion processes [34], and tunes biodiversity [35]. In
addition, impurities may be caused by the vacancy de-
fects with no interaction, not with new phase. How the
impurity motion would influence the nucleation rate and
pathway is still an open question. Motivated by this, we
will study the different roles of the motion in the forma-
tion of nucleating clusters, which can reveal the nucleation
pathways of the Ising model in the underlying networks.

In the present work, we adopt the recently proposed for-
ward flux sampling (FFS) [36] approach, which is efficient
and easy to implement to study rare events, and employ
SF networked Ising model. Ising model is a paradigm for
many phenomena in statistical physics and widely used
to study the nucleation process. By introducing degree-
biased random walks for impurities on the network, we
find that for small number of impurities the nucleation
rate shows a nonmonotonic dependence on the bias pa-
rameter of the motion of impurities, in which a maximal
nucleation rate occurs at the situation where the impu-
rities perform random motions. Furthermore, we show
that there are different properties of the nucleating clus-
ters along the pathway corresponding to different impuri-
ties bias motions.

Model and method. –
Model. We consider the nonequilibrium Ising model

with mobile impurities on complex networks consisting of
N normal nodes and w defect nodes called impurities.
Each normal node is endowed with a spin variable si that
can be +1 (up), or −1 (down), and each defect node is
endowed with spin 0 (impurity). The Hamiltonian of the
system is given by

H = −J
∑

i<j

Aijsisj − h
∑

i

si, (1)

where J is the coupling constant and h is the external
magnetic field. For convenience, we set J = 1 in the fol-
lowing discussions. The elements of the adjacency matrix
of the network take Aij = 1 if nodes i and j are connected
and Aij = 0 otherwise. The degree, that is the number of
neighboring nodes, of node i is defined as ki =

∑N
j=1 Aij .

Notice that, without defect nodes, there exist a number of
simulations and analytical results for the Ising model in
ER and SF networks [37–41].

The dynamical evolution of our model has two ingredi-
ents: spin-flip and impurity diffusion. In each time step,
we attempt to perform the following two types of dynam-
ics. 1) Spin-flip: we randomly chose a normal node and
attempt to flip its spin according to the Metropolis accep-
tance probability min(1, e−βΔE) [42], where β = 1/(kBT )

with the Boltzmann constant kB and the temperature T ,
and ΔE is the energy change due to the flipping process.
2) Impurity diffusion: after a spin of a normal node has
been attempted to be flipped, we then randomly choose
a defect node (impurity node) i and exchange the spin
si with that sj of one of the nearest neighboring normal
nodes j according to the probability

pi↔j = D
kα

j∑
l∈N (i),sl �=0 kα

l

. (2)

Here D is the diffusion constant, the sum is taken over
all the nearest neighboring normal nodes of i, and α is
a tunable parameter which biases the impurities’ motion
either towards low-degree nodes (α < 0) or towards hubs
(α > 0). For α = 0, we recover the standard (unbiased)
random walk.

In general, with the increment of T the system under-
goes a second-order phase transition from an ordered state
to a disordered one at the critical temperature Tc. Below
Tc the system prefers to be in a state with all spins up
or down. Given a small external field, one of these two
states will become metastable, and if initiated predomi-
nantly in this metastable state, the system will remain for
a significantly long time before it undergoes a nucleation
transition to the thermodynamically stable state. We are
interested in the rate and pathways for this transition.

FFS method. The FFS method has been success-
fully used to calculate rate constants and transition paths
for rare events in equilibrium and nonequilibrium sys-
tems [8–10,36,43,44]. This method uses a series of in-
terfaces in phase space between the initial and final states
to force the system from the initial state A to the final
state B in a ratchetlike manner. First, we define an order
parameter λ(x), where x represents the phase-space coor-
dinates, such that the system is in state A if λ(x) < λ0
and state B if λ(x) > λM , while a series of nonintersect-
ing interfaces λi(0 < i < M) lie between states A and B,
such that any path from A to B must cross each interface
without reaching λi+1 before λi. The transition rate R
from A to B is calculated as

R = Φ̄A,0P (λM |λ0) = Φ̄A,0

∏M−1

i=0
P (λi+1|λi), (3)

where Φ̄A,0 is the average flux of trajectories crossing λ0

in the direction to B. P (λM |λ0) =
∏M−1

i=0 P (λi+1|λi) is
the probability that a trajectory crossing λ0 in the direc-
tion to B will eventually reach B before returning to A,
and P (λi+1|λi) is the probability that a trajectory which
reaches λi, having come from A, will reach λi+1 before
returning to A. For more detailed descriptions of FFS
method, please see ref. [45].

In this work, we perform Monte Carlo simulation and
use FFS to study nucleation rate and pathways of the non-
equilibrium phase from the metastable spin phase. Specifi-
cally, we set T < Tc, h = 0.5 and start from an initial state
with s = −1 for most of the spins. We define the order pa-
rameter λ as the total number of up spins in the network.
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Fig. 1: (Color online) The nucleation rate ln R as a function of
α for different values of the diffusion rate D. The dotted line
indicates the result without impurities, i.e., w = 0. Parameters
are N = 1000, the average network degree 〈k〉 = 6, w = 2,
h = 0.7, T = 2.59, λ0 = 130 and λM = 880.

The spacing between adjacent interfaces is fixed at 3 up
spins. We perform 1000 trials per interface for each FFS
sampling, from which at least 200 configurations are saved
in order to investigate the statistical properties along the
nucleation pathway. The results are obtained by averag-
ing over 20 independent FFS samplings and 50 different
network realizations.

Results and discussion. –

Nucleation rate. In what follows, we employ a
Barabási-Albert (BA) SF network, whose degree distri-
bution follows a power law p(k) ∼ k−γ with the scaling
exponent γ = 3 [46].

To begin, we fix the small number w = 2 of impurities
and vary the diffusion constant D to investigate how the
nucleation rate R (in units of MCstep−1spin−1) evolves
with controlling parameter α. Figure 1 shows the depen-
dence of the logarithm of the nucleation rate lnR on α for
different values of D. One can observe that lnR exhibits a
resonance-like behavior with the increment of α. That is,
there exists an optimal value of α at α = αopt, correspond-
ing to the maximum R. Interestingly, this phenomenon is
robust against the diffusion constant D. This result in-
dicates that random motions of impurities corresponding
to αopt = 0 is more favorable to nucleation than degree-
biased motions. In addition, for any given values of α we
find that lnR increases monotonously with D, indicating
that impurities mobility is always in favor of nucleation.
That is, the larger the mobility rate D is, the larger ln R
becomes. The dotted line indicates the result without im-
purities, i.e., w = 0. Obviously, for any given value of D
impurities may considerably enhance the nucleation rate,
which is consistent with [9].

It is worthy noting that this nontrivial dependence is
unobservable if the number of impurities w becomes rela-
tively large. Figure 2 shows the dependence of lnR on

Fig. 2: (Color online) ln R as a function of α for different values
of w. The dotted line indicates the result without impurities,
i.e., w = 0. Other parameters are the same as in fig. 1 except
for D = 0.5 and h = 0.5.

α for different values of w. Clearly, for small number
of impurities, say w = 1, 3, 5, 8, 10, one can always ob-
serve an interesting mobility induced resonance-like be-
havior in accordance with fig. 1. While for big w, say
w = 15, 20, 25, 30, lnR increases monotonously with α for
α ≤ 1 and then approaches a constant value for α > 1.
Other values of w have also been investigated; the quali-
tative results are the same and not shown here. But for
w = 0 indicated by the dotted line, i.e., without impuri-
ties, lnR is considerably less than that of impurities.

Nucleation pathway. To elucidate the detailed char-
acteristics along the nucleation pathway for different bias
motions, we save lots of configurations generated by FFS
and perform detailed analysis on the nucleating clusters,
including the relative size of the largest and the second
largest cluster, average degree of the cluster nodes and
the number of clusters. According to CNT, there exists
a critical nucleus size λc of the new phase, above which
the system grows rapidly to the new phase. Herein, we
mainly focus on the nucleation stage where λ < λc. In our
simulation, we determine λc by computation of the com-
mittor probability PB, which is the probability of reach-
ing the thermodynamic stable state before returning to
the metastable state. As commonly reported in the litera-
ture [12,18], the critical nucleus appears at PB(λc) = 0.5.
Since λc are different for different bias parameters, we thus
introduce λ/λc as the control parameter.

Following the previous study [24], we introduce the
relative size Smax, Ssec of the largest and the second largest
nucleating cluster, which are defined as the ratios of the
number of up spins within the largest and the second
largest cluster to the total number of up spins, respec-
tively. Smax and Ssec (averaged over the ensemble at each
interface) as a function of λ/λc are plotted in fig. 3(a).
Clearly, one can see that Smax for α = 0 (solid red cir-
cles) is always larger than those for α = −3 (solid black
squares) and α = 3 (solid blue triangles). Specifically,
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Fig. 3: (Color online) (a) The relative size Smax, Ssec of the
largest and the second largest nucleating cluster, respectively,
as a function of λ/λc. (b) The average degrees kmax, ksec of
the nodes within the largest and the second largest nucleating
cluster, respectively, as a function of λ/λc. Panels (c) and (d)
correspond to the average degree 〈knew〉 of the nodes inside
nucleating clusters and the number nc of nucleating clusters,
respectively, as a function of λ/λc for α = −3, 0, 3, correspond-
ing to motion preferring to low-degree nodes, to random nodes
and high-degree nodes, respectively. Symbols for different mo-
tion bias in (b), (c) and (d) are the same as in (a). Other
parameters are the same as in fig. 1 except for D = 0.5 and
h = 0.5.

at λ/λc = 0.35, Smax grows already more than 50% for
α = 0, while it is less than 30% for α = −3 and about
20% for α = 3, as shown by the dashed gray lines in
fig. 3(a). But when λ/λc = 1 they almost tend to 100%
together. This difference means that for unbiased random
motion Smax grows fast at the very beginning following by
a relatively slow increasing, while for biased motion, Smax
increases slowly at first and then rapidly when approach-
ing the critical nucleus. From fig. 3(a) one can also observe
that the relative size Ssec (denoted by the empty symbols)
is greatly less than Smax, indicating that the nucleation is
dominated by the largest nucleating cluster.

We also plot 〈kmax〉 and 〈ksec〉, defined as the average
degrees of the nodes within the largest and the second
largest nucleating cluster respectively, as a function of
λ/λc in fig. 3(b). Clearly, 〈kmax〉 for α = 0 indicated
by the solid red circles, is always larger than those for
α = −3 and α = 3 indicated by the solid black squares
and solid blue triangles respectively. Strikingly, at the
early nucleating stage, 〈kmax〉 grows sharply for the for-
mer, while it grows gradually for the latter. Furthermore,
it is found that 〈ksec〉 is greatly less than 〈kmax〉, which
suggests again that the largest nucleating cluster domi-
nates the nucleation.

In addition, we also investigate the average degree
〈knew〉 of the nodes inside the new phase and the num-
ber nc of nucleating clusters, and plot 〈knew〉 and nc as

Fig. 4: (Color online) Schematic illustration of an impurity dif-
fusion. Panel (a) indicates an impurity occupied k-degree node
(filling node) will exchange its present position with a spin on
a k′-degree node (arrow node), and panel (b) denotes the re-
verse process. m′ and m′′ denote the average magnetization of
a randomly chosen neighboring normal node and defect (im-
purity) node, respectively. About their definitions, please see
eqs. (4), (5).

a function of λ/λc in fig. 3(c) and (d), respectively. As
shown, 〈knew〉 increases monotonically with λ/λc for dif-
ferent α = −3, 0, 3, which means the new phase tends to
grow from those nodes with smaller degrees. Neverthe-
less, for different preference of impurities motion it shows
the distinct features along the nucleation pathway. For
α = 0, 〈knew〉 grows fast at the very beginning follow-
ing by a relatively slow increasing. For α = −3 and 3,
〈knew〉 increases slowly at first and then grows fast until
approaching the critical nucleus. Such a scenario is consis-
tent with figs. 3(a) and (b). From fig. 3(d) one can observe
that nc shows nonmonotonic dependence on λ/λc for dif-
ferent α. Especially, the number of clusters for α = 0 is
always less than that for α = −3, 3. On the other hand,
nc approaches the same magnitude near the formation of
critical nucleus for three different α, which suggests that
it is easier for the critical nucleus comes into being for un-
biased random motion than that for others. This result is
also consistent with the picture shown in figs. 3(a) to (c).

To further understand the nontrivial effect of the
nonequilibrium diffusion on nucleation, we will evaluate
the average energy change due to the diffusion process be-
tween an impurity and a spin. To begin, let us consider
such a process on a link connecting a k-degree node and a
k′-degree node. As shown in fig. 4(a), an impurity occu-
pied k-degree node will exchange its present position with
a spin of k′-degree node. The reverse process is shown
in fig. 4(b). Let qk and mk denote the probability of
a k-degree node occupied by an impurity and the aver-
age magnetization of a k-degree node occupied by a spin,
respectively. For a spin node on degree uncorrelated net-
works, the average magnetization m′ of a randomly chosen
neighboring node is written as

m′ =
∑

k

kP (k)
〈k〉 mk(1 − qk). (4)
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While for an impurity node, the average magnetization of
a randomly chosen neighboring node is written as

m′′ =
∑

k

kP (k)
〈k〉 mk−1(1 − qk), (5)

where the subscript k − 1 other than k is based on the
consideration that there is no any interaction between an
impurity node and its neighbors. For the case of fig. 4(a),
the energy change is written as

ΔE1 = −Jmk′ [(k − 1)m′′ − (k′ − 1)m′]. (6)

Analogously, for the case of fig. 4(b)

ΔE2 = −Jmk[(k′ − 1)m′′ − (k − 1)m′]. (7)

The energy change due to a diffusing exchange taking plac-
ing on a k − k′ link can be expressed as

ΔE =
1
2

(qkpk→k′ΔE1 + qk′pk′→kΔE2), (8)

where pk→k′ is the diffusion rate of an impurity from
k-degree node to k′-degree node. According to our model,
it can be expressed as

pk→k′ = D
k′α

∑
k′

k′P (k′)
〈k〉 k′α = D

〈k〉k′α

〈kα+1〉 . (9)

Assuming the diffusion is a quasi-static process that sat-
isfies the detailed balance conditions,

qkpk→k′ = qk′pk′→k. (10)

The requirement can lead to the expression of qk,

qk =
wP (k)kα+1

∑
k P (k)kα+1 . (11)

Averaging over all possible links on networks, one arrives
at the average energy change due to a nonequilibrium dif-
fusion process,

〈ΔE〉 =
∑

k,k′
lkk′ΔE, (12)

where lkk′ = kk′P (k)P (k′)/〈k〉2 is the probability that
a randomly chosen link to connect a pair of nodes with
degree k and k′.

Next we will calculate the average magnetization using
heterogeneous mean-field theory. Following ref. [47], one
has

mk = tanh[βJkm′ + βh]. (13)

Substituting eq. (13) with eqs. (4), (5), we arrive at the
self-consistent formulations of m′ and m′′ that can be
numerically calculated.

Figure 5 shows the results of 〈ΔE〉 as a function of
α, where the solid line denotes the result obtained from

Fig. 5: (Color online) The average energy change 〈ΔE〉 as a
function of α. The solid line indicates the results of the theo-
retical prediction, and solid symbols that of MC. Parameters
are the same as in fig. 1 except for D = 1.0 and h = 0.5.

eq. (12), and the symbols that of MC simulations. Clearly,
the theory can reproduce qualitatively well the main char-
acteristic: there exists an optimal motion bias where the
average energy change reaches the maximum. Further-
more, it is found that 〈ΔE〉 are always larger than zero for
any motion bias α, which indicates that the impurity’s mo-
bility can always facilitate the barrier-crossing nucleation
process, akin to the drag effect of nonequilibrium thermo-
dynamic forces conjugated to the exchange of impurities
and spins.

Conclusions. – In summary, we have studied the het-
erogeneous nucleation of a nonequilibrium Ising model
with mobile impurities on complex networks. By intro-
ducing a tunable parameter α, the impurities can per-
form three different bias motions: α > 0 means that the
impurities prefer to visit the high-degree nodes, α < 0
the low-degree nodes, and α = 0 recovers to completely
random motion. Interestingly, it is found that the nu-
cleation rate is not a monotonic function of α for small
number of impurities, i.e., there exists an optimal value of
α = 0, leading to the fastest nucleation rate. Especially,
the optimal value of the controlled parameter does not
change with the variation of the diffusion rate. To qual-
itatively understand the underlying mechanism of such a
phenomenon, we have performed heterogeneous mean-field
analysis. Furthermore, we have used the FFS method and
analyzed the nucleating clusters, and found that for differ-
ent preferences of impurities motion, the nucleating clus-
ters show the distinct features along the pathways. On
the one hand, for random motion, the largest nucleating
cluster dominates the nucleation, and the average degree
of the nodes inside nucleating clusters grows rapidly at
first, while for motion to the high-degree nodes or to the
low-degree nodes, they grow slowly at the very beginning
following by a relatively fast increasing. On the other
hand, the number of nucleating clusters for the former is
less than that of the latter, especially they decrease to the
same magnitude at the formation of the critical nucleus.
These distinct features may mean different microscopic
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mechanisms driving the system towards nucleation. Since
heterogeneous nucleation is essential for many dynami-
cal processes on real-world scenarios, and mobility is a
ubiquitous feature of real systems, our study may provide
a valuable understanding for many nonequilibrium phase
transitions taking place in networked systems and for ef-
fective controlling strategy to the rate of such processes.
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