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ABSTRACT: Understanding the diffusion of proteins in
polymer solutions is of ubiquitous importance for modeling
processes in vivo. Here, we present a theoretical framework to
analyze the decoupling of translational and rotational diffusion
of globular proteins in semidilute polymer solutions. The
protein is modeled as a spherical particle with an effective
hydrodynamic radius, enveloped by a depletion layer. On the
basis of the scaling formula of macroscopic viscosity for
polymer solutions as well as the mean-field theory for the
depletion effect, we specify the space-dependent viscosity
profile in the depletion zone. Following the scheme of classical fluid mechanics, the hydrodynamic drag force as well as torque
exerted to the protein can be numerically evaluated, which then allows us to obtain the translational and rotational diffusion
coefficients. We have applied our model to study the diffusion of proteins in two particular polymer solution systems, i.e.,
poly(ethylene glycol) (PEG) and dextran. Strikingly, our theoretical results can reproduce the experimental results quantitatively
very well, and fully reproduce the decoupling between translational and rotational diffusion observed in the experiments. In
addition, our model facilitates insights into how the effective hydrodynamic radius of the protein changes with polymer systems.
We found that the effective hydrodynamic radius of proteins in PEG solutions is nearly the same as that in pure water, indicating
PEG induces preferential hydration, while, in dextran solutions, it is generally enhanced due to the stronger attractive interaction
between protein and dextran molecules.

■ INTRODUCTION

The transport property of proteins in complex fluids is a
benchmark problem of modeling processes likely to regulate
cellular functions such as signal transduction,1,2 self-assembly of
supramolecular structures,3 kinetics of reaction,4 gene tran-
scription,5 and so on. A better understanding of this problem
would also be beneficial to several important fields of studies
across disciplines ranging from biophysics, materials science,
and even drug delivery. In particular, in biophysics, there is a
growing interest to understand how proteins move through
crowded cytoplasmic environments. Synthetic polymers such as
polyethylene glycol (PEG), ficoll, dextran, and poly(vinyl
alcohol) are commonly used as a means to mimic molecular
crowding in the cell, which facilitates experimental studies in
vitro.6−10 Fluorescence correlation spectroscopy and fluores-
cence anisotropy are most popular in this area of research, by
the aid of which the translational and rotational diffusion of
proteins in semidilute polymer solutions and their contribu-
tions to the diffusion-controlled protein−protein association
kinetics have been widely investigated.7,11−15 Nevertheless,
some fundamental aspects are still lacking and a comprehensive
understanding is definitely desirable.
In pure solvent or simple solutions with a low-molecular

crowding agent like glycerol, experiments have found16−18 that
the translational diffusion coefficient Dt can be well predicted

by the traditional Stokes−Einstein (SE) relation, Dt = kBT/
6πηmacrorh, and the rotational diffusion coefficient by the
Stokes−Einstein−Debye (SED) relation, Dr = kBT/8πηmacrorh

3,
with ηmacro being the macroviscosity of the solution, rh the
hydrodynamic radius of diffusing species, T the temperature,
and kB the Boltzmann constant. The validity of the SE (or
SED) relation requires a continuous and homogeneous solvent
condition. As the probe size becomes smaller or the crowding
agent becomes larger, this condition in general does not hold.
Extensive experimental studies have revealed that the diffusion
coefficients of small nanoparticles and small proteins in
polymer solutions will seriously deviate from SE and SED
relations even up to several orders of magnitude.16,17,19−22 The
deviation is almost negative; i.e., the decrease in diffusion with
increased viscosity is less than predicted, and furthermore, the
negative deviation increases with increasing polymer concen-
tration and molecular weight. Great efforts have been made for
a quantitative strategy to evaluate the diffusion coefficients in
polymer solutions at all length scales. In particular, Holyst et
al.10,23−28 studied systematically the translational diffusion of
nanoparticles and proteins in semidilute polymer solutions by
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experiments. They proposed interesting and inspiring scaling
relations for translational diffusion coefficients; namely, if one
replaces the macroscopic viscosity by a so-called length-scale-
dependent microscopic viscosity ηmicro which may depend on
the probe size, the SE relation could be valid for all length
scales. This provides an explicit relationship between the
diffusion coefficient and simple parameters describing the
structure of the system: radius of diffusing species, hydro-
dynamic radius of polymer molecules, and correlation length of
polymer solutions. Similarly, Lavalette et al.9,29 suggested a
power law form of microscopic viscosity for rotational diffusion
of proteins in a macromolecular environment, to replace the
linear viscosity dependence of the SED relation. The exponent
of the power law is less than one, which indicates the
consequence of nonhomogeneity due to the fact that the
protein experiences only a fraction of the hydrodynamic
interactions of macromolecular cosolvents. Alternatively, Fan et
al.30−32 proposed a fluid mechanics approach to investigate the
length-scale-dependent viscosity for both translational and
rotational diffusion coefficients of a sphere in polymer
solutions.
While most studies up to now have mainly focused on how

translational or rotational diffusion of a solute in complex fluids
deviates from the SE (or SED) relation, recently, a very
interesting decoupling phenomenon between the translational
and rotational diffusion has drawn some new attention.
Namely, it was found experimentally7,12,13,33,34 that, for
diffusion of proteins in polymer solutions, large deviations
from the traditional SED relation are observed for the
rotational diffusion with an increase of the bulk concentration
of polymer solution, while the SE relation for the translational
diffusion remains well satisfied. The understanding of such a
decoupling phenomenon can be very important, for example, to
illustrate the separate contributions of translational and
rotational diffusion to important processes in vivo such as
protein−protein association kinetics.7,12,13,35 To the best of our
knowledge, however, such an understanding is still lacking.
In the present work, we have addressed such an issue by

proposing a theoretical framework, by modeling the protein as
a spherical particle with an effective hydrodynamic radius rh
enveloped by a depletion layer. Our idea is that the decoupling
is mainly due to the nonhomogeneous viscosity profile in the
depletion zone, which would influence the translational and
rotational diffusion in quantitatively different ways. Due to
depletion effects, the polymer volume fraction is not
homogeneous around the protein, which can be described by
a distance-dependent profile ϕ(r), where r denotes the distance
from the center of the protein. We then adopt the scaling
theory27,28 between the macroscopic viscosity and the polymer
concentration which has been proven to be valid for a wide
range of concentrations ranging from dilute to semidilute
regimes, to get the viscosity profile η(r). Combining this
viscosity profile with fluid mechanics, we can then calculate the
translational as well as rotational diffusion coefficients Dt and
Dr, respectively. Such a framework is quite clear-cut in physics,
given that the protein can be regarded averagely as a spherical
particle with effective hydrodynamic radius rh, which serves as
the only fitting parameter in the present model. We apply our
model to two typical systems, one for diffusion of globular
proteins in PEG solutions and the other for diffusion in dextran
solutions. Strikingly, our theoretical results can reproduce the
experimental results quantitatively very well, and fully reproduce
the decoupling between translational and rotation diffusion

observed in the experiments. Moreover, we found that, in the
case of PEG solutions, the hydrodynamic radius rh is nearly the
same as that in the pure water solvent, indicating the protein is
surrounded by water molecules as it moves in the PEG
solutions. This result agrees with the work of Bhat and
Timasheff36 who showed that PEG induces preferential
hydration of proteins. However, in the case of dextran
solutions, the protein is likely to possess a higher hydrodynamic
radius due to the probable stronger attractive interaction
between protein and dextran molecules.
The paper is organized as follows. First, we introduce our

model and method, including the nonuniform concentration
and viscosity profiles due to the depletion effect and a brief
revisit of derivation for diffusion coefficients based on fluid
mechanics. Second, we numerically calculate the translational
and rotational diffusion coefficients for proteins in two types of
polymer solutions. Comparison with the experiments will be
made and the uncoupling between two diffusion motions as
well as the effective hydrodynamic radius will be addressed. At
last, we conclude the paper.

■ MODEL AND METHOD
Basic Modeling. We model the protein as a spherical

particle with an effective hydrodynamic radius rh, enveloped by
a depletion layer wherein the concentration and viscosity are
space-dependent, as depicted in Figure 1. For simplicity, we

adopt the following theoretical form within the mean-field
approximation to describe the volume fraction profile in terms
of the radial distance r (rh ≤ r < ∞) in the depletion zone30,37

ϕ ϕ
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This expression is actually an extension of the exact form in the
limit of dilute solution and flat geometry to spheres in
semidilute polymer solutions. In eq 1, ϕb is the bulk volume
fraction. δ is a polymer solution parameter which has a meaning
of the depletion thickness near a flat wall in semidilute
solutions, given by

δ δ ξ
= +1 1 1

2
0

2
FH

2
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where δ0 is proportional to the gyration radius of the polymer,

to be δ =
π

R0
2

g. ξFH is basically the correlation length of the

Figure 1. Schematic of the model.
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polymer solution. In the mean-field picture with potential
described by the Flory−Huggins field,38,39 it takes the specific
form of ξFH

−2 = −3[ln(1 − ϕb) + 2χϕb]σ
−2, with χ being the

solvency and σ the statistical segment length of polymer chains.
In the present work, we limit ourselves to a good solvent
situation, i.e., χ = 0.
One should note that the basic model introduced here

highlights the crucial role of the depletion layer, which certainly
has its main range of validity. As mentioned in the Introduction,
the main goal of this work is to understand the interesting
decoupling phenomenon between the translational and rota-
tional diffusion, wherein SE holds for Dt while SED fails for Dr.
In addition, the rotational diffusion is much faster than that
predicted by the SED relation, indicating a relatively small
viscosity around the probe particle. It has been reported that
this depletion effect is the strongest for rh ≃ Rh, where Rh is the
hydrodynamic radius of the polymer molecule. For both rh < Rh
and rh > Rh, the depletion effect might be neglected, and the
length-scale-dependent viscosity model has been proposed to
describe translational diffusion of particles in polymer solutions.
One should note, however, the length-scale-dependent viscosity
model23,26,28 for translational motion cannot account for the
decoupling between Dt and Dr. In real complex polymer
solutions, permanent cross-links and strong entanglements may
exist such that the protein diffusion is influenced by many
factors, including hopping and network relaxation besides
simple hydrodynamic forces. Any rheological phenomenon
affecting the macroviscosity that arises on a length scale above
the hydrodynamic screening length of a given semidilute
solution (i.e., from topological, possibly transient connectivity
effects) cannot be included in the present model. Therefore,
our model may apply to the diffusion of proteins with rh ≃ Rh,
in polymer solutions without strong topological effects or
permanent links.
Space-Dependent Viscosity. Depletion leads to a volume

fraction profile given by eq 1. Correspondingly, the viscosity in
the vicinity of the protein surface is also nonhomogeneous,
which should vary from the bare viscosity η0 to the bulk
macroviscosity ηmacro. In order to quantitatively characterize the
viscosity distribution in the depletion layer, we note that Holyst
et al.27,28 recently proposed a phenomenological scaling theory
for the relationship between macroviscosity and concentration
for polymer solutions, given by
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where γ and β are system-dependent parameters. Rh is the
polymer hydrodynamic radius, and ξ is the correlation length of
the polymer solution which will decrease with the concen-
tration obeying the scaling relation as follows

ξ
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with ϕ* being the overlap volume fraction of the polymer
solution from the dilute to semidilute regime given by

ϕ
π
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M

dN R
3

4
w

A g
3

(5)

with Mw being the polymer molecular weight, d the polymer
mass density, and NA the Avogadro constant. Note that, in the

work of Fan et al.,30,40 the dependence of ηmacro on the bulk
volume fraction ϕb was introduced via the Huggins’ or Martins’
theoretical formula. We use eq 3 here because it was shown to
be valid for semidilute polymer solutions, even in the entangled
region.
Combining eqs 1, 3, as well as 4, we get the appropriate

viscosity profile η(r) in the depletion layer, in the form of
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The nonhomogeneity of viscosity will induce deviations from
SE and SED relations for translational and rotational diffusion
coefficients, respectively, and the above viscosity profile is just
the starting point to quantitatively estimate these deviations on
the basis of fluid mechanics as described below.
We would like to emphasize here that eq 6 is one of the main

starting points of our work. One should note that the space-
dependent viscosity η(r) in eq 6 actually corresponds to
macroscopic viscosity, rather than the so-called microviscosity
which might be dependent on the length scale of the solute
size. Actually, Holyst et al. had investigated in very much detail
the length-scale-dependent viscosity that is experienced by the
diffusing species in complex fluids such as polymer solutions. In
the present work, the space-dependent viscosity η(r) accounts
for the nonhomogeneous macroscopic viscosity in the
depletion layer due to the space-dependent volume fraction
profile ϕ(r) given by eq 1. On the basis of such a viscosity
profile, one is thus able to derive the translational and rotational
diffusion coefficients of the protein, here modeled as a spherical
particle with effective hydrodynamic radius rh, by using
standard methods in fluid mechanics but now with inhomoge-
neous viscosity.
Here, we would like to point out a subtle issue regarding the

viscosity profile η(r) given by eq 6. The volume fraction profile
ϕ(r) in eq 1 is actually bounded, which should not diverge.
Therefore, if the correlation length ξ obeys the scaling law in eq
3, the viscosity profile η(r) would also be bounded. However,
for some limiting cases like a hydrogel, the zero-shear
macroviscosity ηmacro may diverge, such that a probe particle
with rh → ∞ would become jammed. In such a situation, either
eq 3 or 4 may fail and new theory may be necessary. We note
that such a theory had been worked out by Rubinstein and co-
workers.41 For the systems considered in the present work, the
PEG and dextran solutions, eq 3 works very well as shown in
the literature27,28 and Figure 4 below.

Fluid Mechanics with η(r). The basic procedures to
calculate the translational and rotational diffusion coefficients
Dt and Dr can be outlined as follows. The fluid field v(r) around
the particle is incompressible and obeys the Navier−Stokes
equations but now with space-dependent viscosity η(r). By
solving the field equations with proper boundary conditions,
one can get the pressure and the shear stress of the polymer
solution at the protein surface. This allows us to calculate the
drag force F and the shear-induced torque Γ exerted on the
protein. Assuming protein moves with translational velocity U
and rotates with angular velocity Ω, Dt and Dr will
correspondingly follow42 Dt = UkBT/F and Dr = ΩkBT/Γ.
The readers may turn to ref 30 for technical details, and here
we will only quote the final results for simplicity.
Consequently, the translational diffusion coefficient Dt is

given by
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where Dt
0 = kBT/6πη0rh

0 is the traditional diffusion coefficient of
the protein in pure solvent. Here rh

0 is the hydrodynamic radius
of protein in pure solvent, which might be different from the
effective hydrodynamic radius rh for a protein diffusing in
polymer solutions as depicted in Figure 1. f″(rh) and f‴(rh)
denote the second- and third-order derivatives of the function
f(r) at r = rh. This function f(r) describes the radius-dependent
part of the Stokes stream function and satisfies the following
fourth-order ordinary differential equation
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where η′ and η″ denote the first- and second-order derivatives
of η(r) with respect to r, respectively. Given the viscosity profile
η(r) as input, this equation for f(r) can be solved numerically
with certain boundary conditions. For a quiescent fluid, we
apply no-slip boundary conditions at the protein surface, i.e.,

= = − ′ = = −f r r f r r r( ) , ( ) 1/h
1
2 h h, and vanishing far-field

conditions, i.e., f/r2 and f ′/r go to zero as r → ∞.
Similarly, one can obtain the rotational diffusion coefficient

Dr according to
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where Dr
0 = kBT/8πη0rh

0 3 is the rotational diffusion coefficient of
the protein in pure solvent. ω′(rh) denotes the derivative of the
radial function ω(r) with respect to r at r = rh. ω(r) satisfies the
following differential equation
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This equation can be solved numerically with no-slip boundary
condition ω(rh) = 1 and vanishing far-field condition ω(r →
∞) = 0. It is noticeable that the no-slip boundary condition is
in general not applicable for very small diffusing probes. In the
present study, as we mentioned above, we mainly deal with
proteins with moderate size, i.e., rh ≃ Rh, such that no-slip
boundary condition is reasonable.
We are now ready to study the diffusion coefficients of a

given protein in specific polymer solutions. As already
mentioned in the Introduction, we are interested in the
phenomenon that the SE relation holds for Dt, while in the
same system SED deviates largely for Dr. We believe that this
deviation mainly results from the inhomogeneous viscosity in
the depletion layer, ranging from η0 of the pure solvent to ηmacro
for the bulk solution. In this scheme, the protein is treated as a
sphere particle with an effective hydrodynamic radius rh, which
is the only parameter for the protein that enters into the
volume fraction profile ϕ(r) given by eq 1 and henceforth the
viscosity profile η(r) given by eq 6. All of the other parameters
that enter η(r), such as ϕ*, Rh, Rg, β, and γ, are determined by
the polymer solution, in which the crossover volume fraction
ϕ*, the polymer hydrodynamic radius Rh, and the gyration

radius Rg depend on the polymer molecular weight Mw.
Therefore, a general discussion of the above framework may
not be helpful and we would like to apply it to specific real
systems where experimental data are available. This will be
presented in the next section for two systems: one is for
diffusion of globular proteins in poly(ethylene glycol) (PEG)
solutions, and the other is for protein diffusion in dextran
solutions.

■ RESULTS AND DISCUSSION
Protein Diffusion in PEG Solutions. In this section, we

proceed to quantitatively study the diffusion coefficients for
protein diffusion in PEG solutions. We consider the diffusion of
two types of globular protein: β-lactamase inhibitor protein
(BLIP) and a green fluorescent protein mutant (eGFP) in
solutions of PEG with different molecular weights and varying
concentrations. The hydrodynamic radii of the proteins in pure
water, rh

0, can be estimated to be 2.2 nm for BLIP and 2.5 nm
for eGFP, on the basis of the fact that the hydrodynamic
volume for a globular protein is nearly twice its crystal
volume.43 Experimentally, translational and rotational diffusion
of proteins can be obtained by using fluorescence correlation
spectroscopy and fluorescence anisotropy, respectively. The
experimental data for Dt and Dr quoted in the present work are
obtained from refs 7 and 12.
To this end, we first need to determine the parameters that

enters η(r), namely, ϕ*, Rh, Rg, β, and γ. Here, ϕ* is given by
eq 5. Rh and Rg depend on the molecular weight according to
Rh = 0.0145Mw

0.571 and Rg = 0.0215Mw
0.583 for PEG systems.27,44

β is a relatively universal parameter for polymer solutions
depending on whether the system is entangled or not. It is
widely accepted that β ≃ 1.29 in the nonentangled regime and
β ≃ 0.78 in the entangled regime. The crossover from
nonentangled to entangled regime takes place at the volume
fraction ϕe for which the hydrodynamic radius of the polymer
Rh is just equal to the correlation length ξ given by eq 4, such
that ϕe = (Rh/Rg)

−4/3ϕ*. γ is estimated by fitting experimental
data, which has been reported to be 4.0 kJ/mol for PEG
solutions.27

In the present work, PEG samples of two different molecular
weights 1 kg/mol (PEG 1K) and 8 kg/mol (PEG 8K) are
investigated. The corresponding basic parameters including the
overlap volume fraction ϕ*, the onset volume fraction for the
entangled regime ϕe, the hydrodynamic radius Rh, and the
gyration radius Rg of PEG are listed in Table 1. In addition, for

the PEG system, the mass density is d = 1126 kg/m3 and the
statistical segment length is σ = 0.7 nm.45 Besides these system
parameters, the bulk volume fraction ϕb of the polymer
solution is a variable which also determines the viscosity profile
η(r) through the volume fraction function ϕ(r) given by eq 1.
Second, we must specify the effect hydrodynamic radius of

proteins rh, which is necessary to determine the volume fraction
profile ϕ(r) and henceforth the viscosity function η(r). Note
that the effective hydrodynamic radius rh in complex solutions
should be in general different from the hydrodynamic radius in
pure water rh

0. In fact, rh has to be a fitting parameter in our

Table 1. Basic Parameters of PEG Solutions

PEG Mw (kg/mol) ϕ* ϕe Rh (nm) Rg (nm)

1 0.20 0.38 0.75 1.21
8 0.042 0.083 2.45 4.05
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theoretical formalism. For PEG systems, recall that there was a
preferential hydration picture proposed by Bhat and Tima-
sheff.36 The basic physics being shown is that the attraction
between the protein and PEG molecules is weaker than the
interaction between the protein and water molecules. There-
fore, the protein molecule becomes preferentially hydrated
similar to its behavior in pure water solvent, and then diffuses in
PEG solutions. In this sense, the hydrodynamic radius of the
protein in PEG solution possibly stays nearly the same as that
in water. Surely, this picture will break down if the protein has
stronger attractive interactions with the polymer chains, which

would definitely enhance the protein effective hydrodynamic
radius. Indeed, as we will show in the next subsection, higher
effective hydrodynamic radius might be realized, for example, in
dextran solutions. However, for PEG solutions, it seems
reasonable for us to propose an ansatz that the effective
hydrodynamic radius of protein diffusion in PEG solutions is
nearly the same as that in the pure water solvent. With the above
arguments, the effective hydrodynamic radius, rh ≃ rh

0 for the
two proteins BLIP and eGFP considered here, is set to be 2.2
and 2.5 nm, respectively.

Figure 2. Space-dependent volume fraction ϕ(r) as well as the local viscosity profiles η(r), for BLIP in PEG 8K solutions with different bulk volume
fraction ϕb.

Figure 3. Dependence of relative translational diffusion coefficient Dt
0/Dt of BLIP (blue lines) and relative rotational diffusion coefficient Dr

0/Dr of
eGFP (red lines) on relative viscosity ηmacro/η0 (left column) and on bulk volume fraction ϕb (right column) in PEG 1K (upper) and PEG 8K
(bottom) solutions. Symbols are experimental data reproduced from refs 7 and 12 for comparison.
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Now we are ready to calculate diffusion coefficients Dt and Dr
by using eqs 7−10. To this aim, it is necessary to be specific
about the space-dependent volume fraction ϕ(r) as well as the
local viscosity profile η(r); see Figure 2 as an illustration. We
mainly focus on how these diffusion coefficients change with
the bulk volume fraction ϕb and thus with the macroviscosity
ηmacro of PEG solutions. The results are shown in Figure 3 for
the diffusion of BLIP and eGFP in PEG 1K and PEG 8K
solutions, respectively. In the experiments, translational
diffusion was measured for BLIP and rotational diffusion was
measured for eGFP. The vertical axis is the ratio of the diffusion
coefficients in PEG solutions to that in pure water Dt,r

0 /Dr. The
solid lines are obtained from our theory. The symbols are the
experimental data from refs 7 and 12. The dash-dotted line is
the SE and SED prediction, where the relative diffusion
coefficient is linearly proportional to the relative viscosity.
Surprisingly, our theory reproduces the experimental results

very well, not only qualitatively but also quantitatively. The
theory excellently demonstrates that the SE relation holds good
for the translational diffusion, while SED breaks down
apparently for rotational diffusion. Such excellent consistency
between theory and experiment also indicates that our model
has caught the main physics of the problem considered; i.e., the
inhomogeneous viscosity profile due to the depletion effect can
be the very reason for the decoupling between translational and
rotational diffusion. Quantitative agreements also indicate that
the ansatz we proposed about the preferential hydration of
protein is indeed applicable in the PEG solution.
In a recent paper,23 Holyst and co-workers have systemati-

cally studied the translational diffusion of proteins of different
sizes in PEG solutions with different molecular weights. They
found that, while probes with large size obey the SE relation,
proteins with small size show apparent violations of the
relation. They then introduced a size-dependent nanoviscosity
η(a), where a denotes the probe size, which showed a collapsed
scaling form with a crossover length to be Rg. One may ask
whether we can use the present model to account for the size
dependence of Dt. Unfortunately, as already mentioned in the
Model and Method section, the model highlights the depletion
effect which becomes significant for rh ≃ Rh. For small proteins,
the SE relation is already violated for translational diffusion,
indicating that some other effects must be taken into account.
We note that some recent theoretical work using mode
coupling theory45 can help in understanding this problem,
wherein binary collision and density fluctuation on the short

length scale come into play. Such effects rather than simple
hydrodynamics go beyond the scope of the current model.
Actually, the fact that the small protein diffuses much faster
than the SE prediction indicates that the nanoviscosity, “felt” by
the protein, is actually much smaller than the macroviscosity in
the bulk. Mapping to our model, it seems that the protein
should experience a much thicker depletion layer, wherein the
concentration as well as viscosity are much smaller than in the
bulk. If we apply our model to the data in ref 23 for small
proteins like 3.1 nm lysozyme in PEG 20K, an apparent
underestimation of Dt would be observed (not shown). If one
further allows the depletion layer depth δ to be changed as a
parameter δeff to fit the experimental data, it will decrease
monotonically with the bulk concentration.

Protein Diffusion in Dextran Solutions. We now try to
use the above scheme to study the diffusion of proteins in
another polymer solution system, the dextran solution. The
experimental results are obtained from ref 9 for diffusion of
earthworm (Lumbricus terrestris) hemoglobin (EW-Hb) and of
a fragment thereof (F(EW-Hb)). The hydrodynamic radii of
EW-Hb and F(EW-Hb) in pure water rh

0 are 13.4 and 5.7 nm,
respectively.
For dextran, the hydrodynamic and gyration radii depend on

its molecular weight Mw via46 Rh = 0.0488Mw
0.437 and Rg ≃

1.5Rh.
26 Concerning the relationship between macroviscosity

and concentration of dextran solutions, we suppose eq 3, which
has shown its validity sufficiently in PEG solutions, also works
for dextran solutions. Figure 4 is a plot of this equation as well
as the corresponding experimental data (symbols).9 The
validity of this scaling expression has been well demonstrated
by this figure. Here, the parameter β is chosen to be the same as
that of PEG, depending on whether the solution is entangled or
not. While another important empirical parameter γ is obtained
by fitting the experimental data, we have γ ≃ 3.5 kJ/mol for
dextran solutions. In order to compare our theory with
experimental work, we will correspondingly investigate proteins
EW-Hb and F(EW-Hb) in dextran samples with three different
molecular weights 110, 500, and 2000 kg/mol. The required
basic parameters for calculating the diffusion coefficients are
listed in Table 2, including the overlap volume fraction ϕ*, the
onset volume fraction for the entangled regime ϕe, the
hydrodynamic radius Rh, and the gyration radius Rg for
different dextran samples. Besides, for dextran, we have the
mass density47 d = 1600 kg/m3 and the statistical segment
length48 σ = 1.2 nm.

Figure 4. Relative macroscopic viscosity for dextran solutions plotted according to the scaling equation (3) (lines), with β equal to 1.29 for Rh/ξ ≤ 1
and 0.78 for Rh/ξ > 1, and γ ≃ 3.5 kJ/mol by a best fitting to experimental data (symbols) from ref 9.
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One should note here that the results for macroviscosity in
ref 9 had been measured by capillary viscosimetry using simple
Ubbelohde setups. Under these conditions, for the highly
nonlinear entangled case, this method does not provide the
macroscopic zero-shear viscosity in the linear viscoelastic
regime but the shear-thinning limit, in which structural changes
such as flow-induced disentanglement may occur. Nevertheless,
the macroviscosity ηmacro in the scaling form given by eq 3
actually corresponds to the zero-shear one. In general, one
should do actual rheology by using a proper capillary system
with potentially low flow rate to get this macroviscosity such as
those done in ref 23. Therefore, it is interesting that the data
shown in Figure 4 can be fitted so well by the scaling formula,
eq 3. Possibly, this reported high-shear viscosity may indeed be
of relevance on the shorter length scale of protein diffusion, but
the relation to the true macroviscosity is not clear in that case.
In this sense, the ηmacro shown in Figure 1 might be better
illustrated as ηmeso, which is a mesoscopic-length-scale viscosity
and not necessarily equal to the zero-shear bulk macroviscosity
when strong entanglement or cross-linking effects are active. It
is also interesting to ask why the scaling exponent shown in eq
3 does seem to work for this ηmeso. For our purpose, however,
we only require that eq 3 and thus eq 6 give an accurate
functional form of the space-dependent viscosity profile η(r) for
succeeding fluid-dynamics analysis.
As already discussed in the last subsection, to apply our

modeling, one must specify the “effective” hydrodynamic radius
rh of the protein in the solution. For the PEG system studied
above, one expects preferential hydration of the protein due to
the relatively weak attraction between protein and PEG
molecules, such that rh may be nearly the same as rh

0 in the
pure water solvent. We have also demonstrated that such a
picture really works well for diffusion of BLIP and eGFP in
PEG solutions in the last subsection. However, this might not
be the case for protein diffusion in dextran solutions, where the
attractive interaction can be stronger due to possible hydrogen

bonding. Intuitively, the “effective” hydrodynamic radius rh
should be larger than rh

0.
Figure 5 shows two examples of the theoretical results (lines)

of the rotational diffusion coefficient, calculated by adopting rh
= rh

0 similar to the case of PEG, one for diffusion of EW-Hb in
dextran 500K solution and another for diffusion of F(EW-Hb)
in dextran 110K solution. For comparison, the experimental
data (symbols) are also presented. Apparently, the theory
considerably overestimates the diffusion efficient Dr, indicating
that the protein does have an effective hydrodynamic radius
larger than rh

0.
Therefore, it is interesting to apply our model to determine

the effective rh by fitting the experimental data. The results are
shown in Figure 6 for available experimental results, where one
can see that our theory can show very good agreement with
experiment quantitatively. We emphasize that each theoretical
curve in this figure is obtained by adjusting one single
parameter, i.e., the effective hydrodynamic radius rh of the
protein, while all the other parameters are specified for the
system (see Table 2). The values of rh for different cases are
listed in Table 3, where the hydrodynamic radii of protein in
pure water rh

0 are also shown for comparison. Evidently, the
effective hydrodynamic radius rh in dextran solutions is larger
than rh

0 in most cases.
Such excellent fitting with experiments further demonstrates

the validity of our basic model, that the diffusion of protein in
the system considered here can indeed be modeled as the
diffusion of a spherical particle with effective hydrodynamic
radius plus the depletion effect.
As already discussed above, the effective hydrodynamic

radius rh should increase with increasing interaction among the
protein and the dextran molecules. For EW-Hb, the effective
hydrodynamics radius rh decreases with the increment of Rh of
the dextran, as shown in Table 3, indicating a relatively larger
interaction among the protein and the polymer molecules. This
is also the case for F(EW-Hb), where rh decreases from 6.21
nm for Mw = 110 kg/mol to 5.7 nm for Mw = 500 kg/mol.
Interestingly, for Rh much larger than rh (the third and fifth
lines in Table 3), rh nearly is equal to rh

0, indicating that
preferential hydration is also applicable in this case.
Figure 7 also implies that not only different protein sizes but

also different crowder sizes can modify the diffusion
coefficients. Interestingly, the trend in the figure demonstrates

Table 2. Basic Parameters of Dextran Solutions

dextran Mw (kg/mol) ϕ* ϕe Rh (nm) Rg (nm)

110 0.017 0.029 7.79 11.68
500 0.011 0.018 15.10 22.64
2000 0.0069 0.012 27.67 41.50

Figure 5. Dependence of relative rotational diffusion coefficient Dr
0/Dr on relative viscosity ηmacro/η0 (left) and that on volume fraction ϕb (right),

calculated for EW-Hb in dextran 500K (blue line) and F(EW-HB) in dextran 110K (red line), by assuming rh = rh
0. Symbols are the corresponding

experimental data.9
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that for larger crowders the steric interaction between protein
and crowder is dominant, whereas for smaller crowders the
nonspecific interactions (in this case attractive) are important.
This issue is very interesting and in line with current debate in
the literature concerning the role of interaction beyond hard-
core interactions in crowder solutions; see, for example, refs 49
and 50. Generally, solute−water−protein interactions are
frequently described in a language of preferential interaction
coefficients.51 For protein diffusion in dextran solutions, there
exist two competitive factors that influence the effective
hydrodynamic radius rh of the protein, namely, preferential
hydration (PH) and preferential attraction (PA). If PH
dominates, the protein will be surrounded by the water

molecules and rh will be nearly rh
0 as in the case of PEG. If PA

dominates, the diffusion of the protein will become slower due
to the attractive interaction between the protein and solvent
molecule, corresponding to a relatively larger rh. We note that,
in a recent paper,52 the authors pointed out that nonspecific
short-range van der Waals interactions can lead to slowing
down of macromolecular diffusion in a cellular environment,
which is consistent with the PA picture. For the dextran
considered here, the molecule H(C6H10O5)xOH contains three
hydroxyls in each segment [C6H10O5], and thus may form some
hydrogen bonds with the protein. In contrast, the PEG
molecule H(OCH2CH2)nOH has no hydroxyl in each segment
[OCH2CH2], such that the attraction between protein and PEG
is weak. Therefore, PH is a reasonable picture for protein
diffusion in PEG and rh ≃ rh

0, while PH and PA may both exist
for protein diffusion in dextran. For a given protein, a dextran
with smaller Rh may be more competitive to take the position
of water molecules, such that it can balance more the PH effect
and, as a result, the effective hydrodynamic radius would be
larger. Nevertheless, if Rh gets bigger, the protein may be more
preferentially surrounded by water and PA becomes dominant
such that rh decreases until it reaches rh

0.
In Figure 7, we plot the dependence of rh/rh

0 as a function of
the relative size ratio rh

0/Rh. rh increases monotonically with rh
0/

Rh, indicating that PA gets more and more important with
decreasing Rh. Nevertheless, the overall size effect is not strong,
since rh/rh

0 only reaches about 1.23 even for rh
0/Rh ∼ 1.8.

However, this deviation of rh from rh
0 must be taken into

account to illustrate the diffusion in dextran, which highlights
the effect of PA, as demonstrated in Figures 5 and 6.

■ CONCLUDING REMARKS

In the present work, we have tried to study the diffusion of
protein in complex polymer solutions by modeling the protein
as a spherical particle with an effective hydrodynamic radius rh
enveloped by a depletion layer, wherein the viscosity varies
continuously from that of the pure water solvent η0 to bulk
macroviscosity ηmacro. The space-dependent viscosity profile
η(r) in the depletion layer can be calculated by using the scaling
theory proposed by Holyst et al., which relates the viscosity
profile to the volume fraction distribution ϕ(r). We can
calculate the hydrodynamic drag force as well as torque exerted
to the protein by applying macroscopic fluid mechanics,
keeping in mind that η in the standard Navier−Stokes equation

Figure 6. Dependence of relative rotational diffusion coefficients Dr
0/Dr on relative viscosity ηmacro/η0 (left) and that on volume fraction ϕb (right)

calculated for EW-Hb and F(EW-Hb) in dextran solutions, where the corresponding effective hydrodynamic radii rh are listed in Table 3. Lines are
theoretical results, and symbols are experimental data from ref 9.

Table 3. Effective Hydrodynamic Radii rh for Proteins EW-
Hb and F(EW-Hb) in Dextran Solutionsa

protein rh
0 (nm) dextran Mw (kg/mol) rh

0/Rh rh (nm) rh/rh
0

EW-Hb 13.4 110 1.72 16.48 1.23
EW-Hb 13.4 500 0.89 15.14 1.13
EW-Hb 13.4 2000 0.48 14.34 1.07
F(EW-Hb) 5.7 110 0.73 6.21 1.09
F(EW-Hb) 5.7 500 0.38 5.7 1.0

aThe corresponding hydrodynamic radii in pure water rh
0 are also listed

for comparison.

Figure 7. rh/rh
0 as a function of the ratio between the hydrodynamic

radius of protein in pure water rh
0 and that of dextran molecules Rh

(squares), as listed in Table 3. The line is a hand-drawn curve which
indicates the general tendency of the data.
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now becomes space-dependent, which then allows us to
calculate the translational and rotational diffusion coefficients
Dt and Dr numerically. We have used our modeling to study the
diffusion of protein in two particular polymer solution systems
and then compare the theoretical results with available
experimental data. We pay particular attention to how Dt and
Dr would depend on the macroscopic viscosity ηmacro and in to
degree the well-known SE relation, i.e., Dt,r ∝ ηmacro

−1 , is deviated.
The first system we considered is the diffusion of globular

proteins in PEG solutions. For this system, the interaction
between protein and PEG molecules is weak, such that the
protein would be preferentially hydrated. This suggests that the
effective hydrodynamic radius rh, which is required as an input
for the model calculation, can be chosen as that in the pure
water solvent, rh

0. All other parameters needed in the model are
determined by the polymer solution, here the PEG, and can be
obtained from the literature. Remarkably, we find our
theoretical results can show very good quantitative agreement
with the experimental data. In particular, the interesting finding
in the experiments, that the SE relation holds rather well for
translational diffusion but SED fails for rotational diffusion, is
excellently reproduced. This suggests that our modeling,
effective hydrodynamic radius plus depletion layer, has grasped
the basic physics of this system, given a correct description of
the inhomogeneous viscosity profile.
The other system we considered is about the diffusion of

protein in dextran solutions. For this system, a difference from
the PEG system is that strong hydrogen bonding may exist
between protein and dextran molecules. Therefore, the effective
hydrodynamic radius rh should not simply be rh

0 in the pure
water. To apply our modeling, one must then choose rh as a
fitting parameter. Indeed, we find that our theoretical results
with rh = rh

0 apparently overestimate the diffusion coefficients,
indicating that the real rh should be larger than rh

0 which is
consistent with the picture that the interaction between protein
and dextran becomes stronger. Interestingly, we find that all the
experimental results, for different solution concentrations, can
be reproduced very well by our theoretical framework with a
single fitting parameter rh. This actually further demonstrates
that our basic modeling, rewritten here again, effective
hydrodynamic radius plus depletion layer, works well for this
system. We have also investigated how rh changes with the
relative size of the protein to the dextran molecule, showing
that rh/rh

0 increases monotonically with rh
0/Rh.

Here are some discussions about our modeling. First, one
should note that the viscosity profile here we described is
actually “macroscopic” rather than the microviscosity. Although
the depletion layer may be of small depth, here η(r) describes a
macroscopic viscosity in the mean-field level. Second, here we
have applied the scaling theory for macroscopic viscosity
proposed by Holyst et al., which was proven to be correct in
many complex solution systems. One may use simple theories
such as the Huggins or Martin formulas to describe the scaling
of viscosity with concentration; however, quantitative agree-
ments with the experiments as demonstrated in our present
work would not be available (not shown). Finally, our model
surely has its range of validity. For instance, the volume fraction
profile ϕ(r) is obtained by standard depletion theory near a flat
wall and then extended to a spherical particle. Such a formula
may become incorrect if the solute size is too small compared
to the solvent. If the solute size is much larger than the solvent,
the depletion layer would actually disappear, the viscosity

would become homogeneous, and the SE and SED relations
would hold for Dt and Dr, respectively.
In summary, we have proposed a basic model to understand

the translational and rotational diffusion behavior of proteins in
complex polymer solutions, by combining macroscopic fluid
mechanics with scaling theory of macroscopic viscosity as well
as depletion theory. The theory can well reproduce the
diffusion behaviors of some proteins in PEG and dextran
solutions and help in understanding the decoupling of
translational and rotational diffusion observed experimentally.
Since diffusion of proteins in complex solutions is of ubiquitous
importance in many systems, our study may find many
applications and open more perspectives in relevant research
fields.
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