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Diffusion of a Rouse chain in porous media: A mode-coupling-theory study
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We use a kinetic mode-coupling theory (MCT) combining with generalized Langevin equation (GLE) to study
the diffusion and conformational dynamics of a bead-spring Rouse chain (RC) dissolved in porous media. The
media contains fluid particles and immobile matrix ones wherein the latter leads to the lack of translational
invariance. The friction kernel ζ (t) used in the GLE can be obtained directly by adopting a simple density-
functional approach in which the density correlators calculated by MCT equations of porous media serve as
inputs. Due to cage effects generated by surrounding particles, ζ (t) shows a very long tail memory in the high
volume fraction of fluid and matrix. It is found that the long-time center-of-mass diffusion constant DCM of the
RC decreases with the increment of volume fraction, influencing more strongly by the matrix particles than by
the fluid ones. The auto-correlation function (ACF) of the end-to-end distance fluctuation can also be calculated
theoretically based on GLE. Of particular interest is that the power-law region of ACF has a nearly fixed length
in logarithmic scale when it shifts to longer time range, with increasing the volume fraction of media particles.
Moreover, the effect of lack of translational invariance has been investigated by comparing the results between
fluid-matrix and pure fluid cases under identical total volume fraction.
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I. INTRODUCTION

Diffusion properties of macromolecules in crowding
environment have gained extensive study due to the broad
importance in diverse fields ranging from material science to
biophysics and medical science [1–13]. Especially in cell sys-
tems, the gradually decreasing space resulted from existence
of crowders such as skeletal proteins [14] and membranes [15]
influence remarkably the transport mechanisms and other
biochemical processes. For example, C. Echeverria et al.
studied the enzymatic dynamics of protein in solution with
hard spherical obstacles [16], finding that the enzymatic cycle
time and characteristic time of internal conformational motion
are distinctly different from these values in simple systems.
They also investigated the crowded effect caused by mobile
macromolecules, showing that enzyme reaction kinetics can
be considerably modified by those macromolecules, which
also leads to subdiffusive dynamics for the protein [17].
L. Stagg studied the influence of crowders on the stability
of native protein both experimentally and theoretically,
finding that hard-sphere obstacles can enhance the stability
of Desulfovibrio desulfuricans flavodoxin [18]. C. Rienzo
et al. [19] measured protein motion at the unprecedented
timescale of 1 μs, finding that the suppression of Brownian
motion above some special scale is due to the relatively
immobile structures rather than the diffusion crowding agents.
It was also demonstrated that crowding agents, especially
the immobile ones, can influence dramatically long-time
diffusion behavior of substances [20–22], and further
biological functions such as signal transduction [23,24],
genetic transcription [25], and metabolism [26,27] in cell.
While many experimental works have devoted to understand
the reaction and diffusion dynamics of macromolecules and
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polymers in crowded media, theoretical ones are relatively
rare except for a few expensive simulation studies.

Very recently, an important theoretical framework based
on MCT has been proposed [28–30] by V. Krakoviack to
study the glass transition dynamics, as well as the dynamics
of a tagged particle in disordered porous media. The system
contains fluid particles and matrix particles, and the latter are
immobile such that translational invariance is violated. Related
equilibrium and dynamic properties of the system must then be
split into connected and blocked parts, which serves as the most
nontrivial feature of the porous media compared to a normal
one. The authors were able to develop the MCT equations
for the connected part of the collective and single-particle
scattering function, which facilitates one to study the crowded
effects. For instance, Krakoviack found that the glass transition
point depends strongly on the volume fraction of the matrix
particles, and there exists a reentrance phenomenon that is not
present in normal dense fluids [29]. A new localized state for a
single tagged particle was also found [30]. It is worthy to note
here that such a MCT theory for porous media not only can
be used to study glass transition behavior, but also serves as
a general framework to calculate the coherent and incoherent
dynamic scattering functions, which can be very useful for the
studies of transport properties in the system.

In the present work, we have tried to study the dynamics of a
RC in a porous media, by applying the MCT approach. Our mo-
tivation is to help understand the diffusion and conformational
dynamics of macromolecules or polymers in crowded systems.
Surely, RC is much simpler than real polymer, however, it
serves as a basic model and may provide helpful physical
insights. We use a bead-spring model to describe the RC,
the dynamics of each bead is governed by a GLE with a
homogeneous friction kernel ζ (t). Microscopically, the friction
kernel mainly results from the density fluctuations of the
media, which make it possible for us to get the expression for
ζ (t) where the equilibrium structures and dynamic scattering
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functions of the porous media are involved. The key step is then
to use the MCT for porous media to calculate the scattering
functions. With this combined scheme of GLE plus MCT,
we are able to study the diffusion dynamics and end-to-end
distance fluctuations of the RC, paying particular attention
to the effects of crowding [3,4,9,10,14,15,20,27]. The results
show that DCM of RC decreases with increasing the media
particles which is influenced by matrix more obviously than by
fluid. We find that the continum approximation, which could
be used to derive the scaling relation between chain length
and DCM, is still valid even for highly crowded environment
and short chains. Provided the chain length is long enough,
the ACF of end-to-end distance fluctuation shows a clear-cut
power-law decaying regime which is of nearly fixed length in
logarithmic scale yet it shifts to longer time range, no matter
how crowded the environment is. We have also investigated
the differences between the fluid-matrix case and the pure fluid
case, finding that the lack of translational invariance in space
is the main reason resulting in the long time tail in the friction
kernel. Compared to direct molecular dynamics (MD) or other
mesoscopic simulation methods, our method is much more
efficient, systematic, and easier to be extended to other models.

We would like to note here that the problem of polymer
chain in an environment of fixed obstacles has a long history in
polymer physics since it was a starting point to study entangle-
ment effects. The dynamics of such chains have been discussed
in Ref. [31] and have been investigated with experimental,
simulation, and theoretical tools. In the pioneer work of de
Gennes [32], the polymer motion in such an environment was
described by the reptation dynamics, wherein the only allowed
motions for the chain are associated with the displacement of
certain “defects” along the chain. For such reptation dynamics,
the overall diffusion coefficient of the chain is much slower
than that predicted by Rouse dynamics. In our present work, we
have assumed that the chain follows Rouse dynamics, wherein
excluded volume effects are disregarded, and the reptation
dynamics is not accounted for. The effects of the crowded
media, containing both fixed matrix particles and mobile fluid
particles, are combined into the memory friction kernel ζ (t).
This might be applicable if the chain length is not large and
the volume fraction of fixed matrix particles is small, such
that the chain does not feel strong tube constraints. Certainly,
such a simplified model may not describe the real dynamics of
macromolecules in crowded environments, however, it serves
as a starting point. In addition, our MCT plus GLE framework
presents a promising microscopic approach to study such a
problem of general interest.

The remainder of the paper is organized as follows. In
Sec. II, we introduce our model and theory, including the static
structure factor, RC in porous media, and the MCT theory for
the time-dependent friction kernel ζ (t). The relevant physics
quantities were calculated numerically in Sec. III followed by
conclusions in Sec. IV.

II. MODEL AND THEORY

A. Fluid in porous media

In this section, we discuss the main features of a fluid
system in a porous media as shown in Fig. 1. The system

FIG. 1. Sketch of porous model. The black (blue) spheres
represent for matrix (fluid) particles which are immobile (mobile).
The red spheres represent for the Rouse chain.

contains matrix particles (black balls) and fluid particles (blue
balls), the numbers of which are given by Nm and Nf ,
respectively. The positions of the quenched particles are given
by {rm

j ,j = 1, . . . ,Nm}, and the time-dependent positions of

the fluid particles are denoted by {rf

l (t),l = 1, . . . ,Nf }. The
frozen density fluctuations of the immobile matrix particles
are given by

ρm
q =

Nm∑
j=1

eiq·rm
j , (1)

where q is the wave vector and those of the fluid component
are

ρf
q (t) =

Nf∑
j=1

eiq·rf

j (t). (2)

Note that the quenched component is static and the density
fluctuations do not change with time for a given matrix
configuration.

The major difference of this quenched-annealed (QA)
mixture with an ordinary binary mixture is that the fluid system
has translational and rotational invariance [29]. As a result, the
equilibrium average density fluctuation of the fluid component
is not zero, i.e., 〈ρf

q 〉 �= 0, where 〈· · · 〉 stands for equilibrium
averaging for a certain realization of the disordered matrix.
It is only after averaging over disorder that the symmetry is

restored such that 〈ρf
q 〉 = 0, and here · · · denotes averaging

over the disorder realizations. One then has to consider both
relaxing and nonrelaxing part of fluid density fluctuations,
given by δρ

f
q (t) = ρ

f
q (t) − 〈ρf

q 〉 and 〈ρf
q 〉, respectively.

For the static properties of the system, one can define
structure factors as follows:

Smm
q = 1

Nm

ρm
q ρm−q, (3)

Sff
q = 1

Nf

〈
ρ

f
q ρ

f
−q

〉
, (4)

Sf m
q = 1√

Nf Nm

〈
ρ

f
q ρm−q

〉
. (5)
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Since 〈ρf
q 〉 �= 0, the fluid structure factor S

ff
q can be divided

into so-called connected and blocked parts,

S(ff )c
q = 1

Nf

〈
δρ

f
q δρ

f
−q

〉
(6)

and

S(ff )b
q = 1

Nf

〈
ρ

f
q
〉〈
ρ

f
−q

〉
. (7)

Clearly, S
ff
q = S

(ff )c
q + S

(ff )b
q .

This splitting of structure factor is well known from
the replica theory of QA systems, and one can use the
replica Ornstein-Zernike (OZ) equations [29,30] to obtain such
properties.

B. Rouse chain in porous media

We now consider an idealized RC containing M beads of
mass mc connected by harmonic springs with frequency ω. The
configuration of the chain can be described by a vector R =
(r1,r2, · · · ,rM ), where rj denotes the displacement vector of
the j th bead from its equilibrium position. In the overdamped
limit, the dynamics of R can be described by the following
coupled generalized Langevin equations (GLEs):∫ t

0
dτζ (t − τ )

drj (τ )

dτ
= mcω

2(rj−1 + rj+1 − 2rj ) + fj (t),

(8)

where ζ (t) is the friction kernel, which is related to the random
force fj (t) via fluctuation-theorem,〈

f
μ

i (t)f ν
j (τ )

〉 = kBT ζ (t − τ )δij δ
μν, (9)

with μ and ν represent x, y, or z in cartesian coordinate system.
Note that free boundary condition is used in Eq. (8); i.e.,
r0 = wr1 and rM = rM+1 are adopted. The friction kernel is
assumed to be determined by the surrounding porous media
and thus should be the same for all the beads.

One should note here that the above GLE differs from the
standard Rouse dynamics by the inclusion of memory effects
in the friction kernel ζ (t). Nevertheless, the friction kernel is
still local, and hydrodynamic interactions (HI) are disregarded.
It is generally accepted that HI is important for polymers in
dilute solutions, and one should use Zimm model [33] instead
of Rouse model to describe the dynamics. In the present work,
we are mainly interested in the high-density region, where the
total volume fraction of fluid and matrix particles is large and
the system is close to the boundary of localized or glassy state,
to highlight the effect of crowded environment. In such a dense
system, HI may not play a dominant role. It is interesting to
take into account HI within the GLE framework, wherein ζ (t)
should then be replaced by a matrix ζij (t). However, how to
obtain such a complex matrix ζij (t) from the MCT framework
is hard to answer.

We are interested in the diffusion behavior of the whole
chain. The diffusion coefficient of the center-of-mass (CM) is
given by

DCM = lim
t→∞

1

6t
�2rCM(t) ≡ lim

t→∞
1

6t
〈[rCM(t) − rCM(0)]2〉,

(10)

where rCM is position vector of the CM,

rCM(t) = 1

M

M∑
i=1

ri(t).

In the continuum limit, it can be proved that

�2rCM(t) = 〈[rCM(t) − rCM(0)]2〉

= 3kBT

M

∫ t

0

∫ t

0
ζ (t1 − t2)χ (t1)χ (t2)dt1dt2, (11)

where χ (t) is the inverse Laplace transform of [sζ̃ (s)]
−1

with ζ̃ (s) the Laplace transform of the friction kernel ζ (t).
Clearly, �2rCM(t) is proportional to M−1 in this limit, and
hence DCM should also be proportional to M−1. If M is small,
the continuum approximation is not applicable and Eq. (11)
may not hold. In this case, one must calculate DCM by direct
simulation. Surely, one must know the exact form of the kernel
ζ (t). Note that for the standard Rouse model, the noise is
white and ζ (t) is a δ function, i.e., ζ (t) = 2ζ0δ(t). In this case,
ζ̃ (s) = 2ζ0 and one easily has �2rCM(t) = 6kBT t/Mζ0 such
that DCM = kBT /Mζ0, which is just M−1 of the diffusion
coefficient of an isolated monomer.

For the RC, another relevant dynamic variable is the
distance fluctuation, which can be described by the following
auto-correlation function:

CDF(t) = 〈δd(t) · δd(0)〉, (12)

where d(t) = rM (t) − r1(t) is the distance vector between the
two ends of the chain, and δd(t) is the deviation of d(t) from its
equilibrium value. For an ideal RC, the analytical expression
for this auto-correlation function in the Laplace domain can
be obtained [34,35],

C̃DF(s) = CDF(0)
M−1∑
j=odd

2

M
cos2

(
jπ

M

)

×
[
s + 4ω2mc

ζ̃ (s)
sin2

(
jπ

2M

)]−1

, (13)

where CDF(0) = kBT /mcω
2 is the initial value of CDF(t). One

can then perform inverse Laplace transformation to get CDF(t).
Again, one must know the friction kernel ζ (t) to calculate
CDF(t).

In the case of δ-correlation friction kernel ζ (t) = 2ζ0δ(t),
one can obtain an analytical expression for the correlation
function as

CDF(t)

CDF(0)
=

M−1∑
j=odd

2

M
cos2

(
jπ

M

)
exp

[
− � sin2

(
jπ

2M

)
t

]
,

with � = 4ω2mc/ζ0. In the limit of large M , this expression
becomes

CDF(t)/CDF(0) = exp(−�t/2)[I0(�t/2) + I1(�t/2)],

where Ip(x) is the modified Bessel function of the first kind of
order p, which behaves as Ip(x) ∼ exp (x)/

√
2πx for large x.

Therefore, for �t 
 1, one has for the correlation function

CDF(t)/CDF(0) � t−1/2/
√

�π,
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showing power-law decay with time. Clearly, the onset time
ton for such a power-law region is determined by 1/�, which
in turn depends on the friction constant ζ0. One should also
note that for such a power-law approximation to hold, �t � M

should also be satisfied [34]. Thus, the terminated time of this
power-law region may be estimated by toff ∼ M/�.

For our present work, ζ (t) may show long tails and deviate
largely from a δ function. In this case, analytical expression for
CDF(t) is not available. Nevertheless, our results shown below
demonstrate that even for such complex friction kernel with
long memory, a clear-cut power-law t−1/2 region still exists
for CDF(t). The onset time of this power-law region will shift
to larger values with the increasing of crowed particles, while
the ratio toff/ton seems to keep nearly unchanged.

C. Friction kernel in porous media

As discussed in the last subsection, the friction kernel
ζ (t) plays a crucial role to calculate the dynamic behavior
of the RC. By definition, ζ (t) is related to the time-correlation
function of the random force that is exerted on each bead by the
surrounding media. In phenomenological models, one may just
assume some simple forms of ζ (t), typically a power-law one
to account for non-Markovian characteristics, or even more
simpler Dirac δ function for white-noise case. Nevertheless,
in complex fluids, the friction kernel ζ (t) may have rather
complicated dependence on time, sometimes corresponding to
a bimodal shape in the frequency domain [35,36]. One would
expect that ζ (t) in a porous media should depend strongly
on the fraction of the matrix component Nm/(Nm + Nf ).
However, such an issue has not been investigated before, to
the best of our knowledge.

The calculation of ζ (t) is a rather nontrivial problem. In
recent years, a MCT framework [35,37,38] has been proposed
to calculate ζ (t) from microscopic interactions, which has
appeared to provide a self-consistent and unified description
of the friction both at short-time and the long-time limits.
According to such a framework, there exist three sources of the
friction: binary collision, coupling to the density fluctuation,
and coupling to the transverse current. The binary collision
dominates the short-time range of the friction kernel and
decays relatively fast. The coupling to the density fluctuation
is responsible to the cage effect and has a long-time memory
comparable to the decay of the solvent cage. The coupling to
the transverse current refers to the back-flow effect where the
motion of the tagged particle is coupled with the natural current
of the solvent. The former two sources retard the diffusion of
the tagged molecule while the last one accelerates it.

Within MCT, the total friction kernel can be written in
Laplace domain as [35]

1

ζ̃ (s)
= 1

ζ̃B(s) + ζ̃ρρ(s)
+ ζ̃TT(s), (14)

where ζ̃B(s) is the short-time part of the friction, which
results from the direct binary collision between the bead
and the solvent particle, ζ̃ρρ(s) and ζ̃TT(s) are the long
time parts of the friction which result from the density
fluctuation and transverse current, respectively. In our present
work, we consider that the bead is of identical size to the
solvent particles, such that the transverse current part becomes

insignificant compared to the other two terms [39]. In addition,
Eq. (8) describes the motion of the RC in the overdamped limit,
wherein the binary collision part ζB(t), which only matters
in the short time is also negligible compared to the density
fluctuation part ζρρ(t). Therefore, for the present purpose, we
will simply approximate ζ (t) as ζρρ(t).

ζρρ(t) is contributed by the density fluctuation of the solvent
particles. By definition, it is given by the zero wave vector
(macroscopic) limit [40],

ζρρ(t) = lim
q→0

ζρρ(q,t), (15)

of the wave-vector-dependent friction given by

ζρρ(q,t) = kBT

3
〈F(q,t) · F(−q,0)〉. (16)

Here F(q,t) is the Fourier transform of the force density F(r,t)
that is exerted on the bead. For the porous media, the density
fluctuation in both the fluid and matrix component would
contribute to the force density. As a consequence, F(r,t) is
given by

F(r,t) = −ns(r,t)∇r

∫
dr′[cs

f (r − r′)ρf (r′,t)

+ cs
m(r − r′)ρm(r′)

]
, (17)

where ns(r,t) represents the density distribution of the beads,
cs
f (r − r′) and cs

m(r − r′) denote, respectively, the direct
correlation function among the bead and the fluid-matrix
component, ρf (r,t) is the time-dependent number density of
the fluid, and ρm(r) is the static number density of the matrix
component. ∇r denotes the gradient with respect to the variable
r. The integral on the right-hand side defines the effective
interaction between the surrounding fluid-matrix particles and
the beads.

With this form of force density, one has

F(q,t) = −
∫

dk
(2π )3

ns(q−k,t)(ik)
[
c
sf

k ρf (k,t)+csm
k ρm(k)

]
,

(18)

where c
sf

k and csm
k are the Fourier transform of cs

f (r) and
cs
m(r) with wave vector k, respectively. Substituting this into

Eqs. (16) and (15), after some straightforward algebra, we can
get

ζρρ(t) = kBT nf

3

∫
d3k

(2π )3
k2

[
V

(2)
k �k(t)φs

k(t) + V
(1)
k φs

k(t)
]
,

(19)

where nf = Nf /V is the number density of the fluid com-
ponent. �k(t) represents the coherent dynamic scattering
function of the fluid,

�k(t) =
〈
δρ

f

k (t)δρf

−k(0)
〉

Nf S
ff (c)
k

,

and

φs
k(t) = 〈

ρs
k(t)ρs

−k(0)
〉
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is the tagged-particle incoherent scattering function. V
(2)
k and

V
(1)
k are vortex functions that are given by

V
(2)
k = [

c
sf

k

]2
S

ff (c)
k , (20)

and

V
(1)
k = (

c
sf

k

)2
S

ff (b)
k + 2

√
nm

nf

c
sf

k csm
k S

f m

k + nm

nf

(
csm
k

)2
Smm

k .

(21)

Note that in a recent series of papers [28–30], V. Krakoviack
has established a MCT framework to study the glass transition
behavior in porous media. Therein, the dynamic equation
for the tagged-particle scattering function φs

k(t) was obtained
within MCT approximations. The memory kernel Mmct(q,t)
with wave vector q involved there also contained a quadratic
term V

(2)
q,k and a linear term V

(1)
q,k, associated with, respectively,

the quadratic mode φs
k(t)�|q−k|(t) and single mode φs

k(t).
Actually, the friction kernel ζρρ(t) considered in the present
paper is closely related with the memory kernel Mmct(q,t),
i.e., ζρρ(t) ∝ limq→0 Mmct(q,t). The results obtained here are
based on a relatively “naive” version of MCT, i.e., the projected
random force density on the tagged particle is simply replaced
by the total force density F (r,t) defined through the direct
correlation functions. In Ref. [30], a more subtle method
was used, which projected the random force to the product
of density fluctuation modes containing both of fluids and
matrices. The result here for V

(2)
k is the same as that obtained

in Ref. [30], while that for V
(1)
k is a little different. Nevertheless,

as discussed in detail in Ref. [30], such a difference is actually
negligible given that the so-called blocked part of the direct
correlation function can be ignored, which is a generally
acceptable approximation in porous media.

D. Scattering functions in porous media

In Sec. II C, we have obtained the formula to calculate the
friction kernel ζ (t) in the long-time limit, which for simplicity
is given by the density fluctuation part ζρρ(t), described in
Eq. (19). However, to calculate ζρρ(t), one must know the
k-dependent scattering functions (or density correlators) �k(t)
and φs

k(t) of the surrounding fluid in the porous media. In
previous works, one generally used approximations for such
two correlators, for instance, viscoelastic approximation for
�k(t) or Gaussian approximation for φs

k(t) [39,41]. Since
such approximations usually involve the long time transport
coefficients such as the diffusion constant or viscosity as
input, while these coefficients are often what we want to
calculate, this framework must be done in a self-consistent
manner. Nevertheless, for fluids in porous media, the validity
of such approximations is not well justified, which renders the
self-consistent calculation of ζρρ(t) not quite applicable.

In the present work, we will calculate the scattering
functions �q(t) and φs

q(t) in a more straightforward manner, by
using the MCT formalism proposed by V. Krakoviack, already
mentioned in last subsection. In Refs. [28–30], V. Krakoviack
had developed the equations governing the evolution of �q(t)
and φs

q(t) for the fluid component in porous media, assuming
that the slow dynamics of the fluid is dominated by three types

of coupled modes, δρ
f

k δρ
f

q−k, δρ
f

k ρm
q−k, and δρ

f

k 〈ρf

q−k〉. Here
we only quote the final results and the readers may turn to the
references for details. In the overdamped limit, the generalized
relaxation equation for �q(t) reads

τ c
q �̇q(t) + �q(t) +

∫ t

0
dτmq(t − τ )�̇q(τ ) = 0, (22)

where τ c
q is a short-time scale related to the coherent motion,

which will be given below, and the q-dependent memory kernel
mq(t) is given by

mq(t) =
∫

d3k
(2π )3

[
V

(2)
q,k�k(t)�|q−k|(t) + V

(1)
q,k�k(t)

]
, (23)

with the quadratic vortex function,

V
(2)

q,k = 1

2
nf S(ff )c

q

[
(q · k)

q2
c

(ff )c
k

+ q · (q − k)

q2
c

(ff )c
|q−k|

]2

S
(ff )c
k S

(ff )c
|q−k|, (24)

and linear vortex function,

V
(1)

q,k = nf S(ff )c
q

[
(q · k)

q2
c

(ff )c
k

+ 1

nf

q · (q − k)

q2

]2

S
(ff )c
k S

(ff )b
|q−k| . (25)

Herein, cff (c)
k denotes the connected-part of the direct correla-

tion function between the fluid particles. Similarly, the tagged-
particle density correlator φs

q(t) also satisfies a generalized
relaxation equation,

τ s
q φ̇s

q(t) + φs
q(t) +

∫ t

0
dτms

q(t − τ )φ̇s
q(τ ) = 0, (26)

where τ s
q is also a short-time scale related to the tagged particle

motion and the memory kernel ms
q(t) is given by

ms
q(t) =

∫
d3k

(2π )3

[
V

s(2)
q,k φs

k(t)�|q−k|(t) + V
s(1)

q,k φs
k(t)

]
, (27)

with the vortex functions,

V
s(2)

q,k = nf

[
q · (q − k)

q2
c
sf (c)
|q−k|

]2

S
ff (c)
|q−k| (28)

and

V
s(1)

q,k =
[

q · (q − k)

q2

]2

h
ss(b)
|q−k|, (29)

where c
sf (c)
k is the connected part of the direct correlation

function between the tagged particle and fluid particles, hss(b)
q is

the blocked part of the total correlation function among tagged
particles. Note that after taking the limit q → 0, V s(2)

q,k becomes

coincident with the vortex V
(2)
k used in ζρρ(t), Eq. (20). One

can also show that in this limit, V
s(1)

q,k is also consistent with
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Eq. (21) given that the block part of the direct correlation
function can be ignored [30]. In this case, we have [30]

h
ss(b)
k = (

c
sf

k

)2
S

ff (b)
k + 2

√
nm

nf

c
sf

k csm
k S

f m

k

+ nm

nf

(
csm
k

)2
Smm

k = nf V
(1)
k . (30)

From Eqs. (22)–(29), one can numerically calculate the
coherent density correlator φq(t) as well as the tagged
particle correlator φs

q(t), given the static structural properties
described in Sec. II A as inputs. Nevertheless, one still needs
to specify the two parameters τ c

q and τ s
q to perform the

numerical calculation. In the literatures [30], the exact value
of such parameters were usually not necessary, since they
just determine some relative time scales. In the present work,
however, we are particularly interested in how the diffusion
behavior of the Rouse chain would depend on the volume
fraction of the fluid or matrix component (nf or nm), these
time-scale parameters cannot be chosen arbitrarily. At least,
their dependencies on the volume fraction should be accounted
for. Written explicitly, the expressions for τ c

q and τ s
q are

τ c
q = S

ff (c)
q

q2D0
(31)

and

τ s
q = 1

q2Ds
0

, (32)

where D0(or Ds
0) is the short-time diffusion coefficient of

a fluid particle or the tagged particle, respectively. In our
present work, the tagged particle is of the same size as the
fluid particle, such that D0 = Ds

0. Physically, these short-time
diffusion constants are mainly decided by the binary collisions.
According to the MCT framework proposed by B. Bagchi
et al., the calculation of such a binary term is not a trivial task.
They must be dependent on the details of the intermolecular
interactions on the microscopic level. In the present work, for
simplicity, we assume that the fluid-matrix particles and the
chain beads are all hard spheres. In this case, one can use
the Enskog kinetic theory to estimate the short-time diffusion
coefficient of a particle as

D
μ

0 = kBT /ζ
μ

B ,

where ζ
μ

B is the friction coefficient given by

ζ
μ

B = 16π

3

(
kBT

2π

)1/2 ∑
ν

(
mμmν

mμ + mν

)1/2

ρνσ
2
μνgμν(σμν),

(33)

where mμ and ρμ are, respectively, the mass and number
density of μ-species, σμν is the summation of radius of μ and ν

particles, gμν(r) is the partial radial distribution function. The
summation runs over all fluid and matrix components.

E. Summary of the method

Here, we will briefly summarize the main scheme we
described above for the calculation of the diffusion behavior
as well as the distance fluctuation of the RC. First of all, we

need to use the replica OZ equation to get the static properties
of the system, including the structure factors (S(ff )c

k , S
(ff )b
k ,

S
f m

k , Smm
k ), direct correlations functions among the tagged

particle and the fluid or matrix particles (cff

k , c
sf

k , csm
k ), and

the total correlation function h
ss(b)
k . Note that in our present

work, blocked parts of the direct correlation functions are
ignored, such that c

ff (c)
k = c

ff

k , c
sf (c)
k = c

sf

k , and the total
correlation function h

ss(b)
k equals to nf V

(1)
k , as shown in

Eq. (30). Second, we use the MCT equations given in Sec. II D
to get the k-dependent coherent density correlator �k(t)
and tagged particle correlator φs

k(t) for the fluid component,
by adopting the Enskog kinetic theory for the short-time
diffusion coefficient D0. Third, these density correlators are
used to calculate the friction kernel ζρρ(t), which is finally
substituted into the formula for the RC to compute the
diffusion constant DCM or distance fluctuation correlation
function CDF(t). Note that our scheme does not require any
self-consistent calculation. We are mainly interested in how
the porous environment would influence these properties. The
main results of our work will be presented in the following
section.

III. RESULTS AND DISCUSSIONS

Surely, the dynamics in a porous media depends strongly on
the volume fractions of the fluid, ϕf , and that of the matrix, ϕm.
The phase behavior of a quenched-annealed binary mixture of
fluid and matrix particles, both being hard spheres of the same
sizes, has been studied in detail in Refs. [29,30]. If both ϕf

and ϕm are small, the system remains in liquid state. With the
increment of the matrix fraction ϕm, the fluid particles may
first become localized and then enter into a glassy state if ϕf

is not too large, say, ϕf < 0.42. If ϕf > 0.42, however, the
system may change directly from fluid to glassy state without
bypassing a localized state. In the present work, we are mainly
interested in the high-density region, where the system is close
to the boundary of localized or glassy state, to highlight the
effect of crowded environment. We expect that anomalous
behaviors resulting from the porous media and their effects
on the dynamics of RC can be clearly demonstrated. Note
that all the static properties, including the direct and total pair
correlation functions, structure factors, etc., are obtained by
solving the replica OZ equations as those described in the
appendices of Refs. [29,30].

As already discussed in the end of the last section, we
first need to obtain the short-time diffusion coefficient D0.
Basically, D0 decreases with increasing ϕf or ϕm. In Fig. 2,
the dependence of D0 as a function of ϕf for fixed ϕm (bottom
and left, black line), or of ϕm for fixed ϕf (up and right, red line)
is drawn. For the data considered here, we see that D0 shows
power-law decaying with ϕf when the matrix volume fraction
is small (here ϕm = 0.0524, corresponding to a number density
of matrix particles nm = 0.1 since ϕ = nπd3

6 ). Nevertheless,
such a power-law dependence is not observed among D0 and
ϕm for ϕf = 0.419 (corresponding nf = 0.8). In the inset of
Fig. 2, we show the dependence of D0 on ϕm while keeping
the total volume fraction ϕm + ϕf fixed. Clearly, D0 decreases
monotonically as ϕm increases, i.e., when more and more fluid
particles are replaced by the matrix ones under fixed volume
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FIG. 2. Short-time diffusion coefficient D0 vs. ϕf and ϕm in
logarithm scales. The black and red lines are corresponding to
the left and right axis and fixing ϕm = 0.0524 and ϕf = 0.419,
respectively. df and dm denote the diameters of fluid and matrix
particles, respectively.

fraction, the short-time diffusion of fluid particle gradually
slower. This indicates that matrix and fluid particles take rather
different effects on the short-time diffusion behavior of the
tagged particle, as one can expect.

With the calculated D0, one can then obtain the scattering
functions �k(t) and φs

k(t), using the methods described in
detail in the Sec. II D. As an example, the results for ϕm =
0.0524 under various ϕf are depicted in Fig. 3. If ϕf is
relatively small, both �k(t) and φs

k(t) decrease fast to zero with
time, indicating that the system remains in a fluid state. With
increasing ϕf , the system becomes more and more crowded,
such that the relaxation time of both scattering functions
become larger and larger. If ϕf exceeds some threshold value,
for instance ϕf = 0.424 here, an obvious plateau with nonzero
value of �k(t → ∞) or φs

k(t → ∞) appears, indicating that

the system enters nonergodic glassy-like state, wherein the
viscosity of the system diverges and the long-time diffusion
coefficient of the tagged particle becomes zero.

We note here that the volume fraction ϕm = 0.0524 is not
large. In this case, the system is not filled with too many
immobile matrix particles, and �k(t) and φs

k(t) behave rather
similarly. However, if ϕm becomes larger, φs

k(t) and �k(t)
may show totally different behaviors. For instance, for ϕm =
0.157(nm = 0.3) and ϕf = 0.209(nf = 0.4), as also shown
in Fig. 3 by the dash-dot lines, one can see that the �k(t)
will finally relax to zero, indicating that the system behaves
collectively as a fluid state, while φs

k(t) decays to a nonzero
plateau, indicating that a single tagged particle gets trapped
into a localized state [30]. This localized state will lead to the
disappearance of the long-time diffusion constant for a tagged
particle. Since we are interested in the diffusion behavior of
a RC, wherein each bead can be viewed as a tagged particle
in the present context, we will mainly focus on the parameter
region where this localized state does not occur. Thus, in the
following parts, the volume fraction of the matrix particles
ϕm will be set to be smaller than 0.0524 (corresponding to
a number fraction nm = 0.1), and ϕf will be kept below the
glass-transition point, say, smaller than 0.419 (corresponding
to nf = 0.8) if not otherwise stated.

With �k(t) and φs
k(t) obtained above, one can get the

friction kernel ζρρ(t) according to Eq. (19), which enters Eq. (8)
as ζ (t). For instances, Fig. 4 shows the time-dependencies
of ζ (t) for several difference values of ϕf with fixed ϕm =
0.0524. Clearly, the kernel becomes larger and spans a wider
time-range with the increment of ϕf . We note that the
integrated area under the curve of ζ (t), i.e., ζ0 = ∫ ∞

0 ζ (t)dt ,
qualitatively measures the effective friction coefficient for the
tagged particle. Hence, the average friction that is experienced
by a bead becomes larger in a higher volume fraction as
expected. In addition, if the volume fraction approaches the
glass-forming value, the system would get much more crowded
and the friction kernel shows a rather significant long tail,
as shown in Fig. 4 for ϕf = 0.419. As already discussed in
many literatures, such a long tail is due to the cage effects

FIG. 3. The scattering functions �k(t) and φs
k(t). The lines of same color in (a) and (b) are corresponding to the same volume fraction

systems. k = 6.44 is the frequency space position of the first peak of S
ff (c)
k . The dash-dot line is the system with ϕf = 0.209 and ϕm = 0.157.

In this situation, system enters localized state due to the influence of matrix, which is reflected by the plateau of φs
k(t).
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FIG. 4. Friction kernel ζ vs. t in logarithmic space. The volume fraction of matrix ϕm is fixed at 0.0524. The multiexponential fitting is
shown in the inset. The open circle are the data obtained from calculating. And the red line is the fitting curve

∑6
i=1 ηi exp (−vi t), the fitting is

very well in almost 11 order of magnitudes.

resulting from the surrounding fluid particles in a dense
system and would lead to anomalous diffusive behavior of
the tagged particle in the related time range characterized by
the relaxation time τ of ζ (t). Only for time much larger than
τ , the memory effects lose and the particle would undergo
a normal diffusion. Interestingly, the friction kernel shows a
clear multi-exponential feature, i.e., it can be well-fitted by the
summation of several single-exponential decaying functions
[42]. As an example, the inset of Fig. 4 shows the fitting of
ζ (t) for ϕf = 0.419 by using six single-exponential functions.

We are now ready to investigate the dynamics of the RC
by using the GLE Eq. (8). First of all, we are interested in
the overall diffusion coefficient of CM of the chain. The
mean-square displacements (MSDs) of the CM, 〈�2rCM(t)〉, at
different fluid or matrix densities are shown in Fig. 5. Clearly,
the MSD increases linearly with time for small t , indicating
that the chain undergoes a normal diffusive behavior. In the
long-time limit, the slopes of the lines with time are also
nearly one, i.e., the chain also shows normal diffusion as well.
Nevertheless, the chain exhibits obvious subdiffusion in the
intermediate time range, especially for high densities of fluid
or matrix. For instance, for ϕf = 0.419, which is close to
the glass-forming point, the system enters the subdiffusion
region at t = t1 � 10−2 and gets trapped in a very small space
region (the MSD increases little) for a very long time until
the chain shows normal diffusion again for t > t2 � 104. Such
an anomalous diffusion is due to the cage effects, and the
time length t2 − t1 qualitatively measures the average waiting
time that the chain escape from the cage. Note the onset time
t2 nearly coincides with the time that ζ (t) relaxes to zero,
see Fig. 4. The long-time diffusion coefficient DCM can be
obtained via Eq. (10). Surely, DCM will decrease with the
increment of ϕf or ϕm, as shown in the insets of Fig. 5. For
the parameter value considered here, for instance ϕm = 0.0524
with varying ϕf , DCM nearly decays as exp (−γ ϕf ) with γ a
certain constant for ϕf < 0.40, after which it decreases very
fast upon approaching the localization state. This is also the
case if ϕf is fixed with varying ϕm as shown in the inset of
Fig. 5(b).

In Ref. [43], A. J. Monero and J. Colmenero performed
simulations for a simple model of polymer blends by in-
troducing an A-B mixture of bead-spring chains. They used
LJ potential for monomer-monomer interactions and finitely
extensible nonlinear elastic potential for chain connectivity.
The interaction diameter for B monomers is smaller than
that for A ones, such that B is a fast component and A is
relatively slow. The authors analyzed the dynamics of the
chains via Rouse modes. They found that while the slow
component A showed typical Rouse dynamics, the fast one B
showed large deviations from exponentiality, which could be
associated with strong memory effects induced by the slow
nature of the confining matrix formed by A components.
Such an anomalous behavior becomes more apparent with
increasing of the dynamic asymmetry of the system or
decreasing temperature T . We find that the strong memory
effects found in this reference work is much related to our
present work. In Fig. 5 of our paper, the MSD also shows strong
anomalous region with time, with the exponent decreases with
increasing ϕf or ϕm, as demonstrated by the new insets in
Fig. 5. In Refs. [44–46], Yethiraj group studied the structure
and dynamics of polymer chains in porous media by using
simulations as well as integral equation theory. In particular,
they have developed the replica polymer reference interaction
site model (PRISM) method to study the swelling of polymer
chains in porous media, finding that the radius of gyration
(Rg) shows nonmonotonic dependence on the volume fraction
of matrix particles [44,46]. More interestingly, they had used
molecular dynamics simulations to study the diffusion DCM of
the chain, finding that the scaling of DCM with M is stronger
than M−1 in the presence of matrix particles with ϕm = 0.1,
which is at variance with the Rouse model prediction. This
seems to suggest the failure of Rouse dynamics to describe the
chain dynamics in their system.

As discussed in Sec. II B, given by Eq. (11), DCM should be
inversely proportional to the number of total beads M of the
RC in the large M limit. In our present work, we only consider
short chains with M not larger than a few tens. Therefore,
we have performed simulations to study the dependence of
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FIG. 5. MSD of rouse chain CM as a function of t with different
ϕf and ϕm. Insets: The long-time diffusion coefficient DCM as
functions of ϕf and ϕm. The black lines are drawn for guiding eyes.
The small insets show the dependencies of the subdiffusion scaling
exponent on ϕf or ϕm.

DCM on M in our system. The results are shown in Fig. 6 for
fixed ϕm with varying ϕf . Clearly, we find log DCM ∝ − log M

within the statistical errors. Therefore, DCM ∝ M−1 does hold
even for short chains and in porous media. Such a scaling
relation is rather robust, even if DCM is very small for high
volume fractions of fluid and matrix particles as indicated by
the line with ϕf = 0.419. We note here that such a scaling
between DCM and M would still hold for larger fraction of
matrix particles ϕm, because the effect of increasing matrix
particles has been accounted for in the memory kernel. With
increasing ϕm, the friction kernel will show longer tails with
longer memory, but the scaling with M would not change given
the Rouse dynamics is satisfied. This picture is at variance with
some real systems, where increasing fixed obstacles would
lead to reptation dynamics such that the diffusion becomes
much slower and DCM shows stronger dependence on the chain
length as DCM ∼ M−2 [31,32].

FIG. 6. DCM as functions of bead number M with different ϕf

and ϕm. The values of M from left to right are 8, 10, 12, 15, 20, 25,
30, 35, 40. The straight lines are the linear fitting of these data.

Another relevant dynamics of the Rouse chain is about
the distance fluctuation characterized by the ACF defined in
Eq. (12), which can be calculated conveniently in the Laplace
domain by using Eq. (13). Very recently, we have investigated
the distance fluctuation of a RC in Lennard-Jones liquid by
using similar methods, finding that there always exists a time
range from ton to toff, wherein CDF(t)/CDF(0) shows robust
power law t−0.5 with time, given that the chain length is long
enough [35]. Herein, we find very similar results in a porous
media, although the friction kernel ζ (t) shows rather nontrivial
features. Figure 7(a) shows the dependencies of CDF(t)/CDF(0)
with time t for different chain lengths M with fixed ϕf and
ϕm. A clear power-law t−0.5 region appears if M is not too
small. The onset time ton of this power-law region keeps
nearly the same for different M , while the end time toff of this
region increases with M . Figure 7(b) presents CDF(t)/CDF(0)
for different ϕf while keeping ϕm fixed and M = 200. With
increasing ϕf , both ton and toff increases quickly, while the time
interval log ton − log toff keeps nearly unchanged, even when
the system becomes rather crowding for ϕf = 0.419. Such
an interesting finding is quite similar to that in our previous
study [35], as mentioned just above.

A possible understanding of this interesting phenomenon
may be as follows. As discussed in Sec. II B, even for
δ-correlated friction kernel, one still observes t−1/2 region
bounded by 1 � �t � M . Thus, the range of this power-law
region would generally increase with the chain length M ,
but not depend on � = 4ω2/ζ0. It is thus reasonable that
the ratio toff/ton remains nearly a constant for different �.
In the case of GLE, where the kernel has long memory, one
may still approximate the kernel by a δ-correlated one at a
“coarse-graining” time scale, where this memory has lost. For
this coarse-grained model, toff/ton for the power-law region
would still be nearly a constant only dependent on the chain
length M , but now the absolute values of ton and toff shift and
depend on the “effective” friction ζ CG

0 , where “CG” stands
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FIG. 7. The distance ACF CDF(t)/CDF(0) as function of t .

for coarse-graining. As shown in Fig. 4, with the increasing
of ϕf (ϕm fixed), the relaxation time of the memory kernel
ζ (t) also increases, indicating that the coarse-grained time
scale for the system to be nearly δ-correlated increases too.
In addition, the total effective friction ζ CG

0 ∝ ∫ ∞
0 ζ (t)dt also

increases with increasing ϕf . These two effects both lead to
the right shifts of both ton and toff. With more fraction of fixed
particles ϕm, the qualitative behavior would be the same as
long as the system has not entered the glassy region, since the
effect of the matrix has been taken into account by the friction
kernel ζ (t) in the present model. This is demonstrated in
Fig. 7(c), where the results for ϕm = 0.1 have been plotted, and
qualitatively very similar behaviors can be observed as those in
Fig. 7(b).

Finally, one may ask how the particular feature of the porous
media would influence the chain dynamics described above.
To answer this question, we may compare the results obtained
above, referred to as fluid-matrix (FM) case, with the case
wherein the matrix particles are replaced by the fluid particles
with the same volume fraction, which may be termed as fluid-
fluid (FF) case. To obtain the results for the FF case, one just
needs to remove the V

(1)
k term in Eq. (19) and set the total

volume fraction of fluid particles to be ϕFF
f = ϕFM

f + ϕFM
m .

Typical results for the friction kernel ζ (t) are shown in Fig. 8(a)
with ϕFF

f = 0.471 and ϕFF
f = 0.419. Clearly, ζ (t) shows an

apparent long tail in the large time limit for the FM case (black
line) compared to the FF case (red line). Since the total number
of ambient particles are the same for both cases, this difference
must be related to the immobile feature of the matrix particles
which leads to the lack of translational invariance. We also note
that the difference becomes significant only for long times,
which means the porous media leads to more pronounced
subdiffusion behavior. Correspondingly, results for the center-
of-mass diffusion coefficient DCM as a function of ϕFM

f + ϕFM
m

(with fixed ϕFM
m = 0.0524) or ϕFF

f (being equal to ϕFM
f + ϕFM

m )
are depicted in Fig. 8(b). As expected, the immobile feature of
the matrix component also leads to a reducing of the DCM and
a sharper dependence of DCM on the total number of fluid (and
matrix) particles. Therefore, proper consideration of the matrix
particles is of particular importance for the investigation of the
dynamics of any solute in a porous media.

IV. CONCLUSION

In summary, we have studied the long-time diffusion
behavior and the end-to-end distance fluctuations of a bead-
spring RC dissolved in porous media, by using a GLE wherein
the friction kernel ζ (t) is obtained by kinetic MCT. The
porous media contains fluid particles as well as immobile
matrix particles, leading to the lack of translational invariance
of the system. The main source of the friction kernel ζ (t)
is density fluctuation in the media, containing static or
dynamic components. By adopting a simple density-functional
approach, we can calculate ζ (t) directly, given the collective
and tagged particle density correlators �k(t) and φk(t) as
inputs. These latter density correlators can be obtained by
solving specific MCT equations for porous media, wherein the
equilibrium structure factors are obtained by solving replica
OZ equations with PY closure. It is found that ζ (t) exhibits
rather complicated features in such porous media. Especially in
the high-volume fraction of fluid and matrix, ζ (t) would show
a very long tail due to the cage effect generated by surrounding
particles. Substituting ζ (t) into the GLE for the RC, we can
calculate the long-time center-of-mass diffusion constant DCM

of the chain. DCM decreases with the increment of media
particles as expected, while matrix particles have stronger
influences on DCM than the fluid particles. It is found that the
scaling relation between chain length M and DCM agreed with
the continuum approximation even for both highly crowded
environment and very small M . Based on the GLE, we can also
calculate CQ(t), ACF of the end-to-end distance fluctuation,
which depends explicitly on the friction kernel ζ (t). A clear-cut
power-law decaying regime shows up in CQ(t) with a robust
exponent to be −0.5, corresponding to subdiffusion behavior
of the chain, provided that the chain length is long enough.
Interestingly, the power-law region of CQ(t) has a nearly fixed
length in logarithmic scale, but shifts to longer time range,
with increasing the total volume fraction of media particles. By
comparing the results for the porous media and a hypothetical
system, wherein the matrix particles are replaced by fluid
particles with the same volume fraction, we find that the lack
of translational invariance is the main reason for the long-time
tail in ζ (t). We believe that our work provides a simple but
efficient theoretical framework to study transport properties of
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FIG. 8. (a) The black line: fluid-matrix (FM) case. The red line: pure fluid case. (b) DCM as functions of ϕtotal in different cases, where ϕtotal

is the total volume fraction of particles including fluid and matrix. The lines are drawn for guiding eyes.

nanoparticles or macromolecules in a crowded environment,
which could be of great importance in real biological systems.
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APPENDIX: REPLICA ORNSTEIN-ZERNIKE EQUATIONS

In this appendix, we briefly outline the replica Ornstein-
Zernike (ROZ) equations we used to calculate the static prop-
erties of the system. As discussed in the section of model and
theory, we need to obtain the structure factors (S(ff )c

q , S
(ff )b
q ,

S
f m
q , Smm

q ), direct correlations functions among the tagged

particle and the fluid or matrix particles (cff
q , csf

q , csm
q ), and the

total correlation function hss(b)
q , and so on. The ROZ equations

are similar to the usual OZ equations for a two-component
fluid system, nevertheless, now the total correlation function
h

ff
q or direct correlation function c

ff
q of the fluid component,

which are the Fourier transformation of the total and direct
correlation functions hff (r) and cff (r), respectively, now
contains a connected part and a blocked part. Consequently,
the ROZ equations for the fluid-matrix system are given by

hmm
q = cmm

q + nmcmm
q hmm

q , (A1)

hf m
q = cf m

q + nmcf m
q hmm

q + nf cff (c)
q hf m

q , (A2)

hff (b)
q = cff (b)

q + nmcf m
q hf m

q + nf cff (c)
q hff (b)

q

+ nf cff (b)
q hff (c)

q , (A3)

hff (c)
q = cff (c)

q + nf cff (c)
q hff (c)

q , (A4)

where c
ff
q = c

ff (c)
q + c

ff (b)
q and h

ff
q = h

ff (c)
q + h

ff (b)
q . With

these correlation functions, the structure factors can be
obtained easily via the following relations [30]:

Smm
q = 1 + nmhmm

q , (A5)

Sf m
q = √

nf nmhf m
q , (A6)

Sff (c)
q = 1 + nf hff (c)

q , (A7)

Sff (b)
q = nf hff (b)

q . (A8)

One can also write down a couple of equations for the
single-particle part correlation functions such as c

sf
q , hsm

q ,
etc., as those already presented in the Appendix of Ref. [30].
Nevertheless, in the present paper, we consider that the tagged
particle is of the same size as the fluid particle, such that the
correlation functions among the tagged-particle and the fluid
particle is the same as that among fluid-particles, for instance,
csm
q = c

f m
q and c

sf
q = c

ff
q . The total correlation function

hss(b)
q can then be calculated from Eq. (30) in the main text.

Therefore, we only need to solve the ROZ Eqs. (A1)–(A4) to
get related static properties.

There are a lot of methods to solve the ROZ equations
shown above. In the present paper, we just used the picard
iteration method [47], which is described briefly below for
self-consistency. Note that Eq. (A1) can be solved indepen-
dently with proper closure, while Eqs. (A2)–(A4) are coupled
together. Thus, we can first solve Eq. (A1) with the PY closure.
The iteration equations then read

�mm(q) = nmC2
mm(q)

q − nmCmm(q)
, (A9)

Cmm(r) = f (r)[r + �mm(r)], (A10)

with Cmm(q) = qcmm
q and �mm(q) = qγ mm

q , where γ mm
q =

hmm
q − cmm

q . f (r) is the mayer function given by exp(−V (r)
kBT

),
where V (r) denotes the hard-sphere potential among the
matrix particles. By this iteration procedure till convergence,
one can get γ mm

q and hmm
q can be easily obtained in combination

with Eq. (A1).
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To solve Eqs. (A2)–(A4), we need to know the form of c
ff (b)
q . As mentioned in Ref. [48], cb

ff (r) = 1 + hmm(r) if r < d and

cb
ff (r) = cmm(r) if r � d, where d is the diameter of fluid particle. After obtaining hmm

q and cb
ff (r) thus c

ff (b)
q , we can calculate

the other variables by the following set of equations [48] corresponding to Eqs. (A2)–(A4):

�f m(q) = −Cf m(q) + Cf m(q)χ (q)

q − nf Cff (q) + nf Cb
ff (q)

, (A11)

�ff (q) = −Cff (q) + q2Cff (q) + nmC2
f m(q)χ (q) − qnf

[
Cc

ff (q)
]2

[
q − nf Cff (q) + nf Cb

ff (q)
]2 , (A12)

�b
ff (q) = −Cb

ff (q) + q2Cb
ff (q) + nmC2

f m(q)χ (q)[
q − nf Cff (q) + nf Cb

ff (q)
]2 , (A13)

where Cαβ(q) = qc
αβ
q , Cb

αβ(q) = qc
αβ(b)
q , �αβ(q) = qγ

αβ
q , with γ

αβ
q = h

αβ
q − c

αβ
q (α, β stands for f or m), and χ (q) = q +

nmqhmm
q . Since c

ff
q = c

ff (b)
q + c

ff (c)
q , these equations can solve the three unknown variables c

f m
q , c

ff (b)
q , and c

ff (c)
q with the help

of the following PY closures:

Cαβ(r) =
{−r − �αβ(r) r < σαβ

Cb
ff (r) r � σαβ

, (A14)

where σαβ = dα + dβ

2
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