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We have studied spatial and temporal dynamic heterogeneity (DH) in a system of hard-sphere particles,
subjected to active forces with constant amplitude and random direction determined by rotational diffusion
with correlation time τ . We have used a variety of observables to characterize the DH behavior, including the
deviation from standard Stokes-Einstein (SE) relation, a non-Gaussian parameter α2(�t) for the distribution of
particle displacement within a certain time interval �t , a four-point susceptibility χ4(�t,�L) for the correlation
in dynamics between any two points in space separated by distance �L within some time window �t , and
a vector spatial-temporal correlation function Svec(R,�t) for vector displacements within time interval �t of
particle pairs originally separated by R. By mapping the particle motion into a continuous-time random walk
with constant jump length, we can obtain the average waiting time 〈tx〉 ∝ D−1

s and persistence time 〈tp〉∝ η, with
Ds the self-diffusion coefficient and η the shear viscosity, such that the observable λ = 〈tp〉/〈tx〉 ∝ Dsη can be
calculated as a function of the control parameter τ to show how it deviates from its SE value λ0. Interestingly,
we find λ/λ0 shows a nonmonotonic behavior for large volume fraction ϕa , wherein λ/λ0 undergoes a minimum
at a certain intermediate value of τ , indicating that both small and large particle activity may lead to strong DH.
Such a reentrance phenomenon is further demonstrated in terms of the non-Gaussian parameters α2, four-point
susceptibility χ4, and vector spatiotemporal correlation functions Svec, respectively. Detail analysis shows that it is
the competition between the dual roles of particle activity, namely, activity-induced higher effective temperature
and activity-induced clustering, that leads to such nontrivial nonmonotonic behaviors. In addition, we find that
DH may also show a maximum level at an intermediate value of ϕa if τ is large enough, implying that a more
crowded system may be less heterogeneous than a less crowded one for a system with high particle activity.
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I. INTRODUCTION

The phenomenon of dynamic heterogeneity (DH), which
relates to the spatiotemporal fluctuation of the system [1],
frequently exists in supercooled liquid [2–4], highly crowded
colloid systems [5,6], and cellular environment [7]. Basically,
DH describes the phenomenon in such systems that some
regions of sample exhibit faster dynamics than the rest,
and over time these mobile regions appear and disappear
throughout the system. The study of DH originally stemmed
from the explanation of the nonexponentiality of relaxation
processes in supercooled liquids [4], related to the existence of
a broad relaxation spectrum. It was understood that a multiple
superposition of slow and fast relaxators [8,9] in different
regions gives rise to highly nonexponential relaxation behavior
of intermediate scattering functions. The motion of particles
within the faster mobile region is cooperative, namely, the
fast relaxators are correlated over large distances [10], which
can make the system return back to the ergodic state even
rest of particles were completely trapped with a very slow
relaxation in the cages formed by the crowding environment.
The coexistence of faster and slower particles also results in
an exponential rather than Gaussian tails of self-part of the van
Hove function [1,11].

Another influential phenomenon that was early related
to the existence of DH is the decoupling of self-diffusion
(Ds) and viscosity (η) [12,13]. Since structural relaxation
is usually associated with rotational diffusion of particles,
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such a decoupling between diffusion and viscosity is also
reflected by the decoupling between translation and rotational
diffusion in complex fluids [14,15]. For a high-temperature
homogeneous liquid, self-diffusion and viscosity are related by
the well-known Stokes-Einstein (SE) relation [13], Dsη/T =
const with T being the temperature. Physically, the SE means
that two different measures of the relaxation times d2/Ds

and d3η/T lead to the same time scale up to a constant
factor, where d denotes the particle diameter. Nevertheless,
for a system with DH such as supercooled liquid, this SE
relation may break down, and it is commonly found that D−1

s

does not increase as fast as η/T so that Dsη/T may be two
to three orders of magnitude as compared to its SE value.
Indeed, different observables probe differently the underlying
distribution of relaxation times. For a system with fast and low
regions of particles, the self-diffusion coefficient of a tagged
tracer particle is dominated by the more mobile particles,
whereas the viscosity or other measures of structural relaxation
probe the time scale needed for every particle to move and
are contributed mainly by those slow particles. Therefore,
the deviation from SE relation can be used as an important
factor to measure the DH property of a system. We note that a
variety of experimental techniques, such as multidimensional
nuclear magnetic resonance [16,17], dielectric and magnetic
hole burning [18–20], deep photo bleaching [21,22], etc., have
been developed in recent years to study DH behaviors with
particular range of accessible time and temperature scales.
Molecular dynamics simulations have also been widely used
for studying DH feature of a variety of model systems above
the onset temperature of glass transition predicted by mode
coupling theory [23,24].
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Whereas the studies of DH in space and time provide a
significant step towards understanding the relation between
the macroscopic properties of soft condensed matter and the
microscopic molecular mechanisms involved [1,12], most of
the works so far have mainly focused on the descriptions of
equilibrium glassy liquids. On the other hand, very recently, the
collective behaviors of active particles have gained extensive
research attentions [10,25–33]. The particles are subjected to
some kind of self-propulsion force which is not balanced by
the thermal noise, pushing the system out of equilibrium.
There have been a variety of models for active particle
systems, including the active Brownian particle model [27,34]
wherein the self-propulsion force is constant in amplitude
but changes direction randomly via rotational diffusion, and
the active colored noise model wherein the self-propulsion
force is described by an Ornstein-Ulenbeck (OU) stochastic
process [35,36], for instances. It has been shown that particle
activity, quantified by amplitude of the propulsion force as
well as the persistence time of its directional motion, strongly
influences the system dynamics. A wealth of interesting
nonequilibrium phenomena have been reported, such as active
swarming, large scale vortex formation [29,30,37,38], phase
separation [28,31,34,39–41], etc., both experimentally and
theoretically. Recently, the dynamics of dense assemblies of
self-propelled particles around glass transition has been a
new trend in this field. Experiments on crowded systems of
active colloids and active cells show dynamic features such as
jamming and dynamic arrest that are very similar to those
observed in glassy materials [7,42]. Computer simulations
demonstrated that nonequilibrium glass transition or dynamic
arrest behavior does occur in a dense suspension of self-
propelled hard spheres, where the critical density for glass
transition shifts to larger value with increasing activity [10,27].
Therefore, one would expect that DH should also be an
important feature in such nonequilibrium condensed systems.
Very recently, Flenneret al. [43] had performed a detailed
study of the nonequilibrium glassy dynamics of mixture of
athermal self-propelled particles, wherein the authors had
paid some attention on the DH feature by investigating the
behavior of a dynamic susceptibility based on the fluctuations
of the real part of the microscopic self-intermediate scatter
function. Nevertheless, the interesting topic regarding how
particle activity would affect the spatial and temporal DH
behavior of active particles system still deserves a systematic
understanding.

Motivated by this, in this paper, we have studied the
spatial and temporal dynamic behaviors of an active hard-
sphere particle system, paying particular attention on how the
particle activity would influence DH features. The particles are
subjected to an external active force with constant amplitude
f0, of which the direction stochastically changes via rotational
diffusion with correlation time τ = 1

2Dr
, where Dr is the

rotational diffusion coefficient. For fixed value of f0, the
parameter τ can be used to characterize the particle activity.
We have studied how the DH property depends on particle
activity by using a couple of different measures. First, we
investigate how the normal SE is violated with the variation
of the particle activity. This is done by mapping the particle
motion into a continuous-time random walk (CTRW) with
constant jump length, wherein one can obtain the average

waiting time 〈tx〉 between adjacent jump events and the
averaging persistence time 〈tp〉 before the next jump event. The
observable λ = 〈tp〉/〈tx〉, which is assumed to be proportional
to Dsη, is then calculated as a function of the control parameter
τ to show how it deviates from its SE value λ0. Second, we
study how the distribution of particle displacement within a
certain time interval �t would deviate from Gaussian, which
is manifested by a non-Gaussian parameter α2(�t). For a
system with strong DH, a population of particles may move
much faster than else such that α2(�t) shows large deviation
from zero. The dependencies of α2 on �t for different volume
fraction and particle activity are then presented to demonstrate
the DH feature at different time scales. In addition, we have
also investigated temporal heterogeneity of the dynamics by
using the four-point susceptibility χ4(�t,�L) which measures
the correlation in dynamics between any two points in space
separated by distance �L within some time window �t , and
spatial DH feature of the system by using the vector spatial-
temporal correlation function Svec(R,�t), which characterizes
correlations in the vector displacements within time interval
�t of particle pairs originally separated by R. Consequently,
we find that the DH features depend strongly on τ as well
as the volume fraction ϕa . While λ/λ0 may show weak
dependence on τ for small volume fraction of particles, an
interesting reentrance behavior is found for large ϕa , wherein
λ/λ0 shows an apparent valley region at intermediate values of
τ . Such a nonmonotonic dependence indicates that the dense
system becomes most homogeneous for an optimal value of
particle activity, while small or large activity may both lead
to strong heterogeneity. Such a reentrance behavior is further
demonstrated and analyzed in terms of α2(�t), χ4(�t,�L),
and Svec(R,�t), respectively. Furthermore, another interesting
nonmonotonic behavior for large particle activity is also found,
i.e., DH level shows a maximum at an intermediate value of ϕa ,
implying that a more crowded system with larger ϕa may be
less heterogeneous than a less crowded system, which sounds
counterintuitive at the first glance. All these nontrivial findings
clearly demonstrate the intriguing roles of particle activity on
DH features of the system.

The paper is organized as follows. In Sec. II, we present
descriptions of the model and the methods used to characterize
the DH behavior. Detailed results are given by Sec. III,
followed by a short conclusion remark in Sec. IV.

II. MODEL AND METHOD

A. Model of self-propelled particles

Here, we consider a two-dimensional (2D) system of N

active hard-sphere particles with diameter d. Each particle is
subjected to a self-propulsion force with constant amplitude
f0 whereas its direction changes via rotational diffusion. The
particles move in a viscous medium that is characterized by
the friction coefficient of a single particle γ . The dynamics of
the particles is described by [34]

ṙi = γ −1f0 pi + ξ i(t),

ṗi = ζ i × pi , (1)
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where ri is the position vector of particle i and pi denotes
the unit direction vector of its self-propulsion force. ξ i and ζ i

are Gaussian white noises with zero mean and have time cor-
relations 〈ξ i(t)ξ j (t ′)〉 = 2D01δij δ(t − t ′) and 〈ζ i(t)ζ j (t ′)〉 =
2Dr1δij δ(t − t ′), respectively, where D0 and Dr are the
translational and rotational diffusion coefficients and 1 is
the unit tensor. One may refer to Eq. (1) as the rotational
diffusion active Brownian particle model [36]. In the long time
limit, the particle will show normal-diffusion behavior with

diffusion coefficient D0 + f 2
0

6γ 2Dr
= D0 + f 2

0 τ

3γ 2 , corresponding

to a higher effective temperature Teff = T (1 + f 2
0 τ

3kBT γ
) with kB

the Boltzmann constant.
One notes that, for the above model, the active force

subjected to the particle depends not only on the driven speed
v0 = γ −1f0, but also on the persistence time of the driven
direction given by τ = (2Dr )−1. Actually, after averaging over
the rotational degree of freedom, pi can be approximated by
a color noise with autocorrelation function 1

3e−|t−t ′ |/τ [34].
For a spherical particle in normal fluids, the translational and
rotational diffusion may be coupled, such that Dr = 3D0/d

2

and τ = d2/D0 with d to be the particle diameter. More
generally, however, D0 and Dr can be decoupled and one can
choose D0 and Dr as independent parameters. In this work,
we will fix the values of D0 and d which can be adsorbed into
dimensionless units. Our main motivation is to investigate the
effect of particle activity on the collective DH behaviors. To
this end, we simply fix the value v0 and choose τ as a free
parameter. The case when one fixes τ with changing v0 leads
to similar main results.

B. Violation of SE relation

In general, a dynamically heterogeneous system may
show many specific features that are quite different from
a dynamically homogeneous one. As already mentioned
in the Introduction, for a homogeneous system, the long
time diffusion coefficient Ds of a tagged particle and the
macroscopic shear viscosity η of the system should obey the
famous SE relation Dsη/T = const [13]. Nevertheless, for a
system with DH, Dsη may deviate apparently from a constant
value. Therefore, it is convenient for us to investigate how
Dsη changes with τ to address the issue how the particle
activity would influence the DH property. While one may
directly calculate the long time diffusion coefficient and
viscosity by direct simulations, here we adopt a simpler method
introduced in Ref. [44] by mapping the particle motions to a
continuous-time random walk (CTRW). This mapping is done
by measuring the times of single-particle events (exchange
events) that occur when a particle moves a distance d0 from
its initial position, corresponding to a CTRW where the jump
length is fixed. Two times can be extracted from the particle
trajectory: one is the random walk waiting time tx between two
exchange events, and the other is the persistence time tp that
starts at a random time and ends at the subsequent exchange
event. Generally, d0 is a characteristic length sufficient for the
particle motion to be diffusive and often set to be the first
peak in the pair distribution function. Here, we just set d0 = d

due to the hard-core potential. In Fig. 1, a typical trajectory
of the particle is shown (left) and the definitions of tx and tp

FIG. 1. (a) Typical trajectory of the active particle, d is a charac-
teristic length which equals to diameter of sphere. (b) Illustrations of
exchange times tx and persistence times tp for an arbitrary particle.

are also illustrated (right). According to Ref. [44], the average
exchange time 〈tx〉 is inversely proportional to the diffusion
constant: Ds ∝ 〈tx〉−1, while 〈tp〉 indicates the persistence time
that a local structure would hold such that 〈tp〉 ∝ η/kBT . We
can thus introduce a parameter

λ = 〈tp〉/〈tx〉 ∝ Dsη

kBT
(2)

to study the degree of DH for the system considered. For
a system with DH, Dsη is no longer a constant and this
parameter λ would deviate from the value λ0 given by SE
relation. Therefore, we may use λ/λ0 to characterize the degree
of DH in this work.

One may note here that identifying DH with the violation
of the SE relation might not be well justified in active
fluids. This relation originates from a combination of the
Stokes calculation (friction coefficient of a sphere in a
Newtonian fluid) and Einstein’s relation between the mobility
and diffusion coefficients, which involves the temperature of
the fluid. An active fluid is, in general, non-Newtonian and
its macroscopic hydrodynamic equations are likely different
from Navier-Stokes equations such that the very validity of the
Stokes calculation is not certain. Moreover, for an active fluid
it is, in general, far from obvious how to define temperature,
and it is not clear whether there is a unique temperature
[35,45–48]. Thus, the Einstein relation is not necessarily valid.
Consequently, SE may not hold, in general, in active particles
system. Nevertheless, investigation of λ/λ0 as a function of
the particle activity still helps us to understand DH behavior
of the system.

C. Non-Gaussian parameter

For a system with DH, as mentioned above, structure
relaxation and particle diffusion are spatially heterogeneous,
with regions that are faster or slower than the average. One
mainly observes that typical trajectories of a tagged particle,
as shown in Fig. 1, are not smooth but rather composed of a
succession of long periods of time where the particle simply
vibrates within a small region, separated by random jumps. If
one investigates the distribution of the particle displacements
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at a given time, strong deviation from Gaussian distribution
would be observed. Therefore, one may also characterize the
DH of a system by such a deviation from Gaussian, which
can be conveniently described by the so-called non-Gaussian
parameter (NGP) α2(�t) defined as [49]

α2(�t) = 1

2

〈�r4〉
〈�r2〉2

− 1, (3)

where the factor 1
2 corresponds to two-dimensional system.

�r = |r(t + �t) − r(t)| is the particle displacement for time
lag �t , wherein r(t) = (x(t),y(t)) is particle position at time
t . The angle brackets 〈. . .〉 here indicate an average over all
particles and initial time t . If the particle undergoes normal
diffusion homogeneously, the distributions of displacement
�x = x(t + �t) − x(t) and �y = y(t + �t) − y(t) are of
Gaussian type such that α2(�t) = 0 by construction. If the
distribution reveal tails and is much wider than expected for
Gaussian, then α2 > 0, reflecting that there exists a population
of particles that moves faster than the rest and appears to be
more mobile, i.e., the system is dynamically heterogeneous
at a time scale given by �t . Hence, if the system gets phase
separated wherein some particles are clustered together, one
would expect that α2 would be larger than zero. Generally
speaking, the larger α2 is, more heterogeneous the system is.
If the displacement distribution is narrow but non-Gaussian,
the values of α2 may be negative. For instance, in the limiting
case wherein all the particles move in the same direction
homogeneously, the distribution would be a δ function such
that 〈�r4〉 = 〈�r2〉2

and α2 = −0.5. Therefore, in our case,
α2 < 0 generally indicates that a population of the particles
performs cooperative directional motion due to the particle
activity.

D. Four-point susceptibility

One can further understand the temporal DH behavior
of a system by using the four-point susceptibility χ4 which
measures the correlation in dynamics between any two points
in space within some time window [5,50,51]. Generally,
χ4 contains a self-part and a distinct part, reflecting the
spatial correlations between temporarily localized particles
and the correlated motion of particles into positions previously
occupied by neighboring particles, respectively. In this work,
we only compute the self-contribution part since it has been
shown to be the dominating term [5]. By definition, this
self-part is calculated from temporal fluctuations of the number
of mobile particles, where a particle is defined to be mobile
if its displacement over a time interval �t is larger than some
threshold value �L. At a given time t , one can then obtain
the number of mobile particles Q(t), which certainly changes
from frame to frame with time. The self-part of χ4, which is
evidently dependent on the choices of the time lag �t and
threshold length �L, is then computed from the temporal
fluctuations of Q(t) as [50]

χs
4 (�t,�L) = V

N2kBT

[〈Q2(t)〉t − 〈Q(t)〉2
t

]
, (4)

where 〈. . .〉t denotes averaging over time and superscript “s”
denotes the self-part.

E. Vector correlation function

Note that χ4 measures temporal fluctuations in mobility
without regard for the spatial correlations between mobile
particles, thus, it characterizes a type of temporal DH. Here,
we further investigate the spatial DH of the system by using
the vector spatial-temporal correlation function Svec(R,�t)
defined as [52]

Svec(R,�t) = 〈��ri · ��rj 〉pair

〈��r2〉 , (5)

which characterizes correlations in the vector displacements
��ri = �ri(t + �t) − �ri(t) and ��rj within time interval �t .
〈. . .〉pair denotes an average over all particle pairs of which the
initial distance is R and also over time t . The denominators of
these correlation functions are averaged over all particles and
thus not dependent on R. This correlation function would be
unity if the particles are perfectly correlated and be zero for
completely stochastic motions.

In the next section, we will present the results of λ/λ0,
α2, χ4, and Svec as functions of the particle activity character-
ized by τ , for different volume fractions ϕa . We have adopted
event-driven Brownian dynamic (EDBD) approach to simulate
Eqs. (1) . The system parameters are number of particles
N = 10 000, d = 0.4, v0 = 10.0,D0 = 0.05 if not otherwise
stated. The size of the simulation box is determined by the
volume fraction. The SE value λ0 is obtained by the simulation
of a very dilute system consisting of passive particles, which
is considered to be mostly homogeneous.

III. RESULTS AND DISCUSSIONS

In Fig. 2(a), the dependencies of λ/λ0 as functions of τ

are shown for different values of volume fraction ϕa . For
the chosen parameter D0 = 0.05, the SE value is λ0 � 0.772.
Actually, we have found that λ0 depends on D0 very weakly, as
demonstrated in the inset of Fig. 2. As can be seen, the effect
of particle activity (τ ) on the DH parameter (λ/λ0) strongly
depends on the volume fraction ϕa . For small volume fraction,
say ϕa = 0.3, λ/λ0 remains nearly 1 for relatively small τ ,
while it decreases to an apparently smaller value when τ gets
larger. For ϕa = 0.5, λ/λ0 is also nearly one for small τ , while
it reaches a shallow valley at some intermediate value of τ , and
then increases sharply to be apparently deviated from one. For
an even larger volume fraction ϕa = 0.7, more interestingly,
one observes a reentrance behavior: λ/λ0 decreases from a
value larger than one for small τ to a value approximately to be
one for intermediate τ and then increases again for large τ . This
interesting behavior had also been observed by Flenneret al.
in Ref. [35], where the SE relation shows a nonmonotonic
dependence on the persistence time of propulsion force.

The findings shown in Fig. 2(a) show rather nontrivial
roles that particle activity plays on the DH behavior. To
get more information, we have plotted the dependencies of
〈tp〉 (dashed lines) and 〈tx〉 (solid lines) on τ , respectively,
in Fig. 2(b). Quite different features can be observed for
different volume fractions. For ϕa = 0.3, both 〈tp〉 and 〈tx〉
decrease monotonically. If τ is small, 〈tp〉 and 〈tx〉 decrease
simultaneously in a coherent way, such that λ = 〈tp〉/〈tx〉
keeps nearly constant. If τ is large, one can see that 〈tp〉
decreases a little faster than 〈tx〉, leading to a decreasing
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FIG. 2. (a) λ/λ0 as functions of τ for different ϕa . Inset: λ0 is nearly a constant with different fluctuation intensity. (b) Dependencies of
〈tp〉 and 〈tx〉 on τ . The solid and dashed-dotted lines correspond to 〈tx〉 and 〈tp〉, respectively. (c) Static structure factors Sq for ϕa = 0.7 with
different τ . (d) Typical snapshot for τ = 1.0 and ϕa = 0.7.

of λ/λ0 with τ . For ϕa = 0.5, however, both 〈tp〉 and 〈tx〉
show a nonmonotonic dependence on τ , i.e., they both reach
a minimum at some intermediate value of τ . In the range
of large τ, 〈tp〉 increases more sharply than 〈tx〉, such that
λ/λ0 also increases sharply with τ as shown in Fig. 2(a).
In the range of small τ , the situation is similar to that for
ϕ = 0.3, i.e., 〈tp〉 and 〈tx〉 decrease in a coherent way such
that λ/λ0 remains nearly unchanged and the system is still
dynamically homogeneous. For ϕa = 0.7, both 〈tp〉 and 〈tx〉
show nonmonotonically dependencies on τ , similar to the case
for ϕa = 0.5. Nevertheless, in the range where τ is very small
and the activity is weak, we observe a crossover of the values
of 〈tp〉 and 〈tx〉 in correspondence with the reentrance behavior
of λ/λ0 for ϕa = 0.7 shown in Fig. 2(a).

The curves presented in Fig. 2(b) clearly show twofold
roles of activity on the system’s dynamics. If τ is small
(weak activity), the main effect is to accelerate both the local
structure relaxation and the diffusion, such that both 〈tp〉 and
〈tx〉 decrease. This is in coincidence with the picture that
activity would lead to faster effective diffusion coefficient in
the long time limit, which also corresponds to an effective
temperature Teff that is higher than the ambient temperature
T [34]. In other words, the decreases of 〈tp〉 and 〈tx〉 with τ

demonstrate that particle activity can “heat up” the system.
On the other hand, if τ is large (strong activity), both 〈tp〉
and 〈tx〉 may increase for large volume fractions, indicating
that both structure relaxation and particle diffusion slow
down. This is consistent with another role of activity, which
would induce effective attractive interaction [34] among the
particles and lead to clustering or phase separation if the

volume fraction is large enough. The clustering of the particles
would definitely lead to remarkable DH. In such a highly
heterogeneous system, η = η̄i and Ds = D̄i , wherein i denotes
a cluster (or subdomain) that is homogeneous inside and the
overbar denotes averaging over these clusters. While inside
each cluster i one has Di ∝ 1/ηi , overall one would not
expect Ds ∝ 1/η such that Dsη ∝ 〈tp〉/〈tx〉 would not be a
constant. The average viscosity η is mainly contributed by
those large clusters and it would increase sharply with largest
cluster size. Nevertheless, the average diffusion coefficient Ds

is mainly determined by those small clusters or fluid particles,
and it would not decrease that fast as η increases. In a word,
we believe that it is the dual role of particle activity, one is
activity-induced higher effective temperature and the other
is activity-induced clustering, that results in the reentrance
behavior shown in Fig. 2(a) for large ϕa .

The above picture may be further elucidated by investi-
gation of the static structure factor Sq = 1

N
〈ρq(0)ρ−q(0)〉NE,

where ρq(t) = ∑
i exp [−iq · ri(t)] is the Fourier transform

with vector q of the collective particle density variable
ρ(r,t) = ∑

i δ(r − ri). The subscript “NE” emphasizes that
the averaging is performed when the system has reached
the nonequilibrium steady state, rather than the equilibrium
one. For an equilibrium system, Sq may be obtained by
some analytical methods such as the Ornstein-Zernike (OZ)
equation, however, the SNE

q here must be obtained via direct
simulations. Herein, we have calculated how Sq changes with
τ for given volume fractions. Specifically, the results for
ϕa = 0.7 are shown in Fig. 2(c). Note that for this large
volume fraction, the system is already close to the glass
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FIG. 3. (a) F (qmax,t) vs t for different activity τ , where qmax = 15.2 is the frequency position of first peak of Sq, t denotes the time interval.
(b) The mean square displacement 〈�r2〉 for different τ . (c) The long time diffusion coefficient Ds and structure relaxation time τα as functions
of τ . Insets: the dependence of Dsτα on τ .

transition, such that λ/λ0 is deviated from the homogeneous
value one even without activity or for very small τ . When τ

increases from 10−4 to 0.01, one finds that the main peak of
Sq decreases apparently and moves to a little bit larger value
of q. This is consistent with the picture that activity tends
to melt the system (a higher effective temperature) and the
local structure becomes loosened. For much larger τ = 1.0,
however, we see that the main peak of Sq increases sharply and
peak position shifts to a larger q, demonstrating the existence
of strongly ordered local structures which is more compact.
This is consistent with the second role played by particle
activity, i.e., the particles become more strongly clustered.
In addition, the value of Sq in the vicinity of q → 0 tends to an
apparent nonzero value, indicating large number fluctuations
corresponding to phase separation. Figure 2(d) shows a typical
snapshot for ϕ = 0.7 and τ = 1.0. Clearly, the system is phase
separated into regular-structured clusters and a few random
fluidlike particles.

As mentioned in Sec. II B, usually, the violation of SE
is described by the deviation of the product Dsη from a
constant, with Ds the long time diffusion coefficient and
η the viscosity. The analysis above has used an unusual
way, namely, by calculating the parameter λ = 〈tp〉/〈tx〉. To
further demonstrate the violation of SE, it would be helpful
to calculate Dsη directly to see whether or not it shows a
nonmonotonic dependence on the persistence time τ . The
diffusion coefficient can be simulated directly by using the
definition Ds = lim�t→∞ 〈�r2〉

4�t
for a two-dimensional system,

wherein 〈�r2〉 denotes the mean square displacement (MSD)
in the time interval �t . The viscosity η, however, is not
convenient to calculate by simulation directly. Here, we adopt
the same method as that in Ref. [13], wherein the authors used
the fact that the viscosity η is proportional to the relaxation time
τα of the local structure. Since the calculations of Ds and τα are
rather time consuming, here we only show the data for ϕa =
0.7 for illustration. In Fig. 3(a), the normalized collective scat-
tering functions F (q,t) = N−1〈ρq(t)ρ−q(0)〉NE/Sq for q =
qmax � 15.2 for different values of τ are shown. The dashed
line indicates F (qmax,t) = e−1, where the corresponding time
in the horizontal axis defines τα . In Fig. 3(b), the MSDs as
functions of time �t are presented with the same set of τ as in
Fig. 3(a), from which one can obtain the long time diffusion

coefficient Ds . Consequently, the dependencies of Ds and
τα on τ are shown in Fig. 3(c), wherein Ds (τα) decreases
(increases) monotonically with increasing τ , respectively.
Comparing with Fig. 2(b), we do not observe nonmonotonic
dependence of Ds or τα on the persistence time τ . Nevertheless,
the product Dsτα does show a minimum with the variation of τ ,
as demonstrated in the inset of Fig. 3(c), which is qualitatively
consistent with the observation in Fig. 2(a).

In Fig. 4, we have presented α2 as functions of time lag �t

for different activity τ and volume fraction ϕa . The results for
small volume fraction ϕa = 0.3 are depicted in Fig. 4(a). If
the particle activity is small, e.g., τ = 10−4, α2 is nearly zero
for any �t , indicating that the particles all undergo normal
diffusions. For this small τ , the main effect is to enhance the
system’s effective temperature. With increasing activity τ , one
can see that α2 shows an apparent negative valley within an
intermediate time range, after which α2 becomes nearly zero
again. As discussed in the last paragraph, the negative values
of α2 correspond to directional or superdiffusion behavior,
and the width of the valley is basically identical to the range
of time scale for superdiffusion. Clearly, the depth and width
of the valley both increase with increasing τ , indicating more
directional motion for larger activity as expected. For this small
volume fraction, no obvious positive values of α2 are observed
such that the system is almost dynamically homogeneous, in
accordance with the results reported in Fig. 2(a). In Fig. 4(d),
we have also plotted the dependence of particle mean square
displacement on time lag �t for ϕa = 0.3, corresponding to
Fig. 4(a). Indeed, the particle exhibits normal diffusion for
small τ = 10−4, while it clearly undergoes superdiffusion (the
slope of MSD with respect to �t is larger than 1) in the
intermediate time range for large values of τ , and the time
range where it shows superdiffusion is in coincidence with
those shown in Fig. 4(a) where α2 shows apparent negative
values. Therefore, for small volume fraction here, the main
effect of large particle activity is leading to the cooperative
directional motion of particles. This does make sense because
τ actually corresponds to the persistence time of active particle
to keep its original motion.

Nevertheless, the NGP α2 in higher volume fractions such
as ϕa = 0.5 and 0.7 are considerably different from those
shown in Fig. 4(a). For ϕa = 0.5, the NGPs show dramatically
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different behaviors for various activity. If the activity is small,
say τ � 0.01, the behavior is nearly the same as that in
Fig. 4(a), i.e., α2 does not show large deviation from zero in
the whole time range. For a relatively larger τ = 0.1, however,
we observe a clear-cut positive peak in the short time range,
demonstrating that the particles tend to aggregate within a short
time range, in accordance with the effect of activity-induced
clustering. Interestingly, these clusters are not that stable for
ϕa = 0.5, such that α2 becomes negative again with increasing
time �t and the particles show superdiffusion again before
they finally exhibit normal diffusion. This oscillating behavior
of α2 clearly demonstrates the competition between the two
effects of particle activity: one is that leading to directional
motion due to enhancement of persistence time τ , the other is
the activity-induced clustering. Note that such a competition
does not happen for ϕa = 0.3 because activity-induced phase
separation only takes place for volume fractions larger than
a threshold value [28]. At short time scales, activity may
lead to clustering due to effective negative pressure [31,33],
while at long time run, particles may escape from the cluster
if the persistence time τ is larger than the lifetime of the
cluster. However, if the activity is strong enough, e.g., for
τ = 1.0, the clustering effect may dominate and it would keep
stable, such that α2 would be larger than zero for any time
lag �t , as shown in the inset of Fig. 4(b). The high peak of
α2 demonstrates that the system shows strong DH at this time
scale. Correspondingly, the dependence of MSD on time �t for
ϕa = 0.5 is plotted in Fig. 4(e). For small τ , the particles nearly
show normal diffusions similar to that in Fig. 4(d). For τ = 0.1
where α2 oscillates, we observe a transition from normal to

superdiffusion at intermediate time range. For τ = 1.0 where
α2 shows strong positive peak, the diffusion is slower than
that for τ = 0.1 in short time scale in accordance with the
formation of stable large clusters. Interestingly, the particle
also undergoes a superdiffusive behavior before it finally
reaches normal diffusion in the long time limit, with a diffusion
coefficient that is larger than that for τ = 0.1.

For ϕa = 0.7, which is close to the glass transition point,
the system already shows obvious DH behavior even for
small activity τ = 10−4. As shown in Fig. 4(c), α2 shows
a clear-cut positive peak at a relative large time scale.
Correspondingly, the particle shows a subdiffusion behavior
at this time scale as shown in Fig. 4(f), due to the cage
effect in such a crowded environment. With a relative larger
activity τ = 2 × 10−3, the peak shifts to left with a lower peak,
indicating a relatively less heterogeneous system. The particle
still undergoes subdiffusion before it enters long time normal
diffusion, as shown in Fig. 4(f). The shortening of the time
scale for maximum α2 and the decrease of the peak correspond
to the melting role of activity, in accordance with the decrease
of λ/λ0 with τ in the small τ range shown in Fig. 2(a) for
ϕa = 0.7. With further increasing τ to 0.1, one still observes a
shift of the α2 peak to small time scale, while with an increase
in the peak height. It seems that the system becomes more
heterogeneous again with increasing τ , now on an even smaller
time scale. Interestingly, the particle performs superdiffusion
at this time scale [see Fig. 4(f)], where it changes from short
time normal diffusion to long time normal diffusion. For an
enough large τ = 1.0, the peak of α2 shifts back to longer
time scales and the peak height becomes considerably high,
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indicating strong heterogeneity. The short time diffusion is
slow and a superdiffusion region is also present before the
particle enters into long time normal diffusion. The increase
of the α2 peak again with increasing τ corresponds to the
second role of particle activity that leads to clustering. Clearly,
the variation tendency of α2 with τ is consistent with the
reentrance behavior of λ/λ0 reported in Fig. 2(a) for ϕa = 0.7.

The above results already show that the system is dynam-
ically heterogeneous for large volume fraction and activity
apparently affects the degree of heterogeneity. In particular,
for ϕa = 0.7, we observe a clear-cut nonmonotonic behavior
where the degree of DH shows a minimum for an intermediate
value of activity τ , via investigation of both the relative value
λ/λ0 or the NGP α2. We now try to further understand such a
nontrivial observation from the temporal heterogeneity of the
dynamics, by using the four-point susceptibility χ4. In Fig. 5,
the contour plots of χs

4 in the (�t,�L) plane for ϕa = 0.7 are
shown, with increasing activity τ from Figs. 5(a) to 5(d). The
contour shows a characteristic maximum at (�tmax,�Lmax)
which indicates a typical time scale where the dynamics is
most heterogeneous and a typical length scale distinguishing
cage motions from cage rearrangements, respectively [5].
Generally, the peak value χs

4,max quantifies the degree of
temporal dynamic heterogeneity. From Fig. 5, one can see
that χs

4,max first decreases from an intermediate value (∼18
for τ = 10−4) to a rather small one (∼2.0 for τ = 0.01), and
then increases sharply to a considerably large value (∼190
for τ = 1.0). Such a nonmonotonic dependence of temporal
heterogeneity on τ is fully consistent with the reentrance
behavior shown in Fig. 2(a) for ϕa = 0.7. As discussed in

the related context there, small particle activity can liquefy the
system and makes it homogeneous, while a large activity may
lead to phase separation, again resulting in more considerable
heterogeneity. The time scale �tmax, where the system is most
heterogeneous, also shows a nonmonotonic dependence on τ :
it first decreases and then increases. Such a dependence also
demonstrates the dual role of particle activity: The peak first
shifts to shorter time as τ increases due to the acceleration
of particle directional motion, however, it reversely shifts to
larger time due to the emergence of large stable clusters that
slow down the motion. Note that the values of �tmax nearly
coincide with the time scale where α2(�t) shows the maximum
as shown in Fig. 4(c). As mentioned above, the maximum of
α2 occurs at the time scale where the particle jumps outside of
local cages. It is reasonable that at this time scale, the number
of mobile particles shows the largest fluctuation.

Note that χ4 measures temporal fluctuations in mobility
without regard for the spatial correlations between mobile
particles, thus, it characterizes a type of temporal DH. Here,
we further investigate the spatial DH for ϕa = 0.7 by using the
vector spatial-temporal correlation function Svec(R,�t). We
fix the time lag �t = 1, which is nearly �tmax for ϕa = 0.7 as
shown in Fig. 5, and consider how Svec changes with the initial
distance R. The results are presented in Fig. 6 for different
values of activity τ . Obviously, Svec decreases monotonically
with R for all values of τ , i.e., particles with larger initial
distance R show less correlated motion after time lag �t which
is generally expected. For passive systems, it was reported
[5] that Svec is an exponential decayed function of R, i.e.,
Svec ∼ exp (−R/ξ ) where ξ denotes some type of length scale
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for spatial correlation. For the active system considered here,
however, the curves exhibit typical multiexponential character-
istics (note that the left axis is in logarithmic scale), indicating
that the system has more than one typical characteristic length
scale. For instance, for τ = 0.01, the curve can be approxi-
mately fitted by two joint straight lines as shown by the dashed
lines. The inverses of the two slopes give the two typical length
scales contained in the system, with ξ1 < ξ2. Interestingly, we
also find a type of reentrance behavior with the increment of τ .
When τ changes from a very small value 10−4 to a relatively
larger one 0.01, one finds that the initial decay of Svec with
respect to R becomes sharper and the value of Svec gets smaller,
indicating that ξ1 decreases and the correlation between
neighboring particles becomes weaker, which is consistent
with the picture that small activity tends to melt the system.
With further increasing activity to 0.1, however, the curve goes
up again with increasing correlation length scales. This latter
effect is consistent with the second role of particle activity that
leads to phase separation and stable clusters. It is interesting
to note that for more larger activity, for instance τ = 1.0,
the curve can be well fitted by a single exponential decaying
function again with a relative large correlation length. Such a
single correlation length scale indicates that the system also
shows a type of homogeneity or order, which is consistent with
the pictures described in Figs. 2(c) and 2(d). Therefore, the
correlation function Svec also helps us to get more information
about the system dynamics, here shown for ϕa = 0.7.

Finally, we note that Fig. 2(a) also reveals another interest-
ing reentrance behavior. For fixed activity τ = 1.0, the value
of λ/λ0 for ϕa = 0.5 is larger than both those for a smaller
volume fraction ϕa = 0.3 and that for a larger one ϕa = 0.7.
Generally, one may expect that a more crowded environment
would be more heterogeneous due to cage effects. Therefore,
such a nonmonotonic dependence of λ on the volume fraction
ϕa is rather counterintuitive. To show more clearly, we have
plotted λ/λ0 as a function of ϕa for three different values
of τ in Fig. 7. One can see that if activity τ is small, say
τ = 10−4 or τ = 0.1, λ increases monotonically with the
volume fraction, indicating that the heterogeneity increases
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FIG. 7. λ/λ0 via ϕa for different τ . Insets: typical snapshots for
τ = 1.0 and ϕa = 0.3,0.5,0.7. The processes of phase separation and
clustering are shown by the black arrows.

when the environment gets more crowded. However, for a
large τ = 1.0, λ undergoes a maximum at ϕa � 0.45 with
the variation of ϕa , after which λ decreases apparently. In
other words, if the activity is large enough, a more crowded
system may become more dynamically homogeneous. To get
more information, typical snapshots for ϕa = 0.3,0.5,0.7 are
shown in the insets of Fig. 7. As seen from these figures, the
system clearly separates into two phases for ϕa = 0.5, one
solidlike and the other liquidlike. Since viscosity is dominated
by the large solid clusters and diffusion is dominated by
the small fluid particles, such a system would show strong
heterogeneity. Nevertheless, for ϕa = 0.7, although the system
is more crowded, the particles aggregate together to form
large solid clusters and few liquid particles exist. In a sense,
the system is more like a single solid phase and thus more
“homogeneous” compared to that for ϕa = 0.5, such that
the value of λ is smaller. To conclude, the activity-induced
phase separation can, on one hand, increase the dynamic
heterogeneity for small volume fractions and, on the other
hand, can also lead to ordered cluster that becomes more like
a single solid phase and decreases the dynamic heterogeneity.

One should note that when the system shows phase
separation, for instance, for ϕa around 0.5 in Fig. 7, finite size
effect may become non-negligible, which makes it necessary
to run a large enough system in simulation. In a recent work
[28], such an issue has been addressed by Redner et al. who
compared the phase diagrams obtained by simulation and
theory, finding that simulation results were fairly accurate for
running the active systems with 15 000 particles. In our work,
we have used 104 particles in simulations and we think that the
finite size effect is not significant. What is more, the qualitative
behavior that λ/λ0 shows a nonmonotonic dependence on the
volume fraction ϕa should be robust.

IV. CONCLUSION

In summary, we have investigated the influences of particle
activity on the spatial and temporal DH of a system of active
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hard-sphere particles. Each particle is subjected to an external
driven force with constant amplitude, whereas its direction
randomly changes via rotational diffusion with a correlation
time τ , which can be used to characterize the particle activity.
To obtain a systematic understanding, we have used a variety
of observables to characterize the DH behavior, ranging
from the violation of normal SE relation, the non-Gaussian
parameter for particle displacement distribution, the four-point
susceptibility to describe the temporal heterogeneity, as well as
the vector spatiotemporal correlation function for spatial DH.
We use a CTRW method to study the SE relation, by calculating
the average waiting time 〈tx〉 and the average persistence time
〈tp〉, and investigating how the parameter λ = 〈tp〉

〈tx 〉 deviates
from its SE value λ0. We show that λ/λ0 depends strongly
on the correlation time τ and volume fraction of particles ϕa .
Interestingly, λ/λ0 undergoes a minimum at an appropriate
value of τ for large volume fraction ϕa , indicating that the most
homogeneous dynamics would emerge for an optimal activity
while stronger DH may be observed for both small and large
activities. The non-Gaussian parameter α2(�t), four-point
susceptibility χ4(�t), and vector spatiotemporal correlation
Svec(�t) have also been studied to further demonstrate and

illustrate this nontrivial reentrance behavior, showing that it is
resulted from the competition between the dual roles of particle
activity, namely, activity-induced higher effective temperature
and activity-induced clustering. Moreover, λ/λ0 also shows a
maximum at an intermediate value of ϕa as well, indicating
that less crowded system can be more heterogeneous than
a more crowded one if the particle activity is large enough.
Our work may shed new lights on the understanding of DH
in nonequilibrium complex systems, which is of ubiquitous
significance in soft matter and biological systems.

ACKNOWLEDGMENTS

This work is supported by National Basic Research Pro-
gram of China (Grant No. 2013CB834606), by National
Science Foundation of China (Grants No. 21521001, No.
21473165, and No. 21403204), by the Ministry of Science
and Technology of China (Grant No. 2016YFA0400904),
and by the Fundamental Research Funds for the Cen-
tral Universities (Grants No. WK2060030018 and No.
2030020028,2340000074).

[1] L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).
[2] W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, and S. C. Glotzer,

Phys. Rev. Lett. 79, 2827 (1997).
[3] R. Yamamoto and A. Onuki, Phys. Rev. E 58, 3515 (1998).
[4] M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).
[5] T. Narumi, S. V. Franklin, K. W. Desmond, M. Tokuyama, and

E. R. Weeks, Soft Matter 7, 1472 (2011).
[6] Y. Rahmani, K. van der Vaart, B. van Dam, Z. Hu, V. Chikkadi,

and P. Schall, Soft Matter 8, 4264 (2012).
[7] T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J.

Fredberg, and D. A. Weitz, Proc. Natl. Acad. Sci. USA 108,
4714 (2011).

[8] A. Heuer, M. Wilhelm, H. Zimmermann, and H. W. Spiess,
Phys. Rev. Lett. 75, 2851 (1995).

[9] M. T. Cicerone and M. D. Ediger, J. Chem. Phys. 103, 5684
(1995).

[10] L. Berthier, Phys. Rev. Lett. 112, 220602 (2014).
[11] P. Chaudhuri, L. Berthier, and W. Kob, Phys. Rev. Lett. 99,

060604 (2007).
[12] R. Richert, J. Phys.: Condens. Matter 14, R703 (2002).
[13] P. Kumar, S. V. Buldyrev, S. R. Becker, P. H. Poole, F. W. Starr,

and H. E. Stanley, Proc. Natl. Acad. Sci. USA 104, 9575 (2007).
[14] S.-H. Chong and W. Kob, Phys. Rev. Lett. 102, 025702 (2009).
[15] K. V. Edmond, M. T. Elsesser, G. L. Hunter, D. J. Pine, and

E. R. Weeks, Proc. Natl. Acad. Sci. USA 109, 17891 (2012).
[16] U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr,

and H. W. Spiess, Phys. Rev. Lett. 81, 2727 (1998).
[17] M. Roos, K. Schäler, A. Seidlitz, T. Thurn-Albrecht, and K.

Saalwächter, Colloid Polym. Sci. 292, 1825 (2014).
[18] B. Schiener, R. Böhmer, A. Loidl, and R. V. Chamberlin, Science

274, 752 (1996).
[19] T. Blochowicz and E. A. Rössler, J. Chem. Phys. 122, 224511

(2005).

[20] R. Richert and S. Weinstein, Phys. Rev. Lett. 97, 095703 (2006).
[21] M. T. Cicerone and M. D. Ediger, J. Phys. Chem. 97, 10489

(1993).
[22] M. T. Cicerone and M. D. Ediger, J. Non-Cryst. Solids 407, 324

(2015).
[23] J. Bosse, W. Götze, and M. Lücke, Phys. Rev. A 17, 434 (1978).
[24] D. R. Reichman and P. Charbonneau, J. Stat. Mech. (2005)

P05013.
[25] T. Vicsek and A. Zafeiris, Phys. Rep. 517, 71 (2012).
[26] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool,

J. Prost, M. Rao, and R. A. Simha, Rev. Mod. Phys. 85, 1143
(2013).

[27] R. Ni, M. A. C. Stuart, and M. Dijkstra, Nat. Commun. 4, 2704
(2013).

[28] G. S. Redner, M. F. Hagan, and A. Baskaran, Phys. Rev. Lett.
110, 055701 (2013).

[29] H. Wioland, F. G. Woodhouse, J. Dunkel, J. O. Kessler, and
R. E. Goldstein, Phys. Rev. Lett. 110, 268102 (2013).

[30] E. Lushi, H. Wioland, and R. E. Goldstein, Proc. Natl. Acad.
Sci. USA 111, 9733 (2014).

[31] J. Stenhammar, R. Wittkowski, D. Marenduzzo, and M. E. Cates,
Phys. Rev. Lett. 114, 018301 (2015).

[32] R. Ni, M. A. Cohen Stuart, and P. G. Bolhuis, Phys. Rev. Lett.
114, 018302 (2015).

[33] J. Bialké, J. T. Siebert, H. Löwen, and T. Speck, Phys. Rev. Lett.
115, 098301 (2015).

[34] T. F. F. Farage, P. Krinninger, and J. M. Brader, Phys. Rev. E 91,
042310 (2015).

[35] G. Szamel, E. Flenner, and L. Berthier, Phys. Rev. E 91, 062304
(2015).

[36] G. Szamel, Phys. Rev. E 93, 012603 (2016).
[37] V. Schaller, C. Weber, C. Semmrich, E. Frey, and A. R. Bausch,

Nature (London) 467, 73 (2010).

052608-10

https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1103/RevModPhys.83.587
https://doi.org/10.1103/PhysRevLett.79.2827
https://doi.org/10.1103/PhysRevLett.79.2827
https://doi.org/10.1103/PhysRevLett.79.2827
https://doi.org/10.1103/PhysRevLett.79.2827
https://doi.org/10.1103/PhysRevE.58.3515
https://doi.org/10.1103/PhysRevE.58.3515
https://doi.org/10.1103/PhysRevE.58.3515
https://doi.org/10.1103/PhysRevE.58.3515
https://doi.org/10.1146/annurev.physchem.51.1.99
https://doi.org/10.1146/annurev.physchem.51.1.99
https://doi.org/10.1146/annurev.physchem.51.1.99
https://doi.org/10.1146/annurev.physchem.51.1.99
https://doi.org/10.1039/C0SM00756K
https://doi.org/10.1039/C0SM00756K
https://doi.org/10.1039/C0SM00756K
https://doi.org/10.1039/C0SM00756K
https://doi.org/10.1039/c2sm25267h
https://doi.org/10.1039/c2sm25267h
https://doi.org/10.1039/c2sm25267h
https://doi.org/10.1039/c2sm25267h
https://doi.org/10.1073/pnas.1010059108
https://doi.org/10.1073/pnas.1010059108
https://doi.org/10.1073/pnas.1010059108
https://doi.org/10.1073/pnas.1010059108
https://doi.org/10.1103/PhysRevLett.75.2851
https://doi.org/10.1103/PhysRevLett.75.2851
https://doi.org/10.1103/PhysRevLett.75.2851
https://doi.org/10.1103/PhysRevLett.75.2851
https://doi.org/10.1063/1.470551
https://doi.org/10.1063/1.470551
https://doi.org/10.1063/1.470551
https://doi.org/10.1063/1.470551
https://doi.org/10.1103/PhysRevLett.112.220602
https://doi.org/10.1103/PhysRevLett.112.220602
https://doi.org/10.1103/PhysRevLett.112.220602
https://doi.org/10.1103/PhysRevLett.112.220602
https://doi.org/10.1103/PhysRevLett.99.060604
https://doi.org/10.1103/PhysRevLett.99.060604
https://doi.org/10.1103/PhysRevLett.99.060604
https://doi.org/10.1103/PhysRevLett.99.060604
https://doi.org/10.1088/0953-8984/14/23/201
https://doi.org/10.1088/0953-8984/14/23/201
https://doi.org/10.1088/0953-8984/14/23/201
https://doi.org/10.1088/0953-8984/14/23/201
https://doi.org/10.1073/pnas.0702608104
https://doi.org/10.1073/pnas.0702608104
https://doi.org/10.1073/pnas.0702608104
https://doi.org/10.1073/pnas.0702608104
https://doi.org/10.1103/PhysRevLett.102.025702
https://doi.org/10.1103/PhysRevLett.102.025702
https://doi.org/10.1103/PhysRevLett.102.025702
https://doi.org/10.1103/PhysRevLett.102.025702
https://doi.org/10.1073/pnas.1203328109
https://doi.org/10.1073/pnas.1203328109
https://doi.org/10.1073/pnas.1203328109
https://doi.org/10.1073/pnas.1203328109
https://doi.org/10.1103/PhysRevLett.81.2727
https://doi.org/10.1103/PhysRevLett.81.2727
https://doi.org/10.1103/PhysRevLett.81.2727
https://doi.org/10.1103/PhysRevLett.81.2727
https://doi.org/10.1007/s00396-014-3218-8
https://doi.org/10.1007/s00396-014-3218-8
https://doi.org/10.1007/s00396-014-3218-8
https://doi.org/10.1007/s00396-014-3218-8
https://doi.org/10.1126/science.274.5288.752
https://doi.org/10.1126/science.274.5288.752
https://doi.org/10.1126/science.274.5288.752
https://doi.org/10.1126/science.274.5288.752
https://doi.org/10.1063/1.1931647
https://doi.org/10.1063/1.1931647
https://doi.org/10.1063/1.1931647
https://doi.org/10.1063/1.1931647
https://doi.org/10.1103/PhysRevLett.97.095703
https://doi.org/10.1103/PhysRevLett.97.095703
https://doi.org/10.1103/PhysRevLett.97.095703
https://doi.org/10.1103/PhysRevLett.97.095703
https://doi.org/10.1021/j100142a037
https://doi.org/10.1021/j100142a037
https://doi.org/10.1021/j100142a037
https://doi.org/10.1021/j100142a037
https://doi.org/10.1016/j.jnoncrysol.2014.09.027
https://doi.org/10.1016/j.jnoncrysol.2014.09.027
https://doi.org/10.1016/j.jnoncrysol.2014.09.027
https://doi.org/10.1016/j.jnoncrysol.2014.09.027
https://doi.org/10.1103/PhysRevA.17.434
https://doi.org/10.1103/PhysRevA.17.434
https://doi.org/10.1103/PhysRevA.17.434
https://doi.org/10.1103/PhysRevA.17.434
https://doi.org/10.1088/1742-5468/2005/05/P05013
https://doi.org/10.1088/1742-5468/2005/05/P05013
https://doi.org/10.1088/1742-5468/2005/05/P05013
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1038/ncomms3704
https://doi.org/10.1038/ncomms3704
https://doi.org/10.1038/ncomms3704
https://doi.org/10.1038/ncomms3704
https://doi.org/10.1103/PhysRevLett.110.055701
https://doi.org/10.1103/PhysRevLett.110.055701
https://doi.org/10.1103/PhysRevLett.110.055701
https://doi.org/10.1103/PhysRevLett.110.055701
https://doi.org/10.1103/PhysRevLett.110.268102
https://doi.org/10.1103/PhysRevLett.110.268102
https://doi.org/10.1103/PhysRevLett.110.268102
https://doi.org/10.1103/PhysRevLett.110.268102
https://doi.org/10.1073/pnas.1405698111
https://doi.org/10.1073/pnas.1405698111
https://doi.org/10.1073/pnas.1405698111
https://doi.org/10.1073/pnas.1405698111
https://doi.org/10.1103/PhysRevLett.114.018301
https://doi.org/10.1103/PhysRevLett.114.018301
https://doi.org/10.1103/PhysRevLett.114.018301
https://doi.org/10.1103/PhysRevLett.114.018301
https://doi.org/10.1103/PhysRevLett.114.018302
https://doi.org/10.1103/PhysRevLett.114.018302
https://doi.org/10.1103/PhysRevLett.114.018302
https://doi.org/10.1103/PhysRevLett.114.018302
https://doi.org/10.1103/PhysRevLett.115.098301
https://doi.org/10.1103/PhysRevLett.115.098301
https://doi.org/10.1103/PhysRevLett.115.098301
https://doi.org/10.1103/PhysRevLett.115.098301
https://doi.org/10.1103/PhysRevE.91.042310
https://doi.org/10.1103/PhysRevE.91.042310
https://doi.org/10.1103/PhysRevE.91.042310
https://doi.org/10.1103/PhysRevE.91.042310
https://doi.org/10.1103/PhysRevE.91.062304
https://doi.org/10.1103/PhysRevE.91.062304
https://doi.org/10.1103/PhysRevE.91.062304
https://doi.org/10.1103/PhysRevE.91.062304
https://doi.org/10.1103/PhysRevE.93.012603
https://doi.org/10.1103/PhysRevE.93.012603
https://doi.org/10.1103/PhysRevE.93.012603
https://doi.org/10.1103/PhysRevE.93.012603
https://doi.org/10.1038/nature09312
https://doi.org/10.1038/nature09312
https://doi.org/10.1038/nature09312
https://doi.org/10.1038/nature09312


STUDY OF DYNAMIC HETEROGENEITY OF AN ACTIVE . . . PHYSICAL REVIEW E 95, 052608 (2017)

[38] Y. Sumino, K. H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa,
H. Chaté, and K. Oiwa, Nature (London) 483, 448 (2012).

[39] J. Schwarz-Linek, C. Valeriani, A. Cacciuto, M. E. Cates, D.
Marenduzzo, A. N. Morozov, and W. C. K. Poon, Proc. Natl.
Acad. Sci. USA 109, 4052 (2012).

[40] Y. Fily and M. C. Marchetti, Phys. Rev. Lett. 108, 235702
(2012).

[41] R. Wittkowski, A. Tiribocchi, J. Stenhammar, R. J. Allen, D.
Marenduzzo, and M. E. Cates, Nat. Commun. 5, 4351 (2014).

[42] J. Palacci, C. Cottin-Bizonne, C. Ybert, and L. Bocquet, Phys.
Rev. Lett. 105, 088304 (2010).

[43] E. Flenner, G. Szamle, and L. Berthier, Soft Matter 12, 7136
(2016).

[44] S. Pronk, E. Lindahl, and P. M. Kasson, Nat. Commun. 5, 3034
(2014).

[45] G. Szamel, Phys. Rev. E 90, 012111 (2014).
[46] D. Levis and L. Berthier, Europhys. Lett. 111, 60006 (2015).
[47] G. Szamel, Europhys. Lett. 117, 50010 (2017).
[48] Z. Preisler and M. Dijkstra, Soft Matter 12, 6043 (2016).
[49] P. Charbonneau, A. Ikeda, G. Parisi, and F. Zamponi, Proc. Natl.

Acad. Sci. USA 109, 13939 (2012).
[50] S. C. Glotzer, V. N. Novikov, and T. B. Schrøder, J. Chem. Phys.

112, 509 (2000).
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