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Efficient allocation of limited medical resources is crucial for controlling epidemic spreading on
networks. Based on the susceptible-infected-susceptible model, we solve an optimization problem
as how best to allocate the limited resources so as to minimize the prevalence, providing that
the curing rate of each node is positively correlated to its medical resource. By quenched mean-
field theory and heterogeneous mean-field (HMF) theory, we prove that epidemic outbreak will be
suppressed to the greatest extent if the curing rate of each node is directly proportional to its
degree, under which the effective infection rate λ has a maximal threshold λopt

c = 1/ 〈k〉 where 〈k〉
is average degree of the underlying network. For weak infection region (λ & λopt

c ), we combine a
perturbation theory with Lagrange multiplier method (LMM) to derive the analytical expression
of optimal allocation of the curing rates and the corresponding minimized prevalence. For general
infection region (λ > λopt

c ), the high-dimensional optimization problem is converted into numerically
solving low-dimensional nonlinear equations by the HMF theory and LMM. Counterintuitively, in
the strong infection region the low-degree nodes should be allocated more medical resources than
the high-degree nodes to minimize the prevalence. Finally, we use simulated annealing to validate
the theoretical results.

PACS numbers: 05.10.-a, 64.60.aq, 89.75.Hc

A challenging problem in epidemiology is how best to
allocate limited resources of treatment and vaccination
so that they will be most effective in suppressing or re-
ducing outbreaks of epidemics. This problem has been a
subject of intense research in statistical physics and many
other disciplines [1, 2]. Inspired by the percolation the-
ory, the simplest strategy is to randomly choose a fraction
of nodes to immunize. However, the random immuniza-
tion is inefficient for heterogeneous networks. Later on,
many more effective immunization strategies have been
developed, ranging from global strategies like targeted
immunization based on node degree [3] or betweenness
centrality [4] to local strategies, like acquaintance immu-
nization [5] and (bias) random walk immunization [6, 7]
and to some others in between [8]. Further improvements
were done by graph partitioning [9] and the optimization
of the susceptible size [10]. Besides the degree hetero-
geneity, community structure has also a major impact on
disease immunity [11, 12]. Recently, a message-passing
approach was used to find an optimal set of nodes for
immunization [13]. The immunization has been mapped
onto the optimal percolation problem [14]. Based on the
idea of explosive percolation, an “explosive immuniza-
tion” method has been proposed [15]. However, some
diseases like the common cold and influenza that can
be modeled by the susceptible-infected-susceptible (SIS)
model, do not confer immunity and individuals can be
infected over and over again. Under the situations, one
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way to control the spread of the diseases is to reduce the
risk of the infection, such as adaptive rewiring links inci-
dent to infected individuals [16] and dynamical interplay
between awareness and epidemic spreading [17].

An alternative way to control the epidemic spreading of
SIS type by designing an optimal strategy for distribut-
ing the limited medical resources so as to suppress the
epidemic outbreak to the greatest extent and minimize
the prevalence once the epidemic outbreak has happened.
It is reasonable to assume the curing rate of each node is
positively correlated to the medical resources allocated to
it. Therefore, the optimal allocation of medical resources
is equivalent to that of the curing rates. Assuming the
total medical resources are limited, the average curing
rate is thus considered to be fixed. This problem has
been addressed as a constraint optimization problem in
several previous works. When the curing rate can be only
tuned in a fixed number of feasible values, this problem
has been proved to be NP-complete [18]. Instead, when
the curing rate can continuously varies in a given interval,
some efficient algorithms have been developed for mini-
mizing the threshold of epidemic outbreak [19, 20] or the
steady-state infection density [21]. In the present work,
we theoretically solve the constraint optimization prob-
lem in both epidemic-free and endemic phases within the
mean-field framework. On the one hand, we prove that
the epidemic outbreak can be suppressed to the most ex-
tent when the curing rate of each node is directly propor-
tional to its degree, under which the epidemic threshold
is maximized that is the inverse of the average degree of
the underlying network. On the other hand, once the
epidemic has broken out but close to the threshold, we
analytically show the optimal curing rate should be ad-
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justed in terms of the difference of node degree with av-
erage degree and the distance to epidemic threshold. For
the general infection region, the optimization problem
can be simplified to solve three nonlinear equations.
To formulate our problem, we consider the SIS model

on an undirected network of size N . The network is de-
scribed by an adjacency matrix A whose entries are de-
fined as Aij = 1 if nodes i and j are connected, and
Aij = 0 otherwise. Each node is either susceptible or
infected. A susceptible node i can be infected by its in-
fective neighbor with an infection rate β, and an infected
node i recovers with a nonvanishing curing rate µi. Here,
we consider that the curing rate is allowed to vary from
one node to another one. In general, the more available
medical resource of a node i has, the larger µi is. Assum-
ing that the total amount of medicine resource is limited,
the average curing rate is thus fixed, i.e.,

〈µi〉 = µ and µi > 0, ∀i. (1)

Our goal is to find out an optimal allocation of {µi} under
the constraint Eq.(1) so as to minimize the prevalence ρ,
that is the fraction of infected nodes.
In the quenched mean-field (QMF) theory, the proba-

bility ρi(t) that node i is infected at time t is described
by N -intertwined equations [22–24],

dρi(t)

dt
= −µiρi(t) + β [1− ρi(t)]

∑

j

Aijρj(t). (2)

In the steady state, dρi(t)/dt = 0, ρi is determined by a
set of nonlinear equations,

ρi =
β
∑

j Aijρj

µi + β
∑

j Aijρj
. (3)

One can notice that ρi = 0 is always a solution of Eq.(2).
This trivial solution corresponds to an absorbing state
with no infective nodes. A nonzero solution ρi > 0
exists if the effective infection rate λ = β/µ is larger
than the so-called epidemic threshold λc. In this case,
the prevalence ρ =

∑

i ρi/N is nonzero corresponding
to an endemic state. By linear stability analysis for
Eq.(2) around ρi = 0, λc is determined by which the
largest eigenvalue of the matrix, −U+βA, is zero, where
U = diag(µi) is a diagonal matrix. For the standard
SIS model, µi ≡ µ for all i, one can immediately obtain
the well-known result, λsta

c,QMF = 1/Λmax(A) with the

largest eigenvalue of the adjacency matrix Λmax(A). In
our SIS model, the outbreak of epidemics will be sup-
pressed to the greatest extent, which implies that the
epidemic threshold of the optimal SIS model will be max-
imized.
For this purpose, we first decompose the diagonal ma-

trix U into two diagonal matrices, U = Ū + ∆U, where
Ū = diag{µki/ 〈k〉} with ki being the degree of node i
and ∆U = diag{∆µi}. Since Tr(U) = Tr(Ū) = Nµ, ∆U

must satisfy the constraint Tr(∆U) = 0. For the real

symmetric matrix, U − βA, its largest eigenvalue Λmax

satisfies the following inequality,

Λmax ≥ v
T (−U+ βA)v, (4)

where v is a column vector satisfying v ∈ RN and ||v|| =
1. If we set v = 1√

N
(1, · · · , 1)T , Eq.(4) becomes

Λmax ≥ v
T (−Ū+ βA)v− v

T∆Uv = −µ+ β 〈k〉 . (5)

Since Λmax = 0 at the epidemic threshold, Eq.(5) leads
to an upper bound of epidemic threshold, λc ≤ 1/ 〈k〉.
The condition that the epidemic threshold equals to the
upper bound holds when v is the eigenvector of U− βA
corresponding to its largest eigenvalue. If we set U = Ū

and β = µ/ 〈k〉, −U + βA = −µ/ 〈k〉L, where L is the
Laplacian matrix of the underlying network. It is well-
known that the smallest eigenvalue of L is zero and the
corresponding eigenvector is v. Therefore, if the curing
rate of each node is directly proportional to its degree,
i.e.,

µi = µ∗
i = µ

ki
〈k〉 , (6)

the epidemic threshold will be maximized,

λopt
c,QMF =

1

〈k〉 . (7)

In the QMF theory, the epidemic threshold of the optimal
SIS model is no less than that of the standard SIS model,
λopt
c,QMF ≥ λsta

c,QMF , as the lower bound of Λmax(A) is 〈k〉
for any types of networks [25].
The above results can be also derived from the het-

erogeneous mean-field (HMF) theory. In the framework
of HMF, these nodes with the same degree are consid-
ered to be statistically equivalent. The constraint Eq.(1)
becomes

〈µk〉 =
∑

k
P (k)µk = µ and µk > 0, ∀k , (8)

where µk is the curing rate of nodes of degree k, and P (k)
is the degree distribution. Some related works have stud-
ied the SIS model [26] and its metapopulation version
[27] with the curing rate, µk ∼ kα, but such a power-law
form did not guarantee to be the optimal one. In [28],
the authors consider a simple heuristic strategy to con-
trol epidemic extinction where the curing rate is directly
proportional to node degree. They showed that on any
graph with bounded degree the extinction time is sublin-
ear with the size of the network. Further improvement
has been done by a heuristic PageRank algorithm to al-
locate curing rates based on the initial condition of in-
fected nodes [29]. The present study does not require any
assumptions about the form of the cure rate with node
degree in advance except to the constraint Eq.(8). The
dynamical evolution of ρk(t), the probability of nodes of
degree k being infected at time t, reads [30],

dρk (t)

dt
= −µkρk (t) + β [1− ρk (t)] kΘ(t), (9)
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where Θ is the probability of finding an infected node
following a randomly chosen edge. In the case of uncor-
related networks, Θ(t) can be written as

Θ(t) =
∑

k

kP (k)

〈k〉 ρk(t). (10)

In the steady state, dρk(t)/dt = 0, Eq.(9) becomes

ρk =
βkΘ

µk + βkΘ
. (11)

Substituting Eq.(11) into Eq.(10), we obtain a self-
consistent equation of Θ,

Θ =
∑

k

kP (k)

〈k〉
βkΘ

µk + βkΘ
. (12)

The epidemic threshold is determined by which the
derivation of the r.h.s of Eq.(12) with respect to Θ at
Θ = 0 equals to one, leading to

βc,HMF =
〈k〉

∑

k
k2P (k)

µk

. (13)

For a given P (k), maximizing βc is equivalent to mini-
mizing the denominator of the r.h.s of Eq.(13). For this
purpose, we employ Lagrange multiplier method (LMM)
to maximize the epidemic threshold, where the Lagrange
function is written as,

L =
∑

k

k2P (k)

µk
+ τ

(

∑

k

P (k)µk − µ

)

, (14)

where τ is called the Lagrange multiplier. Taking the
derivation of L with respect to µk,

∂L
∂µk

= −k2P (k)

µ2
k

+ τP (k), (15)

and letting ∂L/∂µk = 0 combined with Eq.(8), we arrive
at a maximal epidemic threshold

λopt
c,HMF =

1

〈k〉 , (16)

and the corresponding allocation of {µk},

µk = µ∗
k = µ

k

〈k〉 (17)

Interestingly, the HMF results are consistent with the
QMF ones. Also, in the HMF theory the epidemic thresh-
old of the optimal SIS model is no less than that of the
standard SIS model, λopt

c,HMF ≥ λsta
c,HMF = 〈k〉 /

〈

k2
〉

.

For λ larger than but close to λopt
c , λ & λopt

c , we
shall combine a perturbation theory with LMM to op-
timize the prevalence. To the end, we assume that for
λ = λopt

c +∆λ, µk = µ∗
k+∆µk and Θ = Θ∗+∆Θ, where

Θ∗ = 1 − µ
β〈k〉 is the solution of Eq.(12) for µk = µ∗

k.

Expanding Eq.(12) around (µ∗
k,Θ

∗) to the second order,
and then using the constraint

∑

k P (k)∆µk = 0 and si-
multaneously ignoring the second-order small quantity
∆Θ2, it yields [See Appendix A for details]

∆Θ =
1

β2 〈k〉
∑

k

P (k)

k
∆µ2

k . (18)

Around (µ∗
k,Θ

∗), the change ∆ρ in the prevalence ρ =
∑

k P (k)ρk can be written as

∆ρ = −Θ∗

β

∑

k

P (k)

k
∆µk + (1−Θ∗)∆Θ. (19)

Again using LMM to minimize ∆ρ under the constraints
∑

k P (k)∆µk = 0 and Eq.(18), we obtain a minimal ρ =

ρ∗ +∆ρopt with ρ∗ =
∑

k P (k) βkΘ∗

µ∗

k
+βkΘ∗

and

∆ρopt = − 1
4λ 〈k〉

2
(

〈

k−1
〉

− 〈k〉−1
)

∆λ2

≃ − 1
4 〈k〉

3
(

〈

k−1
〉

− 〈k〉−1
)

∆λ2. (20)

Since
〈

k−1
〉

> 〈k〉−1
for any degree inhomogeneous net-

works in terms of Jensen’s inequality, ∆ρopt < 0 and thus
ρ will be reduced. The corresponding optimal allocation
µk = µ∗

k +∆µk with

∆µk =
µ

2
〈k〉λ (〈k〉 − k)∆λ ≃ µ

2
(〈k〉 − k)∆λ. (21)

This implies that as λ is increased from λopt
c , the curing

rates of the nodes with degrees less than the average de-
gree will be increased, while the curing rates of the nodes
with degrees larger than the average degree will be de-
creased. The amplitude of the change will depend on the
difference between the degree of each node and the av-
erage degree, 〈k〉 − k, and the distance of the effective
infection rate to its critical value, ∆λ.
For λ is larger than but not close to λopt

c , λ > λopt
c ,

since the nonlinear characteristic of the model, analyti-
cal expression of optimal allocation of {µk} and the cor-
responding the minimal ρ is almost impossible. How-
ever, with the aid of HMF theory and LMM, the high-
dimensional optimization problem can be converted to
numerically solving the low-dimensional nonlinear equa-
tions [See Appendix B for details]. In the general infec-
tion region, µk satisfies the following equation,

µk =











√

βkΘ

τ
+

κβk2

τ 〈k〉 − βkΘ > 0, k < kc

0, k ≥ kc

(22)

where τ and κ are the Lagrange multipliers, and kc is a
threshold degree to guarantee µk > 0 for k < kc and it
will be determined later. Θ, τ and κ are determined by
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FIG. 1: (color online). Prevalence ρ versus the effective in-
fection rate λ in ER networks (a) and BA networks (b) with
equal N = 1000 and 〈k〉 = 4. The solid lines correspond to
the results from the optimal SIS model, the dotted line to
the results of the standard SIS model, and the dashed line to
the SIS model with µi = µ∗

i . The squares correspond to the
results from SA.

the following three equations,

√

βτ 〈k〉
Θ

kmax
∑

k=kmin

√

ξP (k)− βτ 〈k〉
kmax
∑

k=kmin

ξP (k)

−βκτ
kmax
∑

k=kmin

kξP (k)− κ

〈k〉Θ

kmax
∑

k=kc

kP (k) = 0, (23)

µ =

√

βΘ

τ 〈k〉

kc
∑

k=kmin

kξ−
1

2P (k)− βΘ

kc
∑

k=kmin

kP (k), (24)

Θ =

√

βτΘ

〈k〉

kc
∑

k=kmin

k2ξ−
1

2P (k) +
1

〈k〉

kmax
∑

k=kc

kP (k), (25)

where we have used ξ = k/(〈k〉+ κk).
To numerically solve Θ, τ and κ by Eqs.(23,24,25),

kc is needed to be known in advance. To the end, we
adopt a numerical scheme as follows. (i) Firstly we set
kc = kmax where kmax is the maximal degree of the un-
derlying network; (ii) we numerically solve Θ, τ and κ by
Eqs.(23,24,25), and then test the condition µk > 0 for all
k < kc by Eq.(22); (iii) if the condition is not satisfied,
kc will be decreased by kc ← kc−1 and return to ii) until
the condition Eq.(22) is fulfilled.
Figure 1 shows the optimized results of ρ as a function

λ (solid line) in Erdös-Rényi (ER) random networks (a)
and Barabási-Albert scale-free networks (b) with equal
network size N = 1000 and average degree 〈k〉 = 4. For
comparison, we also show the results of the standard SIS
model (dotted line) and of the SIS model with the curing
rates µi = µ∗

i (dashed line). As expected by the theoreti-
cal prediction, the epidemic threshold of the optimal SIS
model λopt

c = 1/ 〈k〉, which is significantly larger than
that of the standard SIS model, but coincides with the
case of µi = µ∗

i . While for λ > λopt
c , the prevalence for

µi = µ∗
i is always larger than the optimal choice, and

even larger than the standard SIS model in the strong
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FIG. 2: (color online). The optimal allocation of {µk} as a
function of node degree k for several distinct λ in ER random
networks (a) and BA scale-free networks (b) with equal N =
1000 and 〈k〉 = 6. The lines and dots indicate the theoretical
and SA results, respectively.

infection region, indicating that µi = µ∗
i is not a good

choice once the epidemic outbreak has happened.
We use the simulated annealing (SA) technique to vali-

date our theoretical results. The SA builds a Monte Carlo
Markov Chain that in the long run converges to the min-
imum of a given energy function E , where E = ρ can be
obtained by numerically iterating Eq.(3). The main steps
of SA are as follows. At beginning, we assign to a given
set of {µi} satisfying the constraint Eq.(1) (e.g., µi = µ
for all i). Then, we randomly choose two distinct nodes,
say i and j, and try to make the changes µi ← µi + δ
and µj ← µj − δ with the standard Metropolis probabil-
ity min(1, e−βSA∆E), where δ is randomly chosen between
−µi and µi + µj to guarantee the curing rate is always
not less than zero. βSA is the inverse temperature of SA
which slowly increases from 10−2 to 104 via an annealing
protocol. ∆E is the change of the energy function E due
the change of µi and µj , We tested several different an-
nealing protocols and we adopted one in which the inverse
temperature of SA βSA is updated by βSA ← 1.01βSA af-
ter each N attempts for updating {µi}. The SA results
are also shown in Fig.1 (square dots), which agree with
the theoretical prediction.
In Fig.2, we show the optimal allocation of {µk} as a

function of node degree k for several distinct λ in ER
random networks (a) and BA scale-free networks (b), in
which the theoretical results and the SA ones are indi-
cated by the lines and dots, respectively. For λ & λopt

c ,
µk increases linearly as k with the slope depending on
the distance to the epidemic threshold. The results have
been well predicted by Eq.(17) and Eq.(21). For the re-
gion away from the threshold, µk will deviate from linear
relation with k. For sufficiently large λ, µk for large k
can be less than that for small k, and even µk vanishes
when k exceeds a threshold value, as given by Eq.(22).
This surprising result implies that in the strong infection
region more medicine resources should be put into these
low-degree nodes other than high-degree nodes.
In conclusion, we have theoretically studied a con-

straint optimization problem as how best to distribute
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the limited medicine resources (curing rates) for control-
ling the epidemics of SIS type. Based on the QMF and
HMF theories, we have shown that the optimal alloca-
tion lies in the effective infection rate λ (or the basic
reproduction number R0 = 〈k〉λ). If R0 6 1, the curing
rate of each node should be in direct proportion to its
degree, under which the epidemic outbreak will be sup-
pressed to the most extent and the epidemic threshold
will be maximized, Eq.(7) or Eq.(16). Once the maximal
epidemic threshold is just across (R0 & 1), the epidemic
will spread persistently. In this case, we have analytically
shown that the change in the curing rate of each node de-
pends linearly on the difference between the average de-
gree and its degree and the distance to epidemic thresh-
old, Eq.(21). For the general infection region (R0 > 1),
it is almost impossible to derive an analytical solution
of the optimization problem; however, it can be simpli-
fied to an much more easily problem of numerical calcu-
lation of three nonlinear equations, Eqs.(23,24,25). Sur-

prisingly, we found that in the strong infection region the
curing rates of the low-degree nodes can overpower those
of the high-degree nodes to ensure the minimization of
the prevalence.
An interesting generalization is how to solve the

present constraint optimization problem based on other
existing theoretical methods, such as pair mean-field
method that takes into account the role of dynamical cor-
relations between neighboring nodes [31–39]. Moreover,
the method presented here could be applied to a number
of other optimization problems, for example, controlling
opinion dynamics in social networks [40]. This will be
the subject of future work.
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A. Politi, Phys. Rev. Lett. 117, 208301 (2016).
[16] T. Gross, C. J. D. D’Lima, and B. Blasius, Phys. Rev.

Lett. 96, 208701 (2006).
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Appendix A: Weak infection region

For λ larger than but close to λopt
c , λ & λopt

c , we have
combined a perturbation theory with Lagrange multiplier
method (LMM) to optimize the prevalence ρ. For λ =
λopt
c +∆λ, we have µk = µ∗

k +∆µk and Θ = Θ∗ + ∆Θ,
where µ∗

k = µk/ 〈k〉, and Θ∗ = 1− µ
β〈k〉 is the solution of

self-consistent equation of Θ, Eq.(12) in the main text,
under µk = µ∗

k. Since Θ > 0 in the region of epidemic
spreading, Eq.(12) in the main text can be rewritten as

β

〈k〉
∑

k

k2P (k)

µk + βkΘ
= 1. (S1)

Expanding the above equation around (µ∗
k,Θ

∗) to the
second-order, it yields

∑

k

∂f

∂µk

∣

∣

∣

∣

(µ∗

k
,Θ∗)

∆µk +
∂f

∂Θ

∣

∣

∣

∣

(µ∗

k
,Θ∗)

∆Θ

+
1

2

∑

k

∑

k′

∂2f

∂µk∂µk′

∣

∣

∣

∣

∣

(µ∗

k
,Θ∗)

∆µk∆µk′

+
∑

k

∂2f

∂µk∂Θ

∣

∣

∣

∣

(µ∗

k
,Θ∗)

∆µk∆Θ+
1

2

∂2f

∂Θ∂Θ

∣

∣

∣

∣

(µ∗

k
,Θ∗)

∆Θ2 = 0,

(S2)

where f
∆
= β

〈k〉
∑

k

k2P (k)
µk+βkΘ−1, and

∂f

∂µk

∣

∣

∣

∣

(µ∗

k
,Θ∗)

= −P (k)

β 〈k〉
∂f

∂Θ

∣

∣

∣

∣

(µ∗

k
,Θ∗)

= −1

∂2f

∂µk∂µk′

∣

∣

∣

∣

(µ∗

k
,Θ∗)

= δkk′

2P (k)

β2 〈k〉 k
∂2f

∂µk∂Θ

∣

∣

∣

∣

(µ∗

k
,Θ∗)

=
2P (k)

β 〈k〉
∂2f

∂Θ∂Θ

∣

∣

∣

∣

(µ∗

k
,Θ∗)

= 2.

(S3)

Substituting Eq.(S3) into Eq.(S2), we obtain

− 1

β 〈k〉
∑

k

P (k)∆µk −∆Θ+
1

β2 〈k〉
∑

k

P (k)

k
∆µ2

k

+
2

β 〈k〉
∑

k

P (k)∆µk∆Θ+∆Θ2 = 0.

(S4)

Using the constraint
∑

k P (k)∆µk = 0 and ignoring the
second-order small quantity ∆Θ2 ≪ ∆Θ, Eq.(S4) be-
comes

∆Θ =
1

β2 〈k〉
∑

k

P (k)

k
∆µ2

k . (S5)

Around (µ∗
k,Θ

∗), the change ∆ρ in the prevalence ρ =
∑

k P (k)ρk can be expanded in the leading order

∆ρ =
∑

k

∂ρ

∂µk

∣

∣

∣

∣

(µ∗

k
,Θ∗)

∆µk +
∂ρ

∂Θ

∣

∣

∣

∣

(µ∗

k
,Θ∗)

∆Θ, (S6)

where

∂ρ

∂µk

∣

∣

∣

∣

(µ∗

k
,Θ∗)

= −P (k)Θ∗

βk
,

∂ρ

∂Θ

∣

∣

∣

∣

(µ∗

k
,Θ∗)

= 1−Θ∗.

(S7)

Substituting Eq.(S7) into Eq(S6), we obtain

∆ρ = −Θ∗

β

∑

k

P (k)

k
∆µk + (1−Θ∗)∆Θ. (S8)

In the following we use LMM to minimize ∆ρ under the
constraints

∑

k P (k)∆µk = 0 and Eq.(S5). Note that the
first constraint is due to the fixed average curing rate, and
the second one is the requirement of the HMF dynamics.
Utilizing Eq.(S8) and the two constraints, the Lagrange
function can be written as

L =− Θ∗

β

∑

k

P (k)

k
∆µk + (1−Θ∗)∆Θ

+ τ

(

−∆Θ+
1

β2 〈k〉
∑

k

P (k)

k
∆µ2

k

)

+ κ
∑

k

P (k)∆µk,

(S9)

where τ and κ are the Lagrange multipliers. Taking the
derivative of L with respect to ∆Θ and ∆µk, we obtain

∂L
∂∆Θ

= (1−Θ∗)− τ, (S10)

and

∂L
∂∆µk

= −Θ∗

β

P (k)

k
+ τ

1

β2 〈k〉
2P (k)

k
∆µk + κP (k).

(S11)
Letting ∂L

∂∆Θ = 0 and ∂L
∂∆µk

= 0, we obtain

τ = 1−Θ∗, (S12)

and

− Θ∗

βk
+

2τ

β2k 〈k〉∆µk + κ = 0, (S13)
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respectively. Substituting Eq.(S13) into the constraint
∑

k P (k)∆µk = 0, we obtain

κ =
Θ∗

β 〈k〉 . (S14)

Combining Eqs.(S12,S13,S14), we obtain

∆µk =
µ

2
〈k〉λ (〈k〉 − k)∆λ ≃ µ

2
(〈k〉 − k)∆λ. (S15)

Substituting Eq.(S5) and Eq.(S15) into Eq.(S8), we ob-
tain

∆ρopt = − 1

4λ
〈k〉2

(

〈

k−1
〉

− 〈k〉−1
)

∆λ2

≃ −1

4
〈k〉3

(

〈

k−1
〉

− 〈k〉−1
)

∆λ2.

(S16)

Appendix B: General Infection Region

For λ is larger than but not close to λopt
c , since the

nonlinear character of the model, analytical expression
of optimal allocation of {µk} and the corresponding the
minimal ρ is in general impossible. However, with the
aid of HMF theory and LMM, the high-dimensional op-
timization problem can be converted to numerically solv-
ing low-dimensional nonlinear equations. We first write
a Lagrange function as

L =
∑

k

P (k)
βkΘ

µk + βkΘ
+ τ

(

∑

k

P (k)µk − µ

)

+ κ

(

∑

k

kP (k)

〈k〉
βkΘ

µk + βkΘ
−Θ

)

,

(S17)

where τ and κ are the Lagrange multipliers. Taking the
derivative of L with respect to µk and Θ, we obtain

∂L
∂µk

= −P (k)
βkΘ

(µk + βkΘ)
2+τP (k)−κkP (k)

〈k〉
βkΘ

(µk + βk)
2 ,

(S18)
and

∂L
∂Θ

=
∑

k

βkP (k)

µk + βkΘ
−
∑

k

β2k2P (k)Θ

(µk + βkΘ)
2

− κ
∑

k

kP (k)

〈k〉
β2k2Θ

(µk + βkΘ)
2 .

(S19)

Taking the derivative of L with respect to the Lagrange
multipliers τ and κ, we obtain the constraint equation
Eq.(8) and the self-consistent equation Eq.(12) of Θ in
the main text.

Letting ∂L/∂µk = 0, we obtain

µk =











√

βkΘ

τ
+

κβk2

τ 〈k〉 − βkΘ > 0, k < kc

0, k ≥ kc

(S20)

where kc is a threshold degree to guarantee µk > 0 for
k < kc and it will be determined later. Substituting
Eq.(S20) into Eq.(S19) and letting ∂L/∂Θ = 0, we obtain

√

βτ 〈k〉
Θ

kc
∑

k=kmin

P (k)
√
k

√

〈k〉+ κk
− βτ 〈k〉

kc
∑

k=kmin

P (k)k

〈k〉+ κk

−βκτ
kc
∑

k=kmin

P (k)k2

〈k〉+ κk
− κ

〈k〉Θ

kmax
∑

k=kc

kP (k) = 0.

(S21)

Combining Eq.(8) in the main text and Eq.(S20), we ob-
tain

µ =

√

βΘ

τ 〈k〉

kc
∑

k=kmin

P (k)
√
k
(

√

〈k〉+ κk
)

− βΘ

kc
∑

k=kmin

P (k)k.

(S22)

Combining Eq.(12) in the main text and Eq.(S20), we
obtain

Θ =

√

βτΘ

〈k〉

kc
∑

k=kmin

P (k)k3/2
√

〈k〉+ κk
+

1

〈k〉

kmax
∑

k=kc

kP (k). (S23)


