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We propose a hybrid multiscale coarse-grained (HMCG) method which combines a fine Monte Carlo
(MC) simulation on the part of nodes of interest with a more coarse Langevin dynamics on the
rest part. We demonstrate the validity of our method by analyzing the equilibrium Ising model and
the nonequilibrium susceptible-infected-susceptible model. It is found that HMCG not only works
very well in reproducing the phase transitions and critical phenomena of the microscopic models,
but also accelerates the evaluation of dynamics with significant computational savings compared
to microscopic MC simulations directly for the whole networks. The proposed method is general
and can be applied to a wide variety of networked systems just adopting appropriate microscopic
simulation methods and coarse graining approaches. Published by AIP Publishing. https://doi.org/
10.1063/1.5048962

Brute-force simulations for many dynamical processes
on large-scale networks, such as firing activity on brain
networks, epidemic spreading on human contacting net-
works, and information transmission on the Internet, are
quite expensive. While phenomenological methods like
mean-field theory may capture some macroscopic prop-
erties, they often ignore important microscopic details.
Customarily, people are actually interested in the prop-
erty of local part than the whole network. Under this
case, a hybrid treatment with distinct coarse degrees for
dynamics on networks is a promising alternative. In the
present work, we propose a hybrid multiscale method that
combines a fine Monte Carlo simulation on the nodes of
interest with a more coarse Langevin dynamics on the rest
part. The method is demonstrated to be effective in the
Ising model and susceptible-infected-susceptible model.

I. INTRODUCTION

Complex networks have become one of the most
active research topics in statistical physics and closely
related disciplines.1–5 The dynamics of networks and their
topologies are usually associated with multiscale processes
spanning from microscopic via mesoscopic, to macro-
scopic level,6–8 like human multiscale mobility networks,9

module networks,10 multilayer networks,11 interconnected
networks,12 and networks of networks,13 etc. Although com-
puter simulation provides a powerful tool for studying and
understanding complex multiscale phenomena, brute-force
simulations, such as Monte Carlo (MC) simulation14 and
kinetic MC simulation,15 are quite expensive and hence com-
putationally prohibited for simulating large networked sys-
tems. To the end, some related approaches aimed at speeding

a)Electronic address: chenhshf@ahu.edu.cn

up MC simulations, such as high-performance parallel com-
puting in the classroom using the public goods game as an
example.16 In terms of applicability, effective vaccination and
cooperation strategies are also high on the list of applica-
tions that would benefit significantly from the speed up.17,18

While phenomenological models, such as mean-field descrip-
tion which need much less computational effort, may capture
certain properties of the system, but often ignore microscopic
and mesoscopic details and fluctuation effects that may be
important near critical points. Therefore, a promising way is
to develop multiscale theory and approaches, aiming at sig-
nificantly accelerating the dynamical evolution while properly
preserving even microscopic information of interest.

Recently, much efforts have been devoted to develop-
ing for coarse graining (CG) approaches. Renormalization
transformations have been used to reduce the size of self-
similar networks, while preserving the most relevant topo-
logical properties of the original ones.19–22 Gfeller and Rios
proposed a spectral technique to obtain a CG-network which
can reproduce the random walk and synchronization dynam-
ics of the original network.23,24 Kevrekidis et al. developed
equation-free multiscale computational methods to accel-
erate simulation using a coarse time-stepper,25 which has
been successfully applied to study the CG dynamics of
oscillator networks,26 gene regulatory networks,27 and adap-
tive epidemic networks.28 Recently, we have proposed a
degree-based CG (d-CG)29 approach and a strength-based CG
(s-CG)30 approach to study the critical phenomena of the Ising
model, the susceptible-infected-susceptible (SIS) epidemic
model, and the q-state Potts model on complex networks.
However, all these works mentioned above always coarse-
grain the whole network. In fact, on the one hand, most
real-world networks are very large.31 The higher the coarse
graining is, the more information is lost. On the other hand,
for specific purpose, we often concern the local dynamics of
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some nodes of interest other than the entire nodes. Besides,
in general, the dynamics of a local part is certainly influenced
by that of other parts of the network due to the interactions
between connected individuals. Therefore, a natural question
arises as to how we simulate a part of interest at a fine level
and treat others simultaneously at a CG level, while retaining
the microscopic information of interest.

To address the above question, in the present work, we
develop a hybrid multiscale coarse-grained (HMCG) method
to simulate phase transitions of the networked Ising model
and the SIS model, which are often taken as paradigms of
equilibrium and non-equilibrium systems, respectively. First,
according to the focus of interest, the network is divided into
two parts, where the part of interest nodes is named the core,
and the part of rest ones is called the periphery. MC simula-
tions and Langevin equations (LEs) are then performed on the
core and the periphery, respectively. Extensively numerical
simulations show that our HMCG method works very well in
reproducing the phase diagrams and fluctuations of the micro-
scopic models, while the LE does not. Especially, our HMCG
method accelerates the systems’ dynamical evolution much
more than that of microscopic simulations.

II. HMCG

Without loss of generality, the underlying network is con-
structed as follows: starting from a random network with N
nodes and N〈k〉/2 edges, where 〈k〉 is the average degree.
The network is then split into two parts, the core consisting
of rcoreN nodes, and the periphery with (1 − rcore)N nodes,
where rcore denotes the ratio of the number of nodes inside the
core to that of the entire network. We introduce the parameter
u as the density of the inter-edges connecting the two parts,
and pc as the proportion of the number of intra-edges inside
the core to the total number of intra-edges within both parts.
We employ the HMCG method which combines a fine MC
simulation with a coarse Langevin dynamics as the fine level
method and the CG method to treat the core and the periphery,
respectively.

To account for the idea and procedure of the HMCG
method, we give a schematic illustration by a module network
consisting of five connected random subgraphs with different
topologies, as shown in Fig. 1. The main idea is as follows:
to capture the local information and achieve high efficiency in
the simulation, the network is divided into two parts, i.e., the
core which is the module of interest and the periphery which
consists of the rest ones. Then, a fine level simulation and a
CG level one are performed on the part of interest and the
other part of rest, respectively. Here, we adopt a microscopic
simulation of detailed allowed by classical MC dynamics and
a LE to treat the two parts, respectively.

The main steps are summarized below:

(i) Identifying the network parts. According to the require-
ment of interest, the network is split into two parts, i.e.,
the core and the periphery. We then employ C , P , and
B to denote the adjacency matrices of intra-core, intra-
periphery, and inter-parts, respectively. Note that P and
B are coarse grained, while C preserves so as to pay

FIG. 1. Schematic illustration of the hybrid multiscale coarse-grained
method. The original network is divided into two parts, i.e., the part of mod-
ule of interest named the core, and the part of rest ones named the periphery,
which are treated at a fine level and a CG level, respectively.

close attention to the part of the original system which
is different from other CG methods.

(ii) Determining the input and output. In view of the core is
the part of interest, we define the flux from the periphery
to the core as the input, where the flux is the product of the
mean-field of the periphery and the average links between
the two parts, and the output is the reverse process.

(iii) Performing simulations. Simulation methods such as MC
dynamics, kinetic MC dynamics, molecular dynamics,
etc. are performed on the core and the periphery with a
more coarse method, e.g., the LE, spectrum coarse grain-
ing, d-CG, s-CG, and other CG methods. Specifically,
here, MC simulation and LE are employed as the fine
level method and the CG method to treat the part of
interest and the rest one, respectively.

(iv) Improving the method. The CPU time of the HM method
and that of microscopic MC simulations is counted and
compared as well as the accuracy of the results, and then
the method is improved by optimizing the algorithm.

A. Application to the Ising model

To evaluate the potential of the HMCG method, we begin
with the networked Ising model, a typical example of an equi-
librium system. In a given network, each node is endowed
with a spin variable si that can be either +1 (up) or −1 (down).
The Hamiltonian of the system is given by

H = −J
∑

i<j

Aijsisj − h
∑

i

si (s = ±1, i, j = 1, . . . , N),

(1)

where J is the coupling constant and h is the external magnetic
field. The elements of the adjacency matrix of the network
take Aij = 1 if nodes i and j are connected and Aij = 0 other-
wise. The degree, that is the number of neighboring nodes, of
node i is defined as ki = ∑N

j=1 Aij.
MC simulations with Glauber dynamics and LE are

performed on the core and the periphery, respectively (see
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Appendix A for the details). Generally, with increasing tem-
perature T , the system undergoes a second-order phase tran-
sition at the critical value Tc from an ordered state to a
disordered one. Figure 2 plots typical time evolutions of the
magnetization of core nodes mcore = ∑

i∈C si/(rcoreN) for dif-
ferent size rcore at T = 2.5 (in unit of J/kB) and h = 0. For
both HMCG and the microscopic MC simulations, the sys-
tems attain the steady states associated with fluctuating noise
after transient time. It is clear that they are in good agreement
in the steady-state values of mcore, as well as their fluctuat-
ing amplitudes for both simulation cases at different size rcore,
while the LE is not.

Furthermore, mcore as a function of T obtained from our
HMCG method, micro-MC simulations, and LE are plotted
in Fig. 3(a). Again, the agreements between HMCG and MC

FIG. 2. Typical time evolutions of the magnetization mcore in the Ising
model at T = 2.5 (in unit of J/kB) and h = 0 for (a) rcore = 0.05, (b)
rcore = 0.1, and (c) rcore = 0.15, where solid, dashed, and dotted lines
indicated HMCG method, MC simulations, and LE approach, respectively.
Other parameters are N = 10 000, 〈k〉 = 6, u = 0.01, and pc = 0.6.

FIG. 3. mcore and χ as functions of T for the Ising model on complex net-
works. The solid, dashed, and dotted lines correspond to the MC, HMCG,
and LE simulation results, respectively. The error bars are obtained by aver-
aging over 20 different network realizations. Other parameters are the same
as in Fig. 2.

are excellent, further demonstrating the validity of HMCG
method. In order to ensure that the microscopic configurations
are nearly identical between both methods, we calculate the
susceptibility χ = rcoreN(〈m2

core〉 − 〈mcore〉2)/(kBT), since χ

is related to the variance of the magnetization according to the
fluctuation-dissipation theorem, and compare χ as a function
of T in Fig. 3(b). Very good agreement is again seen between
HMCG and MC methods.

B. Application to the SIS model

Concerning nonequilibrium scenarios, a prototype exam-
ple is the spreading dynamics of SIS models32–34 on the com-
plex network as mentioned above, where individuals inside
each node run stochastic infection dynamics as follows:

S + I
λ−→ 2I, I

μ−→ S. (2)

The first reaction indicates that each susceptible (S) individual
with the state variable σ = 0 becomes infected upon encoun-
tering one infected (I) individual with σ = 1 at a rate λ. The
second one reflects that the infected individuals are cured
and become again susceptible at a rate μ. For simplicity (yet
without loss of generality), we set μ = 1. In this model, a
significant and general result is that the system undergoes an
absorbing-to-active phase transition at a critical value λc with
an increasing infectious rate λ.

Our numerical simulation starts from a random config-
uration with several infected nodes. After an initial transient
regime, the system will evolve into a steady state with a con-
stant average density of infected nodes. The steady density
of infected nodes ρ is computed by averaging over at least
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FIG. 4. Typical time evolutions ρcore of the density of infected nodes inside
the core in the SIS model at λ = 0.8 for the HMCG method, microscopic MC
dynamics, and LE. Other parameters are N = 10 000, 〈k〉 = 6, rcore = 0.1,
u = 0.01, and pc = 0.6.

50 different initial configurations and at least 20 different
network realizations for a given λ. Figure 4 compares typ-
ical time evolutions ρcore = ∑

i∈C σi/(rcoreN) of the density
of infected nodes inside the core at λ = 0.8 for the HMCG
method, microscopic MC dynamics, and Langevin approach
indicated by the solid, dashed, and dotted lines, respectively.
Excellent agreement between HMCG and MC is shown.

To further validate the effect of our method, we compare
the calculated results of ρcore and normalized susceptibil-
ity δ = rcoreN(〈ρ2

core〉 − 〈ρcore〉2)/〈ρcore〉 as a function of λ

in Figs. 5(a) and 5(b), respectively, obtained by the HMCG
method, the microscopic MC dynamics, and LE. Clearly,

FIG. 5. ρcore and δ as functions of λ for the SIS model on complex net-
works. The solid, dashed, and dotted lines correspond to the results of MC,
HMCG, and LE, respectively. The error bars are obtained by averaging over
20 different network realizations. Other parameters are the same as in Fig. 4.

the agreement between the HMCG and the microscopic MC
results remains excellent, while the LE fails. On the one hand,
as shown in Fig. 5(a), the HMCG can reproduce well the
main characteristic: the system undergoes a phase transition
at a certain threshold rate λc, above which ρcore monotoni-
cally increases from zero indicating the epidemic spreading,
otherwise, i.e., λ < λc , the system stays in a healthy state
with ρcore = 0. On the other hand, both HMCG and MC meth-
ods exhibit a maximum susceptibility δ at the threshold λc, as
can be seen in Fig. 5(b), which suggests that the microscopic
configurations of the HMCG method are nearly identical to
those of the original model. Note that the normalized sus-
ceptibility δ adopted here is different from the traditional
definition δ = rcoreN(〈ρ2

core〉 − 〈ρcore〉2),35 because it leads to
clearer numerical results, while preserving all the scaling
properties of the usual definition.36

III. DISCUSSION AND CONCLUSIONS

Note that the main goal to develop the multiscale coarse
grained method is to improve the computational efficiency.
We count the CPU time resulted from microscopic MC sim-
ulations and from the HMCG method, indicated by CPUMC

and CPUHMCG, respectively, and compare them in Fig. 6(a)
for the Ising model and Fig. 6(b) for the SIS model. It
can be seen that, on the one hand, the HMCG method
provides substantial computational savings compared to the
microscopic MC simulations for the same size of network.
On the other hand, the ratio CPUMC/CPUHMCG shows an

FIG. 6. The proportion CPUMC/CPUHMCG as a function of N for the Ising
model (a) and for the SIS model (b), where CPUMC and CPUHMCG denote
the CPU time resulted from MC and HMCG methods, respectively. Other
parameters in (a) and (b) are the same as in Figs. 2 and 4, respectively.
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apparently monotonic dependence on N , suggesting that for
a given size of the core, the larger the network becomes,
the larger the computational savings are. One may approx-
imately estimate the total savings by CPUMC/CPUHMCG ≈
(N × 〈k〉/2)/(rcoreN × 〈kcore〉/2 + tL), where 〈kcore〉 = pc

(1 − u)〈k〉, denoting the average degree of the group of inter-
est, and tL denotes the computational cost of LE for the
rest group. Generally, tL � rcoreN × 〈kcore〉/2, thus tL can be
neglected and CPUMC/CPUHMCG ≈ 1/[rcore × pc(1 − u)] is
obtained. Specifically, for N = 10 000, 〈k〉 = 6, rcore = 0.1,
u = 0.01, and pc = 0.6, we obtain CPUMC/CPUHMCG ≈
16.8. Obviously, the computational savings are mainly depen-
dent on the relative size of the interest part compared with
that of the entire, and on the density of links of intra-core and
inter-parts. Therefore, if the original network is far larger than
the part of interest, the efficiency of our method will become
more significant.

In this study, a hybrid multiscale coarse-grained method
is proposed that combines a fine simulation for the part of
interest with a CG level for the rest of the network. Specif-
ically, microscopic MC simulations and LE are employed to
treat both parts, respectively. Extensively numerical simula-
tions demonstrate that both the networked Ising model and
SIS model, two paradigms for equilibrium and nonequilib-
rium systems, show a very good agreement of the HMCG
and MC methods. By comparing CPU times for HMCG
and MC methods, we find that a large computational cost
is saved. The success of our method lies in the accuracy
of the mean-field treatment for nodes that we are not inter-
ested in. For the networks used in the present work, the
nodes are degree-homogeneous and thus the mean-field treat-
ment is valid. However, as such, these periphery nodes are
degree-heterogeneous, and, therefore, the simple mean-field
treatment becomes invalid. Under such a case, more com-
plex theoretical methods, such as degree-based heterogeneous
mean-field treatment, are desirable. The generalization of our
method to more complex situations is straightforward. Thus,
the proposed method is general, very easy to implement, and
directly related to the microscopic models. Therefore, this
method can be applied to a wide variety of networked systems
just choosing appropriate microscopic simulation methods,
such as kinetic MC method, molecular dynamics, and other
CG approaches instead of MC method and LE, respectively,
in view of different real-world scenarios.
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APPENDIX A: DETAILS OF THE HMCG METHOD FOR
THE ISING MODEL

The MC simulation at the microscopic level follows stan-
dard Glauber dynamics: At each step, we randomly selected

a node from the group of interest nodes and try to flip its
spin with an acceptance probability 1/(1 + exp[�E/(kBT)]),
where �E is the associated change of energy due to the
flipping process, kB the Boltzmann constant, and T the tem-
perature.

A simple recipe of the Glauber algorithm is described as
follows:

(1) Choose an initial state
(2) Choose a node i at random, i ∈ C
(3) Calculate the energy change �E = �Ein + �Eout, result-

ing from the part of interest and the rest one, respectively,
supposed the spin of node i is flipped. Since C is known
for the part of interest, �Ein can be calculated directly by
the microscopic simulations, while �Eout should be esti-
mated through the mean field coupling between the spin
of node i and the net magnetization m′ (to be derived in
the next step) of the rest part because that P is coarse
grained

(4) Generate a random number r such that 0 < r < 1
(5) If r < 1/(1 + exp[�E/(kBT)]), flip the spin of node i
(6) Go to (2)

Next, we will derive the fluctuation-driven LE for m′. The
average change of magnetization m′ due to spin-flipping can
be written as follows:

〈dm′〉 = dm′
↑ × p↑ × W↑,↓ + dm′

↓ × p↓ × W↓,↑, (A1)

where dm′
↑ = −2/(1 − rcore)N denotes the net change of

magnetization if a up-spin turns to down-spin and dm′
↓ =

2/(1 − rcore)N denotes the reverse process. p↑ = (1 + m′)/2
and p↓ = (1 − m′)/2 represent the probabilities of up-spins
and down-spins, respectively. W↑,↓ and W↓,↑ represent the
transition probabilities from up-spin to down-spin and its
reverse process, respectively. According to the rule of Glauber
dynamics, they take the forms

W↑,↓ = 1

1 + e�E′/T
= 1

2

[
1 − tanh

(
�E′

2T

)]
, (A2a)

W↓,↑ = 1

1 + e−�E′/T
= 1

2

[
1 + tanh

(
�E′

2T

)]
, (A2b)

where �E′ = 2
(
um′ + ∑

i∈C si
)
/(1 − rcore)N is the energy

change due to flipping a up-spin within the rest group. There-
fore, Eq. (A1) can be rewritten as

〈dm′〉 = 1

(1 − rcore)N

[
−m′ + tanh

(
�E′

2T

)]
. (A3)

Then, we calculate the mean square deviation of m′

〈dm′2〉 = 4

(1 − rcore)2N2
× 1 + m′

2
× 1

2

[
1 − tanh

(
�E′

2T

)]

+ 4

(1 − rcore)
2 N2

× 1 − m′

2
× 1

2

[
1 + tanh

(
�E′

2T

)]

= 1

(1 − rcore)2N2

[
2 − 2m′ tanh

(
�E′

2T

)]
. (A4)
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When we adopt dt = 1/(1 − rcore)N , the fluctuation-driven
Langevin equation can be obtained

dm′

dt
= −m′ + tanh

(
�E′

2T

)

+
√

1

(1 − rcore)N

[
2 − 2m′ tanh

(
�E′

2T

)]
ξ(t), (A5)

where ξ(t) is a Gaussian white-noise satisfying 〈ξ(t)〉 = 0 and
〈ξ(t)ξ(t′)〉 = δ(t − t′).

APPENDIX B: DETAILS OF THE HMCG METHOD FOR
THE SIS MODEL

To begin, the subgraph of interest is treated with the
microscopic MC dynamics as follows:

(1) Choose an initial state
(2) Randomly choose a node i, i ∈ C
(3) If i is susceptible, calculate the total number of infected

individuals nI of its nearest neighbors, which contains
within and without the core, denoted by nIin and nIout,
respectively. Notice that nIin = ∑

j∈C Cijσj can be cal-
culated directly by the microscopic simulation, while
nIout = ∑

j∈P Pi,jσj is estimated through the mean field
coupling with the average density of infected nodes ρ ′

inside the rest part, since P is coarse grained. If i is
infectious, go to (6)

(4) Generate a random number r1 such that 0 < r1 < 1
(5) If r1 < λnIdt, i is infected, then go to (2)
(6) Generate a random number r2 such that 0 < r2 < 1
(7) If r2 < dt, i becomes susceptible, then go to (2)

Then, we will derive the fluctuation-driven LE of ρ ′ for the
rest subgraph. Following Ref. 37, one has

dρ ′

dt
= −ρ ′ + λ(1 − ρ ′)

(
〈kp〉ρ ′′ +

∑
i∈C

Cσi

)

+
√

1

(1 − rcore)N
[ρ ′ + λ(1 − ρ ′)(〈kp〉ρ ′ +

∑
i∈C

Cσi)]ξ(t),

(B1)

where 〈kp〉 = (1 − u)(1 − rcorepc)〈k〉/(1 − rcore) denotes the
average degree of the subgraph of the rest, σi is the state vari-
able of node i, σi = 0, 1 represent susceptible and infectious,
respectively. ξ(t) is also a Gaussian white-noise satisfying
〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t − t′).
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