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We study the dynamic separation process of two identical polymers confined in a cylinder, allowing
both ends of the polymer chains to be free, based on a three dimensional (3D) free energy landscape
combined with direct molecular dynamics (MD) simulations. The landscape suggests that the prob-
ability distribution curves of induction time (segregation time) reduced by corresponding average
values would collapse into a single one under the so-called blob constraint, i.e., κ ≡ ND−1/ν is a
constant, where N is the number of monomers in a chain, D is the channel diameter, and ν ' 3/5.
Such a collapse behavior is well demonstrated by direct MD simulations and further by Brownian
dynamics simulations of an effective particle on the 3D landscape. Interestingly, Brownian dynamics
shows that the average induction time t̄in or segregation time t̄se decreases monotonically with κ in
a power-law dependence if the diffusion coefficient D is fixed, suggesting a distinct mechanism of
the induction process which is neither diffusion nor barrier-crossing, in accordance with trajectory
analysis by using MD simulations. In addition, we find that both t̄in and t̄se show good power-law
dependencies on the polymer length N under the blob constraint. Published by AIP Publishing.
https://doi.org/10.1063/1.5078419

I. INTRODUCTION

A polymer in geometrical confinement is not only a clas-
sical problem in polymer physics1,2 but also related to various
aspects such as single-molecule manipulations or nanofabrica-
tion in narrow pores,3–6 viral DNA packing and injection into
a host cell,7 chromosome segregation in elongated bacterial
cells,8,9 etc. When two overlapped polymers are trapped in a
cylinder, the conformational entropy is significantly reduced
such that there exists an entropy force which would lead
to segregation of them from each other. In the past decade,
much research interest has arisen in this entropic segrega-
tion process (ESP) since it might be the essential driving
force of chromosome segregation in elongated bacteria, e.g.,
Escherichia coli, while proteins implicated in the regulation of
the chromosome structure and segregation may in fact function
primarily in supporting such an entropy-driven segregation
mechanism.9

In recent years, many advances have been made regard-
ing this issue by using theoretical analysis combined with
molecular dynamics (MD) simulations. A variety of differ-
ent aspects influencing the ESP have been considered, rang-
ing from polymer stiffness,10–12 crowding effects,13–16 and
topological structures of the polymer chain (linear, ring, or
star).17–19 Of particular interest, it is found that there exists
an induction process where the initial symmetry of the sys-
tem has to be broken before the ESP can set in, which may

a)Author to whom correspondence should be addressed: hzhlj@ustc.edu.cn

extremely delay the separation process. Indeed, recently exper-
iments revealed that a process called sister chromatid cohesion,
i.e., the period between the time a locus is replicated and the
visual separation of the two sister loci, widely exists in liv-
ing cells. Such an induction behavior is essential for genome
stability since it is required for both high fidelity chromo-
some segregation and DNA damage repair.20–22 In an early
paper, Arnold and Jun argued that the induction behavior is
due to the thermal diffusion of the polymer.18 Under this
assumption, they concluded that the average induction time
tin is proportional to N3 with N being the polymer length (the
number of monomers), which is much larger (slower) than
the N2 scaling of the average segregation time tse. In a sub-
sequent study, however, Minina and Arnold argued that the
induction is a rare event and the main mechanism is not the
diffusion of the whole chain but rather the arrangement of
chain ends. Using the de Gennes blob model which represents
the polymer as a chain of blobs, they obtained a free energy
landscape as a function of the number of overhanging blobs,
which allows them to estimate the induction time by using
Kramer’s rate theory, showing an exponential dependency on
the number of monomers.23,24 The authors also used MD
simulations to test the theoretical predictions, showing qual-
itative agreements with the theory despite some quantitative
discrepancies.

Note that, however, Minina and Arnold had considered
a simplified case where they allowed the chains to partially
segregate only at one end of the chains in both theory and
simulations, by fixing the rightmost beads to prevent diffu-
sion. Such a simplified model is justified if the chains are
sufficiently long because two sides of polymers would then
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hardly influence each other.23 In some real systems, however,
this infinite-long chain approximation may not be applica-
ble. For instance, the typical parameters of E. coli measured
experimentally are D ≈ 5 for the channel diameter, L ≈ 28 for
the channel length, and N ≈ 200 for the polymer length, scaled
by the size of a structural unit (70 ± 20 nm).25 Therefore, the
segregation process should be considered with both ends being
free for these finite chains. Nevertheless, such a more realistic
model has not been systematically studied yet, to the best of
our knowledge.

Motivated by this, in the present paper, we have studied
the segregation behavior of two self-avoiding polymers each
with N beads in an infinitely long cylinder with diameter D,
by using both theory and MD simulations. As stated above,
we allow that both two ends of the polymer chains are free
of extra constraints. Applying the renormalized Flory theory,
we get a three dimensional (3D) free energy landscape as a
function of two free parameters, namely, the fraction of over-
hanging monomers of one chain over the other on the left side,
x, and that on the right side y. The 3D landscape clearly shows
two valley regions in the first and third quadrants, correspond-
ing to two temporarily trapped states with one chain inside
another. Starting from the initial condition with x = y = 0, the
system may get trapped into these valley regions for a while,
corresponding to the induction process, after which the two
chains become separated. The landscape U(x, y) is the same
if one introduces the so-called blob constraint, i.e., setting κ
≡ ND−5/3 = const. Such a feature indicates that the probability
distribution function (PDF) of the induction time tin and the
segregation time tse would both collapse into a single curve,
if rescaled by the corresponding averaged values t̄in and t̄se,
respectively, which is confirmed by MD simulations. Further-
more, we have taken a Brownian dynamics (BD) simulation
of an effective particle on the landscape U(x, y) with diffu-
sion coefficient D, and the PDFs for tin/tin (tse/tse) can match
very well with those obtained from MD simulations, further
demonstrating the validity of the free energy description. Inter-
estingly, the BD simulation results show that both tin and tse

show very good power-law decreasing dependencies with κ
if the diffusion coefficient D is fixed, suggesting a distinct
mechanism of the induction process which is neither diffu-
sion nor barrier-crossing. By analyzing the trajectories from
MD simulations, we have found that after the system falls
into the trapped valley region with xy > 0, it actually mean-
ders randomly around the local minima until it finally enters
into a released region with xy < 0. Finally, we have studied
the relationships between tin (tse) and N. Surprisingly, tin (tse)
presents a well scaling relationship with N if the blob con-
straint is introduced (κ = const), which may be closely related
to the effective diffusion coefficient D on the 3D landscape.
Gathering all these results above, we suggest a scaling ansatz
for the induction (segregation) time as t̄in(se) ∼ Nα(κ)κc, where
the scaling exponents α(κ) > 0 and c < 0 are different for
induction and segregation.

The paper is organized as follows. In Sec. II, we describe
the simulation method. In Sec. III, we present the theoretical
method and draw the free energy landscape. Simulation results
and discussion are presented in Secs. IV and V followed by
conclusion in Sec. VI.

II. SIMULATION METHOD

We consider two identical polymers confined in a cylinder
with diameter D. The cylinder is infinitely long at both two
ends, and each polymer is represented as a bead-spring chain
of N beads with diameter σ, linked by spring-like bonds. The
bead-bead and bead-wall interactions are modeled by the fully
repulsive Weeks-Chandler-Andersen (WCA) potential26

UWCA(r) =



4ε
[
(σr )12 − (σr )6 + 1

4

]
, r < 2

1
6σ

0, r ≥ 2
1
6σ

, (1)

where ε represent the potential strength and r denotes the dis-
tance between two bead centers or the bead center and the wall.
The bond interaction between two nearby beads in the chain
is described by the FENE (finite extensible nonlinear elastic)
potential27

UF(r) = −
1
2
εFr2

F ln

[
1 − (

r
rF

)2
]
, (2)

where εF is the interaction strength and rF is the maximum
stretch of r. The dynamics of the polymer beads are described
by the following Langevin equations:

m
d2r
dt2
= −γ

dr
dt
− ∇rU +

√
2kBTγξ(t), (3)

where U =
∑

UWCA(r) + UFENE(r) , r is the position vector,
m is the bead mass, T is the temperature, γ is the friction
coefficient of the bead in the background solvent, and ξ(t)
denotes independent Gaussian white noises with zero means
and unit variances, i.e., 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t ′)〉 = Iδ(t − t ′),
where I is the unit tensor. We nondimensionalize the equations
of motion above using σ and kBT as basic units of length and
energy, respectively, and m as the unit of mass. A time unit
is rescaled by τ = σ

√
m/(kBT ). The dimensionless friction

coefficient γ is set to 1.0, and parameters for the WCA poten-
tial are ε = kBT and for the FENE potential are εF = 10kBT
and rF = 2.0σ. This system is simulated by using the simula-
tion package Espresso 3.3.1.28 The velocity-Verlet algorithm
is used to simulate the dynamic equation with a time step ∆t
= 0.01τ. The initial configuration is a ladder, wherein the ith
bead of one chain is connected to the ith bead of the other
chain.18,23,24 Perhaps a less artificial way could be that two
parallel linear chains are linked in the middle by a temporary
bond,11 but this alternative way nearly makes no quantitative
difference to the final results. After sufficient steps of simu-
lations to warm the system, we remove the interconnecting
bonds between the chains and start to study the segregation
process.

III. THEORY

The dynamics of the system begins with the initial (I) state,
as shown in Fig. 1(a). Upon fluctuation, the two polymers may
change the state via switching the ends. As shown in Fig. 1(b),
both ends of polymer 1 may overhang those of polymer 2,
with Nx (Ny) monomers at the left (right) side, respectively.
To avoid ambiguity, we define Nx > 0 (Ny > 0), if the end of
polymer 1 overhangs the end of polymer 2 in the same side.
For the state shown in Fig. 1(b), both Nx > 0 and Ny > 0 such



244906-3 Du, Jiang, and Hou J. Chem. Phys. 149, 244906 (2018)

FIG. 1. (a) Initial state. Both ends at left (right) side of two polymers are
at the same position. (b) Trapped state. The red chain labeled polymer 2 is
trapped by the blue chain labeled polymer 1 totally, and the segregation is
forbidden. The overhangs along two side of polymer 1 are ��Nx �� and ��Ny ��. Part
in the overlap region is N for polymer 2 and N − ��Nx �� − ��Ny �� for polymer 1.
(c) Released state. Both of two chains have a part overlapped but not all. For
polymer 1, ��Nx �� monomers overhanged and N − ��Nx �� overlapped. While for
polymer 2, ��Ny �� overhanged and N − ��Ny �� overlapped.

that polymer 2 is totally nested in polymer 1, corresponding
to a trapped (T) state. In the middle overlapped region, the
number of monomers is N − ��Nx

�� − ��Ny
�� for polymer 1 and

N for polymer 2. Note that Nx < 0 and Ny < 0 correspond
to another trapped state with polymer 1 all nested in polymer
2. For the state shown in Fig. 1(c), we have Nx > 0, Ny < 0
and the two chains would start to segregate, corresponding to
a released (R) state.

Using the renormalized Flory theory,29 we can calculate
the free energy of the system as a function of the two free
parameters Nx and Ny. A polymer with N monomers con-
fined in a cylinder with diameter D can be equivalent to a
sequence of blobs arranged closely2 wherein one blob con-
sists of g ∼ D1/v (v ' 3/5 in three dimensions) monomers.
The chain thus has nb = N

/
g ∼ND−5/3 blobs, and the total free

energy of the chain is given by U = nbf b ∼ ND−5/3f b, where
f b denotes the free energy for a blob which is a non-universal
constant depending on the type of polymer. And the extended
length of the chain is given by L = nbD∼ND−2/3. For two poly-
mers confined in the cylinder, basically, the overlapped parts
can be treated as two single polymers trapped in effective sub-
cylinders of diameters D1 = D

√
α and D2 = D

√
1 − α,23,24,30

respectively, where α denotes a partition coefficient. For the
initial I-state, we have α = 1

/
2 and D1 = D2 = D

/√
2, thus

the total free energy reads UI ∼ 2N
(
D/
√

2
)−5/3

fb. In the fol-
lowing, for simplicity, we will just set f b = 1 and write U I

= 211/6ND−5/3. For the T- or R-states, one can obtain the
partition coefficient α using the condition that the extended
lengths of both polymers are the same in the overlapped region.
Then we can calculate the free energy of each polymer in
the overlapped or overhanging region, summing up them to
get the total free energy. For more details, please see the
Appendix.

Consequently, the total free energy U of the system is
given by

U =



UT (x, y) for xy ≥ 0

UR(x, y) for xy ≤ 0,
(4)

where x = Nx
/
N and y = Ny

/
N are two dimensionless param-

eters, UT (x, y) is the free energy for the T-state (xy ≥ 0) given
by

UT (x, y) = ND−5/3
{ [

1 + (1 − |x | − |y|)3
]5/6

×
[
1 + (1 − |x | − |y|)−3/2

]
+ |x | + |y|

}
(5)

and UR(x, y) is the free energy of the R-state (xy ≤ 0) given by

UR(x, y) = ND−5/3
{ [

(1 − |x |)3 + (1 − |y|)3
]5/6

×
[
(1 − |x |)−3/2 + (1 − |y|)−3/2

]
+ |x | + |y|

}
. (6)

For x = y = 0, UT = UR = 211/6ND−5/3 which coincides exactly
with the free energy of the initial state U I .

IV. RESULTS
A. 3D free energy landscape

Equations (4)–(6) constitute the main theoretical results
of the present work. In Fig. 2, a 3D plot of the free energy land-
scape U(x, y) is presented. The landscape shows two apparent
valleys in the 1st and 3rd quadrants, where xy > 0. Accord-
ing to Eq. (5), the free energy UT (x, y) is constant along the
lines x + y = const; hence, the valleys are flat along the
direction given by these lines. And the motion along these

FIG. 2. Confined free energy landscape in three dimensions with a projection
on the bottom and a color bar attached. The unit of U(x, y) is f b, where f b
denotes the free energy for a blob, and the key parameters to generate such a
landscape are D = 6, N = 100. The middle point (x = 0, y = 0) represents the
initial state. And the green region and the yellow region represent the trapped
(T) state and the released (R) state, respectively. To get a distinct illustration,
only the ranges of x and y in−0.1∼ 0.1 are showed. It is clear that the landscape
in the R-state is sharply decreasing and the landscape in the T-state shows two
apparent valleys. And the black arrow and the red arrow represent two choices
of traces from the initial state. If the system moves in the direction of the black
arrow, this will lead to a segregation process. However, if the system falls into
the T-state accidentally, in the direction of the red arrow, this will lead to an
induction process until it finally enters into the R region.
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directions can be viewed as that the nested polymer moves
relative to the outer polymer in a diffusive manner such that
the total overhang of the outer polymer stays constant, while
the length of one overhang decreases and the other increases.
Therefore, there exist two metastable T-states, one in the 1st
and the other in the 3rd quadrant. By contrast, the land-
scape in the 2nd or 4th quadrant is monotonically decreasing
with a sharp slope upon increasing distance from the initial
state x = y = 0, indicating that the R-state is a spontaneous
process.

The landscape shown in Fig. 2 clearly illustrates the over-
all picture of the segregation process. Clearly, the initial state is
unstable since it locates at a local maximum on the landscape.
The configuration of the two polymers will change, either to
the T-states with xy > 0 or R-states with xy < 0. If the system
changes to R-states, as indicated by the black arrow in Fig. 2,
the segregation process will immediately take place and no
induction behavior exists. However, if by chance the system
changes to the T-states, as shown by the red line in the figure,
it may get trapped in the valley region for a while before it
reaches the edge and then get released. In this latter case, there
will be an induction process before the segregation would take
place.

In Fig. 3(a), we have chosen two typical trajectories of
the system obtained from direct simulations and projected
them onto a x-y parameter plane. The black trajectory mainly
stays in the 4th quadrant corresponding to a direct separation
process without induction time. The distance Rc2c between
centers of mass of the two chains increases sharply from the
very beginning, as shown in Fig. 3(b). By contrast, the red
trajectory first goes to the valley area in the 3rd quadrant,
where it performs random walk for a period of time, before it
finally drops into the 2nd quadrant and gets separated. Accord-
ingly, the distance Rc2c remains very small for a quite long
period of time before it grows monotonically, as also shown
in Fig. 3(b). This trajectory clearly demonstrates the induction
process with an induction time to be about 300 in dimension-
less time unit. However, to quantitatively get the induction
time tin as well as the segregation time tse, a clear definition
on them is necessary and we achieve this by the following

procedure. First, we need to define several states to depict
the configuration of polymers. If the beads from two poly-
mers do not overlap along the cylinder, such configuration is
labeled “D” state which means that these two polymers are
totally dismissed or separated from each other. Else if one
polymer is totally covered by another polymer at two ends, the
system is in induction and such configuration is labeled “I”
state, otherwise “S” state which corresponds to a segregation
state. So for a whole process, one can get a time sequence
labeled, for example, “I I . . .ISISI I I SSSS. . .DSDDDD. . ..”
Then, one can search the time sequence from back to front
until first we find the “D” state and “S” state and define these
two time intervals from very beginning as ttot and tin, respec-
tively, surely, ttot = tin + tse. Finally, both tin and tse are exactly
obtained.

B. Distributions of induction and segregation time

The 3D free energy landscape allows us to investigate the
segregation process as the diffusion motion of an effective par-
ticle, which can be described by the following Fokker-Planck
equation (FPE):

∂P(r, t)
∂t

= D∇e−βU(r)∇eβU(r)P(r, t), (7)

where r = (x, y) and D denotes the effective diffusion coeffi-
cient on the free energy space. We note here that this D should
generally depend on the chain length N and the channel width
D and even may depend on the position r. For simplicity here
and as an assumption, we set D to be a constant independent
of r. If one rescales time by t ′ = D−1t, then one has ∂P

/
∂t ′

= ∇ e−βU∇eβUP and then the probability distribution function
P(r, t ′) would be determined by the free energy landscape U(r)
only. We also note that there is an important feature shown in
Eqs. (5) and (6), i.e., U(x, y) ≡ ND−5/3u(x, y), where u(x, y) is
a function of the dimensionless variables x, y and not depen-
dent on the parameters N and D. Therefore, if the parameter
κ = ND−5/3 is fixed to be a constant, as called blob constraint
in the rest of paper, then P(r, t ′) would be the same after
rescaling the time by D−1. Since the probability distribution
function determines all the statistical properties of the system,

FIG. 3. (a) The real traces from direct simulations in the projection of the free energy landscape. The red one corresponds to a typical process with induction,
and the black one corresponds to a directed segregation process. As we count the number of monomers overhanged along two side and rescale it to x or y by N,
the trace is connected by a list of discrete points. The black square dots labeled “I,” “T,” and “R” represent the initial point, trapped region, and released region,
respectively. (b) The time dependency of the distance between two centers of mass of the polymer. The red and black curves correspond to the processes with
and without an apparent induction, respectively. These two curves are chosen as the typical examples to highlight the induction time. An example simulation
runs for D = 4, N = 100 with a sampling for every 100 time steps.
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FIG. 4. Probability distribution functions of induction time no-rescaled (a) and rescaled (b) by the average value. Each setting of N and D in the curve is under
the constraint of N

/
D5/3 = κ = 5.047 by using the setting of N = 100, D = 6 as the base. The lines with different colors are drawn to guide the eyes.

one would then expect that the distribution of the induction
(segregation) time tin(tse) as well as its average value t̄in(t̄se)
would be the same under these constraints (fixed κ and rescaled
by D−1).

To validate this point, we have performed direct MD sim-
ulations to obtain the distributions of the induction time tin

for a few different parameter sets of N and D. Figure 4 shows
the probability distribution function (PDF) for tin for fixed κ
= 5.047 but different values of N and D. In Fig. 4(a), the PDFs
are depicted without rescaling the time. Obviously, the PDFs
for different N and D do not collapse, although the shapes are
quite similar. As stated in the last paragraph, one would expect
that the distribution should be the same if the time is rescaled
by D−1. Unfortunately, here we do not know the exact value of
D as well as its dependence on N and D. Note that, however,
the average induction time t̄in should be proportional to D−1,
given that U(r) is the same according to Eq. (7). Therefore,
one may rescale the induction time by its average value t̄in, and
the rescaled distribution should collapse if the landscape really
works. This is indeed the case, as shown in Fig. 4(b), where the
PDFs are shown with the time rescaled by the average values
t̄in and all the curves now almost collapse into a single line.
Such a collapse indicates that the free energy landscape does
work well to describe the dynamics of the system.

For the segregation process, which corresponds to a
motion along the downhill in the 2nd or 4th quadrant to the

R-state, the average time can be obtained via calculating
the time for the effective particle to reach some boundaries.
As shown in Fig. 3(b), the two polymers can be viewed as
separated if the distance of their centers-of-mass surpasses
some threshold value dc. For a rough estimation, one can just
assume that the effective particle performs an overdamped
motion along the direction x = −y subjected to a drift force
fdr = −∇x=−yU(x, y) and an effective friction γ = (βD)−1. The
average velocity of the particle thus reads v̄ ' f̄dr/γ = βDf̄dr ,
where f̄dr is the average drift force along the downhill direc-
tion x = −y, which depends on the details of U(x, y) = κu(x, y)
and is also proportional to the parameter κ. The average time
t̄se can then be approximately given by t̄se ∼ dc/v̄ ∝ (κD)−1.
Such a simple analysis shows that the average segregation time
also scales as D−1, the same as the case for the induction time.
Therefore, the distribution function for the segregation time
tse should also be the same after rescaling with the average
value t̄se.

In Fig. 5, we show the PDFs for tse obtained from simula-
tions for fixed κ = 5.047. Different from that of induction time
tin, the PDF for tse looks like a Gaussian distribution with an
apparent single peak around the average value t̄se. The distri-
bution shows a little bit long tail, which is probably due to the
random motion perpendicular to the direction that landscape
decreases. In Fig. 5(a), the PDFs are drawn without rescal-
ing time, while in (b) they are drawn with rescaling with the

FIG. 5. Probability distribution functions of segregation time no-rescaled (a) and rescaled (b) by the average value, respectively. Each setting of N and D in the
curve is under the constraint of N

/
D5/3 = constant by using the setting of N = 100, D = 6 as the base. The lines with different colors are drawn to guide the eyes.
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average segregation time t̄se. Again the curves collapse rather
well in good agreements with the theoretical predictions made
above based on the 3D free energy landscape.

C. Brownian simulation with D = 1

The above analysis demonstrates that the 3D free energy
U(x, y) can indeed qualitatively describe the dynamic behav-
ior of polymers in a confined channel. The rescaled PDFs of
tin and tse shown in Figs. 4(b) and 5(b) actually reflect the
features of U(x, y) = κu(x, y). To further check the validity
of this free energy function, one may compare directly these
rescaled PDFs obtained from MD simulations with those pre-
dicted by the FPE [Eq. (7)]. However, the analytical results of
these PDFs are not available for this complicated free energy
landscape.

To proceed, we note that the FPE corresponds to an
overdamped Langevin equation as follows:

ṙ = −βD∇U(r) +
√

2Dζ (t), (8)

where ζ (t) denotes a Gaussian white noise with zero mean
and 〈ζ (t)ζ (t ′)〉 = δ(t − t ′)I with I being the unit tensor. One
can then perform Brownian simulations of Eq. (8) to obtain the
distributions of the induction and segregation times. Note that,
by doing so here, the whole system is equivalent to an effec-
tive particle on the landscape U(x, y). Surely the simulation
of this overdamped Langevin equation is much cheaper than
the original MD simulation. Since we only need to obtain the
rescaled PDF, the value of D would not affect the final results.
Therefore, we can set D = 1 for simplicity and let κ be the
only free parameter.

In Fig. 6(a), the PDFs of the rescaled induction time tin/t̄in
obtained from Brownian simulations (solid line) and direct MD
simulations (dashed line) are shown for two different values
ofκ, respectively. Physically, a larger κ indicates a stronger
constraint in the channel and a deeper potential valley for the
T-state. Interestingly, both distributions of κ = 3.125 and κ
= 19.84 show a typical feature of multiple time scales (note
that the left axis is in logarithmic scale), i.e., the curve is not
a straight line but composed of two segments with different
slopes. The PDFs of the rescaled segregation time tse/t̄se are

shown in Fig. 6(b). Different from the distribution of the induc-
tion time, the PDF for tse has a clear cut peak around the
average value t̄se. If κ is large, e.g., κ = 19.84, the slope of
the landscape is relatively sharp and the distribution is typi-
cally Gaussian concentrated around tse/t̄se = 1.0. For a small
κ = 3.125, one can see that the distribution is wider and the peak
shifts to a smaller value with tse/t̄se < 1, probably due to the
fact that the landscape is relatively flat and the system would
perform more random motion perpendicular to the decreas-
ing direction of the landscape. Note that for both tin and tse,
the rescaled distributions obtained from Brownian simulations
agree rather well with those obtained from direct MD simu-
lations, further demonstrating the validity of the free energy
landscape.

Using Brownian simulations, we can obtain the induction
time t̄in and t̄se as a function of κ given D = 1. The results
are shown in Fig. 6(c). Both t̄in and t̄se decrease monotonically
with κ since a larger κ corresponds to a sharper slope to release.
Very interestingly, we find both t̄D=1

in and t̄D=1
se show very good

power-law scaling with κ. Overall, t̄D=1
se is larger than t̄D=1

in ,
while the scaling exponent for t̄D=1

in is larger (decaying faster)
than that of t̄D=1

se . Nevertheless, why both t̄in and t̄se show such
good power-law dependencies with κ is quite interesting and
still open to us.

D. Mechanism of induction behavior

The power-law decay of t̄D=1
in with κ is quite nontrivial.

In Ref. 23, it was suggested that the induction process is a
rare-event barrier-crossing process such that the induction time
shows an exponential dependency on κ = ND−5/3, i.e., tin ∼
D2N exp

(
cND−5/3

)
, but being exponentially increasing rather

than decreasing. Therein, a larger κ corresponds to a deeper
free energy minimum such that it is harder for the system to
escape the metastable T-state, leading to a longer induction
time. Here, however, the induction behavior is due to the stay
of the system in the valley area and it ends with the system
changing into the R-state, so the barrier-crossing process is
not energetic favorable and the use of Kramer’s theory maybe
not justified. And a larger κ would lead to a sharper slope
down the initial point, which would lead to a smaller induction

FIG. 6. Probability distribution functions of the induction time (a) and segregation time (b) rescaled by the average value. In both (a) and (b), the solid lines
correspond to the results from Brownian simulations, while the dashed lines correspond to the results from direct MD simulations. Besides two different values
of κ, 3.125 and 19.84, are studied and labeled in red and black, respectively. In direct MD simulations, κ = 3.125 and κ = 19.84 are achieved approximately by
setting (N = 100, D = 8.0) and (N = 200, D = 4.0), respectively. (c) Average induction time t̄in and t̄se as a function of κ given D = 1, obtained from Brownian
simulation results.
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time. Therefore, the mechanism of the induction behavior in
our present study is quite different from the previous ones.
For a similar reason, a larger κ would also lead to a faster
segregation process once the system enters into the R-state
region.

To further demonstrate this point, we cut out the induction
part of the trajectories from real MD simulations and project
it to the x-y plane. To do so, we have got the density distri-
bution or probability distribution of finding the system on the
x-y plane. The contour plot of this distribution is depicted in
Figs. 7(a) and 7(b) for N = 400, D = 9.153 and N = 400, D
= 6.063, corresponding to κ = 9.921 and κ = 19.84, respec-
tively. Clearly, the induction trajectories mainly stay in the
deepest valley region around the energy minima of the free
energy landscape, as plotted in Fig. 2. Once the trajectory
goes across the boundary at the x axis or y axis, it will go
down the slope such that the segregation takes place. Very
interestingly, both Figs. 7(a) and 7(b) show that the induc-
tion traces can also enter into the R-state region, which means
that the system would visit the R-state region for a while and
return back to the T-state region before it formally begins a
segregated process. However, the density condensed regimes
in 1st and 3rd quadrant cannot quantitatively map the energy
minima of theoretical prediction. This probably due to the
finite-size effect that the number of beads in a blob in the
present work may not be enough to support a de Gennes
scaling, and the exact scaling exponent v ' 3

/
5 may need a

correction.
Note that the trajectory can cross the boundaries between

T-state and R-state at any point on the axis, before or after
it reaches the bottom of the valley. Therefore, it would be
helpful to investigate how these crossing points distributed
along the axis, which would give more insight about the induc-
tion process. In Fig. 7(c), the probability distribution of the
crossing points as a function of the distance from the initial
point is depicted, e.g., for κ = 9.921 and 19.84, in accordance
with Figs. 7(a) and 7(b), respectively. For a relatively small κ
= 9.921, the distribution is more flat than that for a larger κ
= 19.84. Note that the line for the valley bottom in 1st and 3rd

quadrants reads x + y ' 0.065, which intersects the axis at two
points with distance 0.065 to the initial point. For these two
values of κ, the crossing points mainly concentrate around 0–
0.1 and decrease monotonically with distance from the initial
point. This is confusing at first glance. Due to the fact that the
energy minima in the induction regime are at x + y ' 0.065,
and the distribution of the cross point seems to look like non-
monotonic and concentrated around 0.065. However, as shown
in Figs. 7(a) and 7(b), the extension is wider along the direction
x + y = const as the system is approaching the energy min-
ima, and then it would take more time to reach the boundaries
between T-state and R-state. Meanwhile, such a monotonic
decreasing property also indicates that most of the induc-
tion trajectories actually enter into the R-state region rapidly
instead of entering into the valley bottom. If in case the system
drops into such valley bottom, it would take much long time to
meander around this region, as shown in the darker region in
Figs. 7(a) and 7(b), which results in a long tail in Fig. 7(c). So
farther away from the initial point, the probability of finding
the system still in the T-state is smaller and the corresponding
induction time is longer. This is greatly in accordance with the
decreasing dependency of PDFs with tin in Fig. 4. However,
for a smaller κ = 9.921, the valley is shallow such that there
is more chance for the trajectory to stay at the slope and more
probably visit the R-state region for a while, and then the den-
sity distribution is wider, as shown already in Fig. 7(b). Such a
scenario for induction is clearly distinct from a barrier-crossing
picture.

E. Dependencies of t̄in and t̄se on N for fixed κ

In previous studies on the segregation process but with one
end fixed,23 the authors assumed that the diffusion coefficient
D is dominated by the outermost blob and therefore scales as
1
/
g ∼ D−5/3. However, in a more realistic segregation process

with both ends free, and the diffusion coefficient D is not sim-
ply determined by the end blob but may depend on the whole
polymer chain. Unfortunately, the dependence of D on N or D
is not available at the current stage.

FIG. 7. (a) and (b) Density distribution function of the induction trajectories in the phase space (x, y), where (a) and (b) correspond to the system with κ = 9.921
(N = 400, D = 6.063) and κ = 19.84 (N = 400, D = 9.153), respectively. For both (a) and (b), the range of density distribution in 1st and 3rd quadrants is larger than
that in 2nd and 4th quadrants and, apparently, there are two density accumulated areas in 1st and 3rd quadrants, which correspond to the local energy minima.
(c) Probability distribution of the crossing points as a function of the distance from the initial point. The black square represents a κ = 19.84 case, while the red
square represents a κ = 9.921 case. For the two values of κ, the crossing points mainly concentrate around this distance about 0–0.1 and decrease with distance
from the initial point, while the probability distribution for κ = 19.84 looks steeper than the case for κ = 9.921. The solid lines are drawn to guide the eyes.
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FIG. 8. The scaling relation of tin (a) and tse (b) with N under the constraint N
/
D5/3 = κ by using the value of 9.921, 5.047, and 3.125, which correspond to

using (N = 100, D = 4.0), (N = 100, D = 6.0), and (N = 100, D = 8.0) as the base, respectively. The values of N are chosen to be 100, 130, 150, 180, 200, and 250.
The solid lines are drawn to scaling fit. The inset in (a) shows dependency of the exponent of induction αin with κ, while the inset in (b) belongs to dependency
of the exponent of segregation αse with κ. And κ is set to 3.125, 3.904, 5.047, 6.840, and 9.921. Each value of κ is obtained from the scaling fit of 6 independent
(N, D) sets.

Nevertheless, the landscape U(x, y) obtained in the present
work still helps us to get more insight about the system dynam-
ics. As discussed above, U(x, y) = κu(x, y), where u(x, y) is not
dependent on N and D such that U would be the same, given
that κ is a constant. In this case, the whole dynamics would
be dependent on the value of D only. It is thus instructive to
investigate the behavior of t̄in or t̄se for different fixed values of
κ, which would reflect some information about the diffusion
coefficient D. In Fig. 8, the dependencies of (a) t̄in and (b) t̄se

on the chain length N are depicted, obtained from direct MD
simulations. Rather interestingly, both t̄in and t̄se show good
power-law scaling with N, i.e., t̄in ∼ Nαin and t̄se ∼ Nαse , for
fixed κ. The insets in (a) and (b) show the dependencies of the
exponents αin and αse on κ (with error bars) for the induction
and segregation times, respectively. It seems that αin is nearly
a constant around 2.75 and αse also reaches a constant about
2.35 for large κ.

According to the discussions made above, both t̄in and
t̄se should be proportional to D−1 if the potential landscape is
fixed (κ = const). One would then expect that the scaling of t̄in
and t̄se with N also suggest the scaling of D with N, and the
scaling exponent should be the same for t̄in and t̄se if the free
energy landscape U(x, y) is accurate and the Fokker-Planck
Eq. (7) works well. However, our simulation results show dis-
crepancies between αin and αse, which suggests that the free
energy landscape U(x, y) is still an approximation. Another
reason might be that the motion of the effective particle on the
landscape cannot be described by a constant D, i.e., D might
be a function of r = (x, y). Nevertheless, the simulation results
demonstrate that D ∼ N−α, while the exponent α is different
for induction and segregation.

F. Scaling of t̄in and t̄se
The above analysis indicates that it is not straightforward

to obtain a scaling form for t̄in (or t̄se) as a function of N. For
fixed κ, it suggests by direct MD simulations that both t̄in and
t̄se show power-law dependencies on N, as demonstrated in the
last paragraph, but with different scaling exponents dependent
on κ. Such dependencies should give some information about
the diffusion coefficient D used in the Fokker-Planck equation

or corresponding Brownian simulations, i.e., D ∼ N−α(κ). If
we fix D = 1 and using Brownian simulations based on the
3D landscape obtained in our work, we find that both t̄in and
t̄se show very good power-law decreasing dependencies on κ,
in contrast to previous studies where one end of the polymer
chains was fixed. Note that such a power-law dependence can-
not be checked directly by MD simulations since it is hard to
figure out a way to fix D in MD.

Combining these information together, it seems that one
can suggest a scaling ansatz for the average induction time t̄in
or the segregation time t̄se as follows:

t̄in/se ∼ Nα(κ)κc, (9)

wherein the scaling exponent α(κ) is generally a function of κ
and different for induction and segregation, c < 0 is a constant
independent of κ. For fixed κ, both t̄in and t̄se show power-
law scaling with N. While for fixed N, the dependence on κ is
complicated, since the exponent α also depends on κ. On the
whole, one cannot obtain a simple scaling with N, in contrast
to previous studies reported in Refs. 18 and 23.

V. DISCUSSION

Before Sec. VI, some discussions on the limits of theo-
retical approximation made in the current work are salutary.
Note that the analytical expression for the free energy land-
scape U(x, y) ∼ N

/
D5/3u(x, y) summarized in Eqs. (4)–(6) is

central to this study and its derivation rests on the validity of
the de Gennes blob model and the accuracy of scaling expo-
nent v in such a highly confined environment. Indeed, such
a blob scenario may not strictly work as increasing the level
of confinement or increasing κ(κ = N

/
D1/v , v ' 3

/
5). Along

with it is the deviation of v because of the increasing crowd-
ing. Kim et al. showed that for flexible FENE-chain model
polymers, the strict de Gennes scaling relation (for the blob
model) with respect to N and D would emerge for sufficiently
large channels D and for sufficiently long polymers such that
both the number of monomers per blob and the number of
blobs are large enough.31 In consideration of computational
efficiency, many of the simulations in the present study use
channel widths (and polymer lengths as well) that are not in
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the regime where the predicted scaling exponent is likely to be
accurate. Besides, in a very recent study by Polson et al., it was
shown that the scaling exponent v in such a highly confined
case is probably something more like 0.53 (close to Gaussian
chain scaling, v = 0.5), which was calculated directly using
Monte Carlo simulations.32 Consequently, v = 3/5 of the cal-
culated free energy function U(x, y) may not be particularly
accurate. In addition, the predicted form of U(x, y) could also
be inaccurate.

Actually these latent effects has been shown in Figs. 7(a)
and 7(b), where the density distribution is not strictly con-
centrated along x + y = 0.065 which is the energy minimum
based on the function of U(x, y). In Figs. 6(a) and 6(b), BD
results and direct MD simulation results also present quan-
titative differences. For a probably compromise solution, a
more generalized free energy scaling may look like U(x, y)
∼ NaDbu(x, y), where a and b are adjustable scaling expo-
nents based on the system confinement, while still maintain-
ing the concise form of u(x, y). Nevertheless, in spite of the
theoretical approximations made, we believe that the under-
lying physical picture depicted the global dynamic behaviors
and such a new induction mechanism should be qualitatively
unaffected.

VI. CONCLUSION

In summary, we have studied the separation process of two
identical polymer chains in a cylindrical confinement under
the framework of a three dimensional (3D) free energy land-
scape U(x, y) obtained by renormalized blob theory, which
is a function of two free parameters x and y, the number
fraction of overhanging monomers at the two ends of one
chain over another. The landscape gives a clear picture how
the induction and segregation would take place in the whole
process. An important feature of the free energy function
U(x, y) is that it can be written as the product of a parameter
κ = ND−5/3 and a function u(x, y) that is not system-dependent.
Therefore, the free energy landscape would be the same if
one introduces the so-called blob constraint, i.e., κ = const.
The free energy picture also allows one to study the system
dynamics by using an over-damped Langevin equation cor-
responding to the Fokker-Planck equation. And the validity
of the free energy landscape was further confirmed by both
direct molecular dynamic simulations and effective Brownian
dynamic simulations.

Besides, such a free energy landscape suggests that the
induction process is distinct from either the barrier-crossing
mechanism suggested by Minina and Arnold in Refs. 24 and
23 or the diffusion mechanism suggested in an earlier study.18

In Sec. IV F, we have given a ansatz for both the average
induction and segregation times t̄in/se ∼ Nα(κ)κc (c < 0) to
conclude our findings, which describes the scaling with respect
to the polymer length N as well as the “blob constraint” κ
= N

/
D−5/3, which plays an important role in this theoretical

picture. We believe that our work can open more perspectives
on the study of polymers confined in cylindrical geometry and
may shed some new lights on understanding such an important
process in real biological systems.
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APPENDIX: The derivation of free energy landscape

According to the Flory theory, a polymer with N
monomers confined in a cylinder with diameter D can be
equivalent to a sequence of blobs arranged closely,2 wherein
one blob consists of g ∼ D1/v (v ' 3/5 in three dimensions)
monomers each with free energy f b, which is a non-universal
constant depending on the type of polymer. The chain thus has
nb = N

/
g blobs, and the total free energy of the chain is given

by

U = nbfb ∼ ND−5/3fb. (A1)

The extended length of the chain is given by

L = nbD ∼ ND−2/3. (A2)

We consider two identical polymer chains, in which blue
polymer labeled 1 and red polymer labeled 2, confined in
a cylinder with diameter D with an initial (I) state shown
in Fig. 1(a). By using the renormalized Flory theory,29 the
overlapped parts of two polymers can be treated as two sin-
gle polymers trapped in effective sub-cylinders of diameters
D1 = D

√
α and D2 = D

√
1 − α,23,24,30 respectively, where α

denotes a partition coefficient. For this fully overlapped initial
state, α = 1

/
2 and D1 = D2 = D

/√
2, and each polymer con-

tains nb ∼ N
(
D

/√
2
)−5/3

blobs. The free energy of this initial
state is given by

UI = 211/6ND−5/3fb (A3)

In this system, the monomers overhang at two sides are
Nx and Ny. To avoid ambiguity, we define that if any one end
of polymer 2 is covered by the corresponding end of polymer
1, Nx(Ny) > 0, else Nx(Ny) < 0. As to the trapped (T) state
shown in Fig. 1(b), for the case both Nx > 0 and Ny > 0 such
that polymer 2 is totally trapped into polymer 1. In the middle
overlapped region, the number of monomers is N − Nx − Ny

for polymer 1 and N for polymer 2, trapped in effective sub-
cylinders with diameters D1 = D

√
αT and D2 = D

√
1 − αT ,

respectively, where αT denotes the partition coefficient for this
T-state. Note that the extended lengths of both polymers are
the same in the overlapped region, i.e.,(

N − Nx − Ny

)
(D1)−2/3 = N(D2)−2/3, (A4)

which gives that

αT =

(
N − Nx − Ny

)3

N3 +
(
N − Nx − Ny

)3
=

(1 − x − y)3

1 + (1 − x − y)3
, (A5)
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where x = Nx
/
N and y = Ny

/
N . The free energy of polymer

1 in the T-state is then given by

UT ,1 = NxD−5/3 +
(
N − Nx − Ny

)
(D1)−5/3 + NyD−5/3, (A6)

where the three terms correspond to the left overhanged part,
the middle overlapped part, and the right overhanged part,
respectively. The free energy of polymer 2 in this T-state is

UT ,2 = N(D2)−5/3. (A7)

Substituting D1 and D2 with the obtained αT , we can obtain
the free energy of the T-state as a function of x and y (for x > 0
and y > 0)

UT (x, y) = ND−5/3
[
(1 − x − y)α−5/6

T + (1 − αT )−5/6 + x + y
]
,

(A8)

= ND−5/3
{ [

1 + (1 − x − y)3
]5/6 [

1 + (1 − x − y)−3/2
]

+ x + y
}

for (x > 0, y > 0). (A9)

If x < 0 and y < 0, the polymer 1 is trapped into poly-
mer 2. One can easily get UT (x, y) = UT (−x,−y) due to the
symmetry.

Note that if Nx > 0 and Ny < 0, as shown in Fig. 1(c), the
two polymers are in a released (R) state and the segregation
process may start. Similar to the above procedures, we can
obtain the free energy of the two polymers as

UR,1 = NxD−5/3 + (N − Nx)
(
D
√
αR

)−5/3
(A10)

and

UR,2 =
(
N − ���Ny

���
) (

D
√

1 − αR

)−5/3
+ ���Ny

���D
−5/3. (A11)

The partition coefficient αR can be obtained via equal of the
extended length in the overlapped region

(N − Nx)(αR)−2/3 =
(
N − ���Ny

���
)
(1 − αR)−2/3, (A12)

which gives

αR =
(1 − x)3

(1 − x)3 + (1 + y)3
(A13)

for x > 0 and y < 0. The total free energy of the R-state is then

UR(x, y) = ND−5/3
[
(1 − x)α−5/6

R + (1 + y)(1 − αR)−5/6 + x − y
]
,

(A14)

= ND−5/3
{ [

(1 − x)3 + (1 + y)3
]5/6 [

(1 − x)−3/2

+ (1 + y)−3/2
]

+ x − y
}
, for (x > 0, y < 0). (A15)

While for x < 0 and y > 0, one can also obtain that UR(x, y)
= UR(−x,−y) due to the symmetry.

Finally, we can write the free energy of the trapped state
as

UT (x, y) = ND−5/3
{ [

1 + (1 − |x | − |y|)3
]5/6

×
[
1 + (1 − |x | − |y|)−3/2

]
+ |x | + |y|

}
for xy ≥ 0.

(A16)

Similarly, the free energy of the release state is given by

UR(x, y) = ND−5/3
{ [

(1 − |x |)3 + (1 − |y|)3
]5/6

×
[
(1 − |x |)−3/2 + (1 − |y|)−3/2

]
+ |x | + |y|

}
,

for xy ≤ 0. (A17)
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