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The diffusion behavior of an active Brownian particle (ABP) in polymer solutions is studied using
Langevin dynamics simulations. We find that the long time diffusion coefficient D can show a
non-monotonic dependence on the particle size R if the active force Fa is large enough, wherein a
bigger particle would diffuse faster than a smaller one which is quite counterintuitive. By analyzing
the short time dynamics in comparison to the passive one, we find that such non-trivial dependence
results from the competition between persistence motion of the ABP and the length-scale dependent
effective viscosity that the particle experienced in the polymer solution. We have also introduced
an effective viscosity ηeff experienced by the ABP phenomenologically. Such an active ηeff is found
to be larger than a passive one and strongly depends on R and Fa. In addition, we find that the
dependence of D on propelling force Fa presents a well scaling form at a fixed R and the scaling
factor changes non-monotonically with R. Such results demonstrate that active issue plays rather
subtle roles on the diffusion of nano-particle in complex solutions.

I. INTRODUCTION

Transport properties of macromolecule are of great im-
portance in various fields including biophysics[1–4], mate-
rial [5–8], medicine[9, 10], and so on. One of the research
interests in recent years is the diffusion of macromolecule
(protein or nano-particle) in complex solution systems.
Especially in living cells, a variety of structural and
functional proteins are immersed in crowded cytoplasmic
environments, involved in diverse biochemical processes
such as enzyme reactions[11], signal transmission[1], gene
transcription and self-assembly of supramolecular[12].
Experimentally, one would usually focus on nano-particle
(NP) in complex environment such as polymer solution.
And study of diffusive behavior of NP can provide impor-
tant information about the local structure , viscoelas-
tic properties and also the crowding effect of polymer
liquids[13–15].

In the past decades, diffusion of NPs in polymer solu-
tions has received a lot of attention both experimentally
[16–20] and theoretically [21–27]. In experiments, fluc-
tuation correlation spectroscopy (FCS) [28–31], dynamic
light scattering (DLS) [29, 32], and capillary viscosimetry
are general tools to investigate the diffusion of a NP in
complex fluids. It is found that as the particle radius R
decreases to nanoscale, the diffusion coefficient D would
increase exponentially with R and violates the Stokes-
Einstein (SE) relation apparently[33–37]. Phillies et al,
based on the analysis of a great deal of experimental data,
proposed an empirical formulaD = D0 exp(−αcv), where
D0 is the diffusion coefficient in a purely background sol-
vent, c is the concentration of polymer solution and α,
v are fitting parameters relevant to a specific system[38].
Although this stretched exponential form matches the ex-
perimental data very well, the underlying physical mean-
ing of these two parameters are quite blurry[39]. Re-
cently, Holyst et. al proposed a length-scale dependent
viscosity theory[40, 41]. They argued that the diffusion
of a NP in polymer solution was characterized by at least
three length scales: the particle size R, the polymer hy-

drodynamic radius Rh and the correlation length ξ of
the solution. Concretely, the formula reads D/D0 ∼
exp [b (Reff/ξ)

a
], where Reff =

√
R2R2

h/(R
2 +R2

h) de-
notes an effective size, a and b are fitting parameters.
If R is small with respect to ξ, the particle motion ex-
periences the local viscosity which is smaller than the
macro-viscosity by order of magnitude. While if R is
much larger than Rh or Rg, the particle motion would
no more be affected by the local structures of polymer
and touches the macro viscosity finally, and obeys the
Stokes-Einstein relation automatically. Also, there are
some other interesting models in this field such as the
hopping model[42], walking confined diffusion model[43]
and depletion model[44]. Liu et al used a MD simulation
to study the diffusion of a NP in polymer melt [45]and
the core results are similar to Holyst’s work, where Rg
could be the boundary of NP size to experience the lo-
cal viscosity to macro viscosity. Note that, it is hard
to take a simulation work on this issue especially the
polymer solution, which on one side the solvent accounts
for a large proportion and costs a huge computational
resource, and on other side a reasonable diffusion coeffi-
cient needs so much long time to evolve the system . To
our best of knowledge, only in the recent two years, Li et
al [46, 47]and Pryamitsyn et al[48] had studied this is-
sue in a simulation way, using Multiparticle Collision Dy-
namic (MPCD) and Dissipative Particle Dynamic (DPD)
method respectively.

Most of the present works focus on the diffusion of
passive NP. But note that, in real biological system, es-
pecially in a living cell, the active proteins widely exist.
Typical active proteins include motor molecule[49, 50],
microtubule or active filament[51, 52]. By consuming the
ATP, they get a propel force that extremely enhance the
transport efficiency in various biochemical process. Ac-
tually, the dynamics behavior of active matter has gained
much attention in recent years. Instead of the living
species such as bacteria[53], spermatozoa[54, 55] and the
micro protein in cell as mentioned above, there are also
much artificial objects capable of self-propulsion such as
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Janus particles[56], chiral particles[57], and vesicles[58].
And a wealth of new non-equilibrium phenomena have
been reported, including phase separation[59], active
turbulence[60], and active swarming[61], both experi-
mentally and theoretically.

Recently, much interests arised on the dynamic behav-
iors of an active particle in complex environment[62–65].
And a number of studies indicated that there exists a two-
way coupling between the active matter and the ambi-
ent environment, which the motion of active suspensions
can alter the local property of its environment, while si-
multaneously the complex fluid rheology can modify the
dynamics of the active matters[65]. For instance, Patte-
son et al reported an experiment on the diffusion of an
Escherichia coli in polymeric solution[66]. They found
that the translational diffusion of cell is enhanced and
the rotational diffusion is sharply declined respected to
the diffusion behavior in water-like fluid, due to the com-
plicated interaction with the polymers in solution. It
was also found that activity has a fascinating effect on
the viscosity of active suspensions, even sometimes lead-
ing to a “vanishing” viscosity phenomenon in bacterial
suspensions[67]. Even for a single swimmer, there is no
universal answer to whether mobility is enhanced or hin-
dered by fluid elasticity[65]. Despite lot of interesting
progresses made so far, there still remains many open
questions to be answered, even some fundamental ones.
For instance, how would the long time diffusion coeffi-
cient of an active particle depends on its size in a complex
fluid, although being a quite straightforward question,
has not been systematically studied yet.

In the present work, we have addressed such a topic by
investigating the diffusion dynamics of an active Brow-
nian particle (ABP) in polymer solutions, as depicted
schematically in Fig.1. The ABP is modeled by a spher-
ical particle subjected to an active force along the direc-
tion denoted by n, which changes randomly with time.
Three-dimensional Langevin simulations are performed
to calculate the long time diffusion coefficient D of the
ABP as a function of the particle size R, for a variety
of different active force Fa as well as polymer concen-
tration φ. Very interestingly, we find that D shows a
non-monotonic dependence on R if the active force Fa
is large enough: D first increases with the particle size
R, reaches a maximum value at an optimal particle size
Ropt, after which it decreases monotonically. The opti-
mal value Ropt moves to a larger value with the increment
of active force Fa and to a smaller value with increasing
polymer concentration. Further analysis of the time dy-
namics of the mean-square displacement (MSD) indicates
that it is the competition between the persistence motion
of the particle, which is the reason for superdiffusion, and
the cage effect of the polymer solution, which leads to the
subdiffusion behavior, that causes the optimal size effect
for long time diffusion. We have also introduced an ef-
fective viscosity experienced by the ABP by introducing
a phenomenological model describing the ABP moving
in a fluid with effective viscosity ηaeff. Such an effective

Figure 1. The illustration of a ABP immerses in polymer
solution, which the big red particle represents ABP and the
green particle around represents polymer bead.

viscosity is found to be larger than that experienced by a
passive particle, and it shows strong dependency on the
particle size R as well as the active force amplitude Fa.
In addition, we have found that D shows a power law
dependence on the active force Fa, i.e., D ∼ Fαa , for a
fixed particle size. More interestingly, the exponent α
also shows a non-monotonic dependence on the particle
size R: α < 2.0 for small R, then it increases with R
to a maximum value α ∼ 2.5 for an intermediate parti-
cle size, and finally approaches 2.0 in the large size limit.
Our findings demonstrate that interplay between particle
activity and local structure in complex solution may lead
to interesting dynamics of the ABP.

The paper is organized as follows. In section II , we
describe the model and simulation method. Results and
discussion are presented in section III followed by con-
clusion in section IV .

II. SIMULATION METHOD

As shown in Fig.1, we consider a three dimensional
system containing a single ABP of radius R in poly-
mer solution. The polymers are modeled as bead-spring
chains, each consisting of N beads with diameter σ. All
non-bonded (excluded volume) interactions between the
beads are modeled by purely repulsive Weeks-Chandler-
Andersen (WCA) potentials[68]:

UBB(rij) =

{
4ε
[
( σ
rij

)12 − ( σ
rij

)6 + 1
4

]
rij <

6
√

2σ

0 rij ≥ 6
√

2σ

(1)
where rij = |ri − rj | denotes the distance between the
two beads i and j (with position vectors given by ri and
rj , respectively), ε represents strength of the WCA po-
tential. The bond interaction between two nearby beads
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is modeled by the FENE (finite extensible nonlinear elas-
tic) potential[69]:

UFENE(rij) = −1

2
εF r

2
F ln

[
1− (

rij
rF

)2
]

(2)

where εF is the interaction strength and rF = 2.0σ de-
notes the upper bound of rij .

The interactions between the NP and polymer beads
are also described by the truncated WCA potential which
is offset by the interaction range Rev = R− σ/2:

UBN (rjn) = 4ε

[
(

σ

rjn −Rev
)12 − (

σ

rjn −Rev
)6 +

1

4

]
(3)

for Rev < rjn < Rev + 21/6σ, where rjn denotes the dis-
tance between bead j and the nano-particle with position
given by rn. While for rjn ≤ Rev, UBN (rjn) = ∞ and
for rjn ≥ Rev + 21/6σ, UBN (rjn) = 0.

The dynamics of the polymer beads are described by
the following Langevin equations(ignoring hydrodynamic
interactions):

mB
d2rj
dt2

= −γB
drj
dt
−∇rjU

′ +
√

2kBTγBξj(t) (4)

where U ′ =
∑
i 6=j UBB (rij) + UBN (rjn) , mB is the

bead mass and γB is the friction coefficient of the bead
in the background pure solvent, ξj (t) denotes indepen-
dent Gaussian white noises with zero means and unit
variances, i.e., 〈ξj (t)〉 = 0, 〈ξi (t) ξj (t′) = 2δijIδ (t− t′)〉
where I is the unit tensor.

The dynamics of the ABP is given by

mN
d2rn
dt2

= −γN
drn
dt

+ Fan−∇rn

∑
j

UBN (rjn)

+ ξn(t)

(5)
dn

dt
= η (t)× n (6)

where mN is the mass of the ABP and γN is the friction
coefficient of the ABP in the pure solvent. rn is the po-
sition vector of the ABP, rjn = |rj − rn| is the distance
between polymer bead j and the ABP. Fa represents the
amplitude of active force with orientation specified by the
unit vector n. ξn (t) is also a Gaussian white noise vec-
tor with 〈ξn (t) = 0〉 and 〈ξn (t) ξn (t′)〉 = 2DtIδ (t− t′),
where Dt = kBT/γN is the (short time) translational
diffusion coefficient. The stochastic vector η (t) is also
Gaussian distributed with zero mean and has time corre-
lations given by 〈η (t)η (t′)〉 = 2DrIδ (t− t′), where Dr

denotes the rotational diffusion coefficient. Since we con-
sider a spherical particle here, Dt is related to Dr via
Dr = 3Dt/ (2R)

2.

All simulations were performed in a cubic box with a
25σ edge length with periodic boundary conditions in all
directions. A value ε = kBT was used for all particle
interactions, where kB is Boltzmann’s constant and T
temperature. The polymers were modeled using N = 64
beads and the parameters for bond-interactions are kF =
10kBTσ

−2 and rF = 2.0σ. If not otherwise specified,
we considered a system containing 72 polymer chains,
corresponding to a bead-number concentration φ ' 0.3.
For other polymer concentrations, we simply varied the
number of polymer chains. We assumed equal densities
of the ABP and polymer bead, thus mN = 8R3/σ3mB.
Since the friction coefficient γ is proportional to 6πη0R
for a spherical particle of radius R in the pure solvent,
where η0 is the zero-shear viscosity of the pure solvent,
we have γN = (2R/σ) γB. We set mB = 1, kBT = 1,
σ = 1 for dimensionless units and then fixed γB = 1.
The remained variable parameters are the active force
amplitude Fa and the particle radius R. Velocity-Verlet
algorithm was used to simulate the dynamic equations
with a time step ∆t = 0.01. All the reported data below
were obtained after averaging over 20 independent runs
with long enough time.

III. RESULTS AND DISCUSSION

A. Optimal Size for Active Particle Diffusion

In the present paper, we are mainly interested in how
the activity would influence the NP diffusion behavior in
the polymer solution. For comparison, we first investi-
gate the diffusion behavior of a passive particle in the
system set above. The long time diffusion coefficient D
is calculated via

D = lim
t→∞

1

6t
〈∆r2n(t)〉

where 〈∆r2n(t)〉 = 〈|rn(t) − rn(0)|2〉 is the mean square
displacement (MSD) of the NP with rn(t) being the par-
ticle position at time t. As already mentioned in the
introduction section, passive particle diffusion in poly-
mer solutions may strongly deviates the SE relation. In
particular, the diffusion coefficient D can be described
by scaling relations involving the correlation length of
the polymer solution and an effective size. Note that the
system parameters used in our present work may not fit
well the experimental conditions. In Fig.2(a), the dif-
fusion coefficients D of a passive NP as functions of the
radius R for several fixed values of polymer concentration
φ = 0.1, 0.2 and 0.3 are presented. Clearly, D decreases
monotonically with increasing of R as well as the poly-
mer concentration φ as expected. We can introduce an
effective (so-called) nano-viscosity ηeff experienced by the
NP via the standard SE relation D = kBT/6πηeffR. In
the large particle size limit, ηeff would be the macroscopic
zero-shear viscosity ηmacro of the polymer solution. For
small particle size, however, ηeff is much smaller than
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Figure 2. The diffusion coefficient D (a) and the effective
viscosity ηeff (b) of a passive NP with respect to different size
R, under the concentration of polymer φ = 0.1, 0.2 and 0.3,
respectively. Note that ηeff is reduced by the viscosity of pure
solution η0. The solid lines are drawn to guide the eyes.

ηmacro leading to large deviations from the SE relation.
In Fig.2(b), the nano-viscosity as a function of the NP
size R is shown for different concentration φ. ηeff firstly
increases fiercely withR until it finally reaches the macro-
scopic value ηmacro for large particle sizes. It suffices to
reach ηmacro for a NP with size to be just a few times of
that of a polymer bead and NP in a more concentrated
polymer solution can reach ηmacro at a smaller R.

We now turn to the ABP. In Fig.3(a), D as a func-
tion of R at a fixed concentration φ = 0.3 is presented,
for a few different values of propelling force Fa. For a
relatively small active force, e.g., Fa = 20 as shown in
black line in Fig.3(a), D decreases monotonically with
the particle size R, which is similar to the case of a pas-
sive particle as shown in Fig.2. For larger active forces,
however, D shows an interesting non-monotonic depen-
dence on the particle size R, i.e., D first increases with R
until it reaches a maximum valueDmax at an optimal size
Ropt and then decreases again, as demonstrated clearly
in Fig.3(a) for Fa = 40, 60, and 80, respectively. With
increasing Fa, the overall values of D become larger and
the optimal size slightly Ropt shifts to larger values. In
Fig.3(b), dependence of the optimal particle size Ropt on
the active force Fa for a few different polymer concentra-
tions φ are depicted. For a fixed φ, Ropt increases with Fa
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0
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Figure 3. (a) The diffusion coefficient D of ABP as a function
of the particle radius R, for difference active forces Fa = 20,
40, 60 and 80 and fixed φ = 0.3. (b) Dependence of Ropt on
active force Fa for different number concentrations φ = 0.1,
0.2 and 0.3. The solid lines are drawn to guide the eyes.

as already shown in Fig.3(a), while Ropt decreases with
φ if Fa is fixed.

The above findings about the non-monotonic depen-
dence of D on R is quite counterintuitive at the first
glance, particularly in terms of the increasing of D with
R. Generally, one would expect that a larger particle
would diffuse more slowly as the conventional SE rela-
tion would tell. For a passive nano-particle in a poly-
mer solution, although large deviations from the SE re-
lation were observed and a length-scale viscosity should
be used in replace of the macroscopic viscosity ηmacro,
D is always a decreasing function of R as already shown
in Fig.2. Therefore, the increase of D with R as shown
in Fig.3(a) must be related to the active feature of the
ABP. Indeed, if the active force is not large enough, as
shown for Fa = 20 in Fig.3(a), D will still be a decreasing
function of R, being same to the case of a passive NP.
For large active force, the non-monotonic dependence of
D on R suggests the existence of two competitive factors
that influence the ABP diffusion.
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B. Subdiffusion and Superdiffusion

In order to understand in more detail about such non-
trivial dependence of D on R, we further analyze the
short time dynamics of the ABP by investigating the
MSD as a function of time t, and compare it to that
of a passive one.

Fig.4(a) presents the MSDs for passive NPs with ra-
dius R = 1, 2 and 4 for φ = 0.3. The curves share
some common features, namely, ballistic diffusion at very
short time while normal diffusion at very long time, cor-
respond to MSD ∼ t2 and MSD ∼ t respectively. For
a small NP, such as R = 1.0, the dynamics transformers
from ballistic motion to normal diffusion gradually. With
increasing particle size, the NP may experience a “cage
effect” resulting from the surrounding polymer beads and
the MSD shows a sub-diffusion regime at the middle time
scale, wherein MSD ∼ tα with α < 1. This is shown more
clearly in Fig.5(a), where the instantaneous exponent α is
depicted as a function of time corresponding to Fig.4(a).
Obviously, with increasing the NP size, the cage effect is
more remarkable and α decreases to a smaller value in the
intermediate time scale, corresponding to a stronger and
longer subdiffusion behavior. Also note that the curve
for a larger particle always lies below that for a smaller
one in the whole time range.

For an ABP, however, the behavior is quite different,
as shown in Fig.4(b) and Fig.5(b) for Fa = 60. For this
large active force, the diffusion coefficient D shows non-
monotonic dependence on R as demonstrated in last sub-
section. For a small particle with R = 1.0, the behavior
shows no distinct difference from that of a passive one
in terms of both the MSD curve as well as the exponent
α. For a larger particle with R = 2.0, however, we find
that the particle undergoes a much longer superdiffusion
time regime with 1 < α < 2 before it finally reaches
the long time normal diffusion regime. Interestingly, the
exponent α shows an apparent plateau at α ∼ 1.7 as
shown in Fig.5(b) which spans two orders of magnitude
of time. Such a superdiffusion behavior with α slightly
smaller than 2 implicates that the particle moves more
persistently along a direction than randomly along dif-
ferent directions. Note that this persistence of motion
along a direction reflects the very feature of an active
Brownian particle. For an even larger particle R = 4.0,
one can see that the exponent α first decreases sharply to
a value at 0.9 in the short time range, namely indicated
a sub-diffusion behavior, and then increases again to a
high value close to 2 in the intermediate range before it
finally decreases to the normal diffusion value α = 1. The
sharp decrease of α in the short time range should result
from the cage effect of the surrounding polymers. Due
to the large activity of the particle, however, such a cage
effect can not last for a long time and finally the parti-
cle jumps out of this cage leading to the increase of α
in the intermediate time range. In the short time range,
ABP with a smaller size moves faster than a larger one as
shown in Fig.4(b). However, in the long time limit, the
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F a   =   6 0 . 0
φ   =    0 . 3

Figure 4. MSD of an active NP (a) and a passive NP (b) with
size R = 1.0, 2.0, 4.0. The short line indicates the time scaling
at different time scale. For an active NP, the magnitude of
propelling force is fixed at Fa = 20.0.

curve for a middle particle size R = 2 lies above those of
R = 1 and 4, corresponding to a maximum value of long
time diffusion coefficient D for R = 2 compared to those
others two in accordance with Fig.3.

The above analysis suggests that the occurrence of
an optimal particle size for ABP diffusion in polymer
solution is the consequence of two competitive effects.
One is that the cage effect of the surrounding polymers
which would become stronger as the particle size becomes
larger. Without activity, this cage effect would lead to
subdiffusion behavior of a particle and decrease of the
long time diffusion coefficient D. Such a cage effect re-
sults in a length-scale dependent viscosity experienced by
the particle as described in Fig.2(b) which increases with
R. The other is the persistence motion due to the par-
ticle activity which would become longer as the particle
size increases. As well known for an ABP and described
in the model section, the persistence time τp for an iso-
lated ABP is given by (2Dr)

−1, where Dr scales as R−2
for the ABP as shown in section II. Therefore, the ABP
would move along the propelled direction longer as the
particle size gets larger, leading to superdiffusive behav-
ior and thus accelerating the long time diffusion. When
the particle size is small, e.g. R = 1, both cage and per-
sistence effects are not significant and the particle trans-
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Figure 5. The differential of MSD of of a passive NP (a) and
an ABP (b) with size R = 1.0, 2.0 and 4.0 in the polymer
solution with concentration φ = 0.3 . α is just the slope of
curve in Fig.4 or the scaling exponent at different time scale.
For an ABP depicted in (b) , the magnitude of propelling
force is fixed at Fa = 60.0.

fers gradually from ballistic to diffusion motion for both
passive and active particles. For a relatively larger par-
ticle, the persistence effect would dominate, thus leading
to increase of D. If the particle size is too large, however,
the cage effect would dominate and the diffusion coeffi-
cient would decrease again. Besides, increasing the mag-
nitude of Fa, the persistence motion would be enhanced.
Clearly, this enhancement will be more apparent for a
bigger ABP with longer τp. Therefore, the stronger Fa
promotes Ropt to a bigger value as shown in Fig.3(b).

C. Effective Viscosity ηeff

As discussed in Section 3.1, a passive particle would
experience an effective viscosity ηeff that is dependent on
its size R, which could be much smaller than the macro-
scopic zero-shear viscosity ηmacro. For a passive particle,
this effective viscosity is determined according to the SE
relation, D = kBT/ (6πηeffR). It is thus also interesting
for us to ask the question what is the effective viscosity
the ABP experiences in the polymer solution.

At first thought, one may also just use the SE re-
lation to obtain this effective viscosity ηeff, i.e., ηeff =

kBT/ (6πDR) where D is the long time translational dif-
fusion coefficient obtained by simulation above. Never-
theless, this may not be appropriate for an active parti-
cle, since we must take into account the particle activity
which would lead to an active contribution to D. As al-
ready discussed in the model section, for an isolated ABP
of radius R in a simple fluid with friction coefficient γ, the
dynamics can be described by the following overdamped
Langevin equation (LE),

dr

dt
= γ−1Fan +

√
2Dtξ (t) (7)

dn

dt
= ζ (t)× n

where ξ (t) and ζ (t) are both Gaussian white noise vec-
tors with zero mean and unit(tensor) variance, Dt =
kBT/γ and Dr = 3Dt/4R

2. In a coarse-grained time
scale, it was shown that the self-propulsion force for ABP
can be mapped into a colored noise[70], i.e.,

〈n (t)n (t′)〉 ' 1

3
e−|t−t

′|/τp1

where 1 denotes the unit tensor and τp = (2Dr)
−1 de-

notes the persistence time of the self-propulsion force.
With this approximation, one can obtain the mean-
square displacement (MSD) of the ABP as follows,

〈
δr2 (t)

〉
=

2F 2
a τp
γ2

[
t+ τp

(
e−t/τp − 1

)]
+ 6Dtt

In the long time limit, this gives the diffusion coefficient

D = lim
t→∞

1

6

〈
δr2 (t)

〉
t

= Dt +
F 2
a τp

3γ2

If we use the fact that τp = (2Dr)
−1 and Dr = 3Dt/4R

2,
then we have

D =
kBT

γ
+

2F 2
aR

2

9kBTγ
=

1

6πη0R

(
kBT +

2F 2
aR

2

9kBT

)
(8)

where we have used the Stokes relation γ = 6πη0R in
the simple fluid with η0 the zero-shear viscosity. This
analysis shows how the long time diffusion coefficient D
depends on the viscosity η0 of a simple fluid. The first
term is surely the SE relation, while the second term
denotes the contribution from particle activity. For small
T or large Fa, the second active term would dominate and
the relation betweenD and η0 is totally different from the
SE relation.

Actually, eqn (8) provides us a scheme to introduce
an effective viscosity experienced by the ABP in the sur-
rounding solution. We consider now that the ABP is
moving in a pure fluid with effective viscosity ηeff, whose
dynamics is also described by eqn (7), but with γ re-
placed by an effective γaeff = 6πηaeffR (the superscript ‘a’
stands for ‘active’). The (short time) translational dif-
fusion constant Dt is determined then by γaeff through
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fluctuation-dissipation theorem Dt = kBT/γ
a
eff, which in

turn gives Dr. Clearly, the long time diffusion coefficient
D would also be given by eqn (8) with η0 replaced by
ηaeff, i.e.,

D =
1

6πηaeffR

(
kBT +

2F 2
aR

2

9kBT

)
(9)

Therefore, the effective viscosity of the polymer solution
experienced by the ABP could be defined as

ηaeff =
1

6πDR

(
kBT +

2F 2
aR

2

9kBT

)
(10)

In Fig.6(a), we show the effective viscosity ηaeff cal-
culated by eqn (10) as functions of the particle size R
for different concentrations φ = 0.1, 0.2 and 0.3, where
the values of D are obtained by simulations as shown
in Fig.3. The amplitude of the active force is Fa = 20.
Also shown are the values for a passive particle, which
were already presented in Fig.2(b). As can be seen, ηaeff
increases with R as expected, similar to the case of ηeff
for a passive particle. Interestingly, ηaeff is much larger
than ηeff as shown in Fig.6(a), indicating that the active
particle seems to move in a “more viscous” fluid than the
passive one. Nevertheless, one should be careful to draw
the conclusion that particle activity induces thickening of
the polymer solution, since ηaeff here is defined via eqn (6).
As discussed above, this equation is obtained by model-
ing the motion of ABP in polymer solution as if it were
in an viscous fluid with ηaeff, while keeping fluctuation-
dissipation theorem and all other features of ABP un-
changed. Indeed, the effective viscosity experienced by
an ABP characterize more the local environment sur-
rounding the particle, and it is not identical to the zero-
shear macro-viscosity of the solution. Our arguments
here indicate that the ABP does feel a much more vis-
coelastic local environment than a passive one, otherwise
it would diffuse much faster. In Fig.6(b), the effective
viscosity ηaeff as a function of active force amplitude Fa
for different particle size R are presented. If the particle
size is relatively small, say R = 1.0, ηaeff is a monotonic
increasing function of Fa, implying that a more active
particle feels a more viscoelastic local fluid. For large
particle sizes, however, more interesting features can be
observed: ηaeff shows a non-monotonic dependence on Fa.
For R = 3.0, for instance, ηaeff first increases sharply to a
very large value with increment of Fa and then decreases
relatively slowly to a moderate value when Fa is large.
Since ηaeff is calculated via definition in our present work,
the mechanism behind these interesting observations is
still open to us and may deserve more detailed study in
future works.

D. Scaling of D with active force Fa

Another feature shown in Fig.6(b) is that ηaeff becomes
not sensitive to Fa if Fa is large enough. Now considering

0 1 2 3 4 5
1

1 0

1 0 0

1 0 0 0

( a )

 φ =  0 . 1 ,  A c t i v e
 φ =  0 . 2 ,  A c t i v e
 φ =  0 . 3 ,  A c t i v e
 φ =  0 . 1 ,  P a s s i v e
 φ =  0 . 2 ,  P a s s i v e
 φ =  0 . 3 ,  P a s s i v e

η eff
/η

0

R

0 2 0 4 0 6 0 8 0

1 0

1 0 0

( b )
η eff

/η
0

F a  

 R   =   1 . 0
 R   =   2 . 0
 R   =   3 . 0

φ  =   0 . 3

Figure 6. Effective viscosity ηeff as a function of (a) particle
size R for different values of concentration φ = 0.1, 0.2 and
0.3 with fixed active force Fa = 20, and (b) active force Fa

for different particle size R = 1.0, 2.0 and 3.0 with fixed con-
centration φ = 0.3. Note that ηeff is reduced by the viscosity
of pure solution η0

eqn (9) for the long time diffusion constant D, one can
see that the second term would dominate if Fa is large.
Therefore, D would scale approximately as F 2

a in the
range of large Fa. Motivated by this observation, we
have also investigated quantitatively how D depends on
Fa in the whole range.

Surprisingly, we find that D shows a rather good
power-law scaling with Fa, i.e., D ∼ Fαa , as shown in
Fig.7(a) for different particle sizes and fixed concentra-
tion. For R = 1.0, 2.0 and 3.0, the scaling exponent α
reads approximately 1.40, 1.99 and 2.31, respectively. In
Fig.7(b), the dependence of α exponent on particle size R
is depicted, where one observes a rather interesting non-
monotonic variation: α increases from 1.4 at R = 1.0 to
a maximum value α ' 2.4 at R = 5.0 and then decreases
again to about 2.2 at R = 7.0 which is the largest particle
size considered in the present work (to get a reliable data
at R >5.0 that avoiding the finite-size effects, we have to
extend the system to l = 30.0σ0 consisting of totally 126
polymers). In the limit of very large particle size, one
would imagine that the polymer solution can be viewed
as a simple fluid, and the exponent would become 2.0
again.

In the current stage, we are yet not able to understand
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the power-law scaling between D and the active force Fa.
eqn (9) would simply give D ∼ F 2

aR/η
a
eff when the active

term dominates, which seems to suggest an exponent to
be 2.0 if ηaeff is not dependent on Fa. Nevertheless, eqn
(9) is just a definition of ηaeff which is obtained from the
simulated value of D, and the calculated values of ηaeff do
depend on Fa as already shown in Fig. 6. Therefore, to
understand the power-law dependence of D on Fa, one
has to derive a separate theory for the diffusion of ABP
in polymer solutions, which is important but beyond the
scope of current study.

Here in the present paper, we would like to take a
qualitative description to highlight the active effects. Ac-
cording to the MCT framework to study the diffusion
of a passive NP in polymer solution, the long time dif-
fusion coefficient can be decomposed into two different
parts, i.e., D = Dmicro + Dhydro, where Dhydro is the
conventional SE term, while Dmicro is due to the micro-
scopic level interactions between the particle and polymer
molecules. The friction related to Dmicro results from di-
rect binary collisions between the NP and the polymer
beads and density fluctuation of the solution. For large
particles in entangled solutions with strong topological
constraints, however, one should take into account an-
other possible mechanism for diffusion, namely, the hop-
ping process[42], wherein the particle can diffuse by over-
coming barrier between neighboring confinement cells.
Now we take the particle activity into account. Clearly,
enhancement of particle activity would lead to more fre-
quent direct collisions between the particle and polymer
beads, thus leading to a larger effective viscosity com-
pare to that experienced by a passive particle. Since we
only consider a single particle here, the density fluctua-
tion contribution to the friction would not change much
with the variation of the particle activity. Nevertheless,
particle activity would facilitate the hopping process if
the particle is large enough, which would result in a rel-
atively smaller effective viscosity. Therefore, for a small
particle such as R = 1.0, the effective viscosity experi-
enced by an ABP would increase with the amplitude Fa,
since hopping diffusion is not relevant for small particles.
In this case, the scaling exponent α would be less than
2.0 since ηeff scale as Fλa with λ > 0. For a large particle
such as R = 3.0, both binary collisions and hopping pro-
cesses will be enhanced by the particle activity. These
two effects competes with each other, leading to the non-
monotonic dependence of ηaeff with Fa as demonstrated in
Fig.6(b). In the small Fa range, enhanced binary colli-
sion dominates leading to an sharp increase of ηaeff, while
for large Fa, enhanced hopping dominates which results
in decrease of ηaeff. In this case, the exponent α should
be larger than 2.0 in the large Fa range. For a particle of
proper size, the positive and negative effects of particle
activity may cancel, which leading to weak dependence of
ηaeff on Fa and the exponent α would be approximately
2.0. For a very large particle size, however, the effect
that activity enhances hopping may become weaker than
that for a relatively smaller particle, such that α would

0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8

- 1 . 6

- 0 . 8

0 . 0

0 . 8

1 . 6

���

�����������α�����
��� �����
�����������α��������� ����

�����	�����α�����	��� �����

Lo
g 10

D

������

1 2 3 4 5 6 7
1 . 4
1 . 6
1 . 8
2 . 0
2 . 2
2 . 4
2 . 6

α
R( b )

Figure 7. (a)dependence of diffusion coefficient D on pro-
pelling force Fa in a scaling form. The radius of NP are
fixed at R = 1.0, 2.0 and 3.0, represented by black, red and
blue dots, respectively. The solid lines are scaling fits to the
data(b)The scaling factor of the function between D and Fa

in a fixed size of NP. The solid line is drawn to guide eyes.

decrease with R. All these features are consistent with
the observations in Fig.7(b).

IV. CONCLUSION

In conclusion, we have used Langevin Dynamic simu-
lation method to investigate the diffusion behavior of an
ABP in semidilute polymer solution. Extensive simula-
tions indicate that the activity can markedly enhance the
diffusion of NP in this complex environment, respected
to a passive NP. Interestingly, we have found that the
dependence of long time diffusion coefficient D on the
particle radius R is non-monotonic and D reaches a max-
imum value at a certain optimal value Ropt, if exerted a
propelling force Fa strong enough. Consequently, the NP
with a bigger size would get a higher D than a relatively
smaller one, which is greatly against the common sense
that a larger particle usually diffuse slower for a passive
NP.

The subsequent analysis from the short time dynam-
ics reveals that this abnormal phenomenon is due to the
two fold impacts of ABP on diffusion. In detail, the in-
creasing size of ABP gains more obstruction from the
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polymer beads that leads to more apparent cage effects,
which finally slows down the diffusion. However, on the
other side, a bigger size could usually make the rota-
tion tougher and result in the longer rotational relax-
ation time τp. This would lead to longer persistence mo-
tion along a direction and cause superdiffusion behavior
which would cover the subdiffusion from the cage effect,
and finally facilitates the diffusion. It is the competition
between the persistence motion and the cage effect that
leads to the non-monotonic dependence of the long time
diffusion D on the particle size R.

We have also introduced a phenomenological model to
describe the ABP dynamics, assuming that the ABP is
moving in a simple viscous fluid with effective viscosity
ηaeff. We find that this effective viscosity shows strongly
dependency on the particle size R as well as active force
Fa. Interestingly, this effective viscosity experienced by
the ABP is larger than that experience by a passive nano-
particle of the same size, which means that the ABP feels
a much more viscoelastic local environment, otherwise it
would diffuse much faster. For an ABP of small size, ηaeff
increases monotonically with Fa, while for a large ABP,
ηaeff can even show a non-monotonic dependence on Fa
bypassing a maximum.

A more striking finding is thatD shows a power-scaling
with the active force Fa in an excellent manner. The ex-
ponent α is not equal to the value 2.0 that observed in
a simple liquid, but non-monotonically depends on R. It

increases from a value quite smaller than 2.0 to a maxi-
mum value at about 2.5, and then decreases again to 2.0
if R is large enough. Although a rigorous theory for the
diffusion behavior of ABP in polymer solutions is not
available at the current stage, we have tried to under-
stand the effect of activity on particle diffusion through
its influence on the binary collisions between the particle
and polymer beads and on the hopping process of a large
particle out of confinement cells.

Our results indicate that activity combined with the
inner structure of the polymer solution indeed largely
affects the diffusion dynamics of an active particle, both
short time and long time, which is greatly different to a
passive one. We believe that our work can open more
perspectives on the study of active matter in complex
solutions and may shed some new lights on understanding
such an important process in real biological systems.
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