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Understanding stochastic thermodynamics of active matter system has been an important topic
in very recent years. However, thermodynamic uncertainty relation (TUR), a general inequality
describing how the precision of an arbitrary observable current is constraint by dissipation cost, has
not been established yet. Here, we address such an issue in a general model of active particle system
by introducing an effective Fokker-Planck equation, which allows us to identify a generalized total
entropy production along a stochastic trajectory, wherein an activity and configuration dependent
diffusion coefficient comes into play with an important role. In this framework, we are able to derive
the entropy bound as well as TUR associated with any generalized current in the system. Finally,
we demonstrate the validity of our theoretical results by direct numerical simulations.

PACS numbers: 05.40.-a, 05.70.Ln, 02.50.Ey

Over the past two decades, stochastic thermodynamics
has gained extensive attention for describing nonequilib-
rium thermodynamics of mesoscopic systems [1–5]. Due
to the small size of such system, fluctuations are signifi-
cant, so that thermodynamic quantities become stochas-
tic variables. This observation allows ones to generalize
laws of thermodynamics on single trajectory level [6–8],
which leads to the study of stochastic energetics and fluc-
tuation theorems (FT). In particular, an important uni-
versal inequality between the fluctuations in current and
thermodynamic cost, the thermodynamic uncertainty re-
lation (TUR), has been discovered [9–21]. Specifically,
TURs constrain the Fano factor of an arbitrary observ-
able current by the total entropy production, indicating
that the output in the process of thermodynamic dis-
sipation will inevitably generate energy costs, and pro-
vide an alternative method to obtain a lower bound on
the entropy production. Moreover, TURs make an ir-
replaceable contribution to our understanding of non-
equilibrium phenomena (e.g., work extraction under mea-
surement and feedback [18, 19, 22] and biological clocks
[23]) which can provide more detailed information about
the system than the second law. TUR was first proposed
for biomolecular processes by Barato and Seifert [9] and
then extended to many other situations, such as diffusion
process [11, 12], finite-time generalization [11, 12, 16],
periodically driven systems [14, 20], biological oscillators
[17, 21, 24], time-delayed systems [25], etc. Very recently,
the frontiers of stochastic thermodynamics have shifted
to the study of active particle systems. The study of
active particles is very helpful in understanding the be-
haviors of many biological systems [26–34] and of remark-
able potentials in the design of synthetic colloidal systems
with controllable properties. So far, the laws of thermo-
dynamics, the definition of related entropy production
or the construction of fluctuation theorem in active par-
ticle systems [35–46] has been discussed in a few stud-
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ies. However, the ability of active particle systems com-
pletely altering the dynamical behaviors of interacting
motile particles by consuming energy supplied internally
or externally proposes a great challenge for establishing
TUR in such systems.

In this letter, we address such an issue in the general
AOU-T model [47] for active particles systems, wherein
the self-propulsion force is realized by a colored noise
described by the Ornstein-Uhlenbeck process , and ther-
mal noise is present. Our starting point is an effective
Fokker-Planck equation (FPE) governing the distribution
function of particle positions, from which we can iden-
tify the trajectory-based total entropy production Sg,
wherein a configuration dependent effective diffusitivity
plays an important role. The validity of FPE insures that
〈Ṡg〉 ≥ 0 which can be interpretated as the second law
in this active system. In addition, for any nonzero gener-
alized current Θ, a stronger entropic bound for 〈Ṡg〉 can
be obtained in associated with 〈Θ〉. Finally, a TUR be-
tween the variance of current V ar[Θ] and total entropy
production ∆Sg along a trajectory is well established as

V ar[Θ]/ 〈Θ〉2 ≥ 2/ 〈∆Sg〉. We validate these relations in
a simple system with periodic potential, demonstrating
that incorporation of activity into Sg is crucial to setup
the right boundaries.

Model : We consider a homogeneous system of
N active particles with spatial coordinate x(t) =
{x1(t), . . . , xN (t)}T . The particles move in a viscous
medium and hydrodynamic interactions are neglected.
The system dynamics is described by the following over-
damped equation,

ẋ(t) = µF (x, t) + ξ(t) + η(t). (1)

Here F is the total force, µ is the mobility, ξ(t) is a Gaus-
sian distributed thermal noise with zero mean and time
correlation 〈ξi(t)ξj(s)〉 = 2Dtδijδ(t − s). The transla-
tional diffusion coefficient Dt satisfies Dt = µkBT with
kB the Boltzmann constant (which is set to be 1 through-
out the paper) and T the ambient temperature. The
term η(t) represents the OU active components with zero
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mean and time correlation

〈ηi(t)ηj(s)〉 =
v2

0

3
e−|t−s|/τpδij , (2)

wherein τp is the persistence time and v0 denotes the
self-propulsion speed [29, 30, 33, 48–50]. In the limit
τp → 0, the time correlation becomes 〈ηi(t)ηj(s)〉 =
2Daδijδ(t− s) with Da = v2

0τp/3, i.e, the system reduces
to an equilibrium one with effective diffusion coefficient
Dt +Da.

Effective FPE : Following the scheme proposed by
Seifert [2], one can define the entropy production of
the system along a given stochastic trajectory χ(t) =

{x(t)|t=tft=0 } as Ssys(t) = − lnP (x, t), where P (x, t) is
the configurational probability distribution for the state
variable to take the value x at time t. Since the AOU-T
model (Eq.(1)) is non-Markovian, it is not possible to ob-
tain an exact FPE for P (x, t). To proceed, we adopt the
Fox method [47, 51, 52] to get an effective FPE which
can best approximate the process of physical interests
and make accurate predictions [53–55] (see Appendix A
for details), which reads

∂tP (x, t) = −
N∑
i=1

∂xi
Ji(x, t). (3)

The probability current is given by

Ji(x, t) = Di(x)βF effi (x)P (x, t)−Di(x)∂xi
P (x, t), (4)

where β = 1/T , Di(x) denotes a configuration-dependent
effective diffusion coefficient given by

Di(x) = Dt +Da [1− βτ∂xi
Fi (x)]

−1
(5)

with τ = τpDt/d
2 a dimensionless persistence time.

F effi (x) = D−1
i (x)[DtFi(x)−T∂xi

Di(x)] gives the effec-
tive force exerting on the i-th particle. For a passive sys-

tem in the absence of η(t), Di (x) = Dt and F effi (x) =
Fi (x), while in the limit τp → 0, Di (x) = Dt +Da and

F effi (x) = DtFi (x) /Da. Note that the Fox approxi-
mation is valid for 1 − βτ∂iFi (x) > 0 such that Di (x)
is positive in the entire area. This condition may break
down when phase separation takes place in the system.
Nevertheless, for the study of stochastic thermodynamics
in the present work, one usually considers a nonequilib-
rium steady state where phase separation is not going to
happen.

The Second Law : One notes that Eq.(3) corresponds
to an equivalent Langevin equation. According to Seki-
moto’s suggestion [1], we can define generalized heat dis-
sipation in the medium along a stochastic path χ(t) as

Σ[χ] =

∫ tf

0

F eff (x)T ◦ ẋdt, (6)

where “◦” stands for the Stratonovich product and the
superscript ‘T’ means transposition. Since the effec-
tive force F eff (x) is the total force done on the sys-
tem including the effect of activity, the generalized heat

dissipation will recover to the normal heat dissipation∫ tf
0
F (x)T◦ẋdt in passive systems [2]. The difference be-

tween these two types of heat dissipations is the activity-
induced extra entropy flux.

According to the Eq.(3), the change rate of the system
entropy is

Ṡsys (t) = −∂t lnP (x, t)

= − 1

P (x, t)
[
∂P (x, t)

∂t
+

N∑
i=1

∂xiP (x, t)|x(t)ẋi]

= − 1

P (x, t)
[
∂P (x, t)

∂t
−

N∑
i=1

Ji(x, t)

Di(x)
|x(t)ẋi]

− βF eff (x)Tẋ. (7)

Clearly, the final term in the third equality is re-
lated to the generalized heat dissipation in Eq.(6), i.e.,

βF eff (x)Tẋ = Σ̇/T . Then, Eq.(7) can be rewritten as a
balance equation for the trajectory-dependent total en-
tropy production

Ṡg (t) = −∂tP (x, t)

P (x, t)
|x(t) −

N∑
i=1

Ji(x, t)

Di(x)P (x, t)
|x(t)ẋi. (8)

By averaging over the path ensemble, we can obtain the
following equation

〈Ṡg (t)〉 =

N∑
i=1

∫
Ji(x, t)

2

Di(x)P (x, t)
dx ≥ 0, (9)

where
∫
dx∂tP (x, t) = 0 and 〈ẋi|x, t〉 = Ji(x, t)/P (x, t)

have been used. Eq.(9) can be viewed as the second law of
the active system, stating that the averaged total entropy
production never decreases. All the information about
particle activity is contained in Di (x) and Ji (x).

Entropy bound on currents: The second law (Eq.(9))
ensures that the averaged total entropy production must
increase with time. The equality holds if all the cur-
rents Ji (x) vanish, i.e., the system can be mapped to
an equivalent equilibrium system. If the system is in a
steady state with nonvanishing current, which is often
the case for the active particle system considered here,
there could be stronger bounds on Ṡg.

To see this, we consider a generalized current Θ[χ]
along a single trajectory χ defined as [25, 56]

Θ[χ] =

∫
Λ(x)T ◦ ẋdt, (10)

where Λ(x) = (Λ1 (x) ,Λ2 (x) , . . . ,ΛN (x)) is a projec-
tion operator. Using different projection operator, one
can get different kinds of current, such as the moving
distance of particles or the entropy production in a time
interval. The change rate of Θ can be written as

〈Θ̇〉 =

∫
Λ(x)TJ(x, t)dx. (11)
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It can be proved by using Cauchy-Bunyakovsky-Schwarz
inequality in a few lines (see Appendix B for details) that

〈Ṡg〉 ≥ 〈Θ̇〉2/|Ψ|, (12)

where Ψ(x) is a vector with Ψi(x) = Di(x)Λ2
i (x), and

| · | represents the norm of the vector.
Eq. (12) constitutes the first main result in our pa-

per. This conclusion worthy of attention implies that the
change rate of the generalized total entropy production is
bounded by every contribution to a generalized current
in the system. Namely, any heat current is accompa-
nied by a minimal rate of entropy production, offering a
non-zero bound on entropy production rate which reveals
more essential information of the system than the second
law. Note that activity affects both sides of the equation,
mainly through the configuration and activity dependent
diffusivity Di (x).

Thermodynamic Uncertainty Relation(TUR): We now
turn to investigate the TUR associated with the Fano fac-
tor of the current F (Θ) = V ar[Θ]/ 〈Θ〉2 in the nonequi-
librium steady state, where V ar[Θ] stands for the vari-
ance of the current Θ. To this end, we consider a stochas-
tic trajectory χ in time interval (0, tf ) and introduce the
scaled cumulant generating function

g(k,Θ) = ln〈ekΘ[χ]〉, (13)

where k is a parameter. The expansion of g (k,Θ) in k
contains terms with V ar [Θ] and Θ, such that the inves-
tigation of this generating function can help us to get the
bound on F (Θ). Technically, one can introduce a supple-

mental force f(x) = αk Jss(x)
P ss(x) into the system, where α is

a variational parameter, so that an inequality of g(k,Θ)
can be obtained as (see Appendix C for details)

g(k,Θ) ≥ k〈
∫ tf

0

Θ̇dt〉f − 1

4
〈
∫ tf

0

fD−1fdt〉f

= (1 + αk)k〈Θ〉 − 1

4
(αk) 2〈∆Sg〉 (14)

where 〈·〉f denotes the average with respect to the solu-
tion of the modified system and

〈Θ〉 = tf

∫
Λ(x)TJss(x)dx (15)

is the average current along the trajectory.
In particular, choosing α = 2〈Θ〉/〈∆Sg〉 which makes

the right hand side of above inequality the largest, one
has

g(k,Θ) ≥ k(〈Θ〉) +
k2〈Θ〉2

〈∆Sg〉
. (16)

Expanding the cumulant generating function up to sec-
ond order in k, one has g(k,Θ) = k 〈Θ〉+ 1

2V ar [Θ] k2 +

O
(
k3
)
. Consequently, taking the limit k → 0, one can

obtain

V ar[Θ]

〈Θ〉2
≥ 2

〈∆Sg〉
(17)

which serves as the TUR for current in the active system.
Eq.(17) serves as the second main result of the present
paper. The effect of particle activity is reflected in the
activity-dependent total entropy production 〈∆Sg〉.

In a steady state, for numerical purpose, the change
of system entropy 〈∆Ssys〉 is negligible compared to
the total entropy change and thus 〈∆Sg〉 ' 〈Σ〉 /T =

T−1
〈∫ tf

0
F eff (x)

T ◦ ẋdt
〉

. To highlight the effect of

activity, it would be instructive to consider a compar-
ative case, where one can treat the active system as
an equilibrium system with a high effective temperature
Teff = µ−1 (Dt +Da), corresponding to the case in the
limit τp → 0. Now the total entropy production is given

by 〈∆S(1)
g 〉 = T−1

eff

〈∫ tf
0
F (x)

T ◦ ẋdt
〉

. To validate our

main results Eq.(12) and Eq.(17), we can compare the

bounds given by 〈∆Sg〉 to those given by 〈∆S(1)
g 〉 , as

will be done in following parts.
Numerical results and discussion: In this part, we

would like to check the validity of the entropy bounds
as well as TUR by direct numerical simulations. For
simplicity but without lose of generality, we consider
an active particle in a one-dimensional periodic poten-
tial subjected to a time-dependent external field, i.e.,
F (x, t) = a cosωx+ sin t with a a constant. The system
is defined on a segment [0, 1] with periodic boundary
conditions. The configuration dependent diffusion coef-
ficient is given by D(x) = Dt + Da (1 + βτaω sinωx)

−1

and the effective force is given by

F eff (x) =
Dt

D(x)
F (x) +

aTω2βτDa cosωx

D(x)(1 + βτaω sinωx)2
. (18)

For illustration, we set Dt = 0.05, a = 8 , ω = π/2
and numerically solve Eq.(1) with time step ∆t = 0.001
which is small enough. We collect 108 realizations to
get the total entropy production and the moments of
the current within time interval t ∈ (0, 1). Three differ-
ent types of currents are considered, namely Λ1 (x) = 1,
Λ2 (x) = x and Λ3 (x) = sinx. Fig.1(a) shows the de-
pendences of E (Θ) = 〈Θ〉2/V ar[Θ] on time interval for
persistence time τp = 0.1(The results for other values
of τp are qualitatively the same). Also shown are the
total entropy production 〈∆Sg〉, and the one for compar-

ison, saying 〈∆S(1)
g 〉. For the TUR to hold, one must

have E [Θ] ≤ 〈∆Sg〉/2. Indeed, one can see that all
the data for E [Θ] lie below 〈∆Sg〉/2, demonstrating the
validity of our TUR Eq.(17). Nevertheless, if one use

〈∆S(1)
g 〉 instead of 〈∆Sg〉, obvious violation presents in

the short observation time range. For the same considera-
tion, we also do simulations to test and verify the entropic
bounds on current. As shown in Fig.1(b), for different
choices of τp, both the change rate of the generalized en-

tropy production 〈Ṡg〉 and the bound of currents given by

〈Θ̇〉2/〈D(x)Λ2(x)〉 vary monotonically. One can readily

observe that 〈Ṡg〉 is above all the bounds for all the τps
considered, demonstrating the validity given by Eq.(12).

Nevertheless, if one uses 〈Ṡ(1)
g 〉 instead of 〈Ṡg〉, i.e., us-

ing the effective temperature scenario, it will be clearly
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FIG. 1: Validation of our two key results, (a) the thermody-
namic uncertainty relation and (b) entropic bounds on three
different kinds of currents Θi(i = 1, 2, 3) whose projection
operators are 1, x and sin(x) (x is the particle position), re-
spectively. In (a), 〈∆Sg〉/2 is the generalized total entropy
change, E(Θi) = 〈Θi〉2/V ar[Θi](i = 1, 2, 3) measures the un-
certainty of total entropy production, t is the sampling time t,
and τp is the persistent time. An alternative entropy produc-

tion 〈∆S(1)
g 〉/2 by treating the active system as an equilibrium

system with a high effective temperature is also presented for
comparison. In (b), 〈Ṡg〉 is the change rate of the generalized
total entropy production, Bis are entropic bounds on Θis,

respectively, and 〈Ṡ(1)
g 〉 is the change rate of the alternative

entropy production in the same effective equilibrium system
as in (a).

smaller than the current bounds for Λ1 (x) if τp is larger
than some value as shown in Fig.1(b), thus violating that
bound condition for entropy production. Therefore, the
simulation results clearly vindicate that our method to
treat active particle systems correctly establishes the en-
tropy bound and TUR in a large range of persistence

time τp.

Actually, in general, active particle constitutes a new
class of condensed matter systems that are inherently
out of equilibrium, thus brings complexity to establish
a theoretical framework for stochastic thermodynamics.
Here, when studying the TUR, we focus on the evolution
of the thermodynamic quantities for the system over a fi-
nite observation time interval. Under such a premise, the
displacement of the active particles can be assimilated to
a Markov process to some extent by making a time-local
approximation. As presented in many works, mapping
an active system to a passive equilibrium system with
modified interaction potential and an approximate FPE
has been successful in describing its large scale physics
and dynamical properties [47, 53–55]. Here, we show
that such a method can produce valuable insight into the
stochastic thermodynamics of active particle systems.

Conclusion: In this letter, we proposed a theoretical
framework to establish stochastic thermodynamics for a
general active particle system based on an effective FPE
obtained via Fox approximation. Special attentions were
paid on the TUR and entropic bounds on currents. By
mapping the system to an equivalent Langevin equation,
one can identify a generalized trajectory-dependent en-
tropy, wherein particle activity comes into play by a
configuration and activity-dependent diffusion coefficient
and a many-body effective interaction force. Within this
framework, we are able to derive a bound for the change
rate of the total entropy production associated with any
generalized current in the system. In addition, the TUR
for the current in the steady state can be established suc-
cessfully. Direct numerical simulations demonstrate the
validity of our theoretical results with varying system pa-
rameters such as the persistence time of the active force.
In addition, we show that simply mapping the system to
an equivalent one with an effective temperature does not
capture the right bounds. We believe that our work can
provide energetic insights and open new perspectives on
stochastic thermodynamics in active systems.
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G. Volpe, and G. Volpe, Rev. Mod. Phys. 88, 045006
(2016).

[29] Y. Fily and M. C. Marchetti, Phys. Rev. Lett 108,
235702 (2012).

[30] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen,
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