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Abstract

Entanglement of spatial and/or temporal scales proposes great challenges to

unravel mechanisms of complex chemical systems for their rational design.

Multiscale modeling and calculations combining theoretical methods and

algorithms at different scales provide powerful tools to address such prob-

lems. It has been conventionally known that energetics such as the reaction

barrier plays an essential role in complex systems involving chemical reac-

tions, in this review, we focus on recent progress of mechanisms beyond

energetics revealed by multiscale kinetic modeling to emphasize the variety

of underlying mechanism for such systems, and highlights the importance

of kinetics in multiscale modeling and calculations for practical applica-

tions. Several interesting mechanisms as well as the corresponding concepts

of multiscale kinetic modeling are described in detail, ranging from effects

of geometry, micro-orientation, or reactant flux on 2D material epitaxial

growth, to diffusion, directional mass transfer, or confinement enhanced

electrocatalysis on nanocatalysts.

This article is categorized under:

Theoretical and Physical Chemistry > Reaction Dynamics and Kinetics

KEYWORD S

2D-material growth, kinetic modeling, mechanism, multiscale simulation, nanocatalysis

1 | INTRODUCTION

For real world chemical systems, their behaviors may involve both the internal properties and external processes in
surroundings at different spatial and/or temporal scales. The complexity of entangled scales ranging from sub-
atomic level to mesoscopic even macroscopic level proposes great challenges to uncover the underlying mechanism
of such systems, which further hinders rational design of man-made chemical systems with desired functions. For
decades, researchers have made great efforts in developing multiscale calculation and modeling methods to tackle
such challenges. Successful multiscale kinetic modeling has led to impressive deep insights in many complex chemi-
cal systems such as molecular self-assembly and polymer aggregation where weak interactions between molecules
dominate.1-3

For chemical systems where chemical reactions are coupled with kinetics, nevertheless, the importance of kinetics
has not been fully appreciated, even though it is well known that the overall performance of a chemical reaction is con-
trolled by both the energetics and kinetics. This may be due to a conventional common sense that kinetics such as mass
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transfer can always be easily accelerated enough in comparison with lowering the energetic reaction barrier, so that the
coupling between reactions and other involved kinetic processes can be decoupled. However, such approximation may
not be applicable when the characteristic size of the chemical system is comparable with that for the kinetics. For exam-
ple, when electrocatalysts downsize to nanoscale, mass transfer deviates from the prediction by conventional theo-
ries4-11 and should also be an elementary factor for performance of electrocatalysis at nanoscale.12-15 Besides of
nanocatalytic systems, another important type of chemical systems where kinetics may play an essential role is the epi-
taxial growth of 2D-materials on surfaces by chemical vapor decomposition.16 As chemical resources are continuously
supplied, the growth process is intrinsically out of equilibrium, making the grown materials also depending on the
detailed growth pathways not only on the thermodynamic stability. The complicated coupling between reaction net-
work and kinetics proposes great challenges for theoretical understanding of such chemical systems. As a result, even
though 2D-material growth and nanocatalysis are two of the most important chemical systems attracting explosive
researching attentions, so far, most of the theoretical understanding for such complex chemical systems only focus on
the energetics by first principles calculations. It thus demands multiscale modeling and calculation for these complex
chemical systems to investigate reactions coupled with kinetics.

In recent years, fortunately, several interesting mechanisms other than energetics have been revealed by esta-
blishing multiscale models and calculation methods to be able to include directly the kinetics. In this review, we first
provide a brief review of the calculation methods relevant to different scales to facilitate ones familiar with them
quickly. After that, we focus on recent progress of mechanisms beyond energetics revealed by multiscale kinetic model-
ing of 2D-material growth and nanocatalysis. This review aims to emphasize the variety of underlying mechanisms for
complex chemical systems of reactions coupled with kinetics, and in turn highlights the importance of kinetics in multi-
scale modeling and calculations for practical applications.

2 | CALCULATION METHODS FOR COMPLEX CHEMICAL SYSTEMS

As mentioned above, the central issue for multiscale calculation of complex chemical systems is how to handle interac-
tions and movements at different scales. So far, it is still unrealistic to build up a uniform multiscale calculation method
explicitly including all the spatial and temporal scales simultaneously. Alternatively, an applicable way is to focus on a
main scale depending on the special problem and system we are interested in, while other scales are coarse-grained to
maintain their key physics. In practice, multiscale calculations may adopt a combination of calculation methods rele-
vant to several given scales. For facility, we will bring a brief overview of some commonly used theoretical techniques
and methods, including density functional theory (DFT), molecular dynamics (MD, classic or hybrid methods of
quantum-mechanics/molecular-mechanics [QM/MM] MD), kinetic Monte-Carlo (KMC) simulation and continuum
equations. Details about these techniques and methods can be found in many good reviews and books.17-36 As we aim
to review the progress of mechanisms beyond energetics for 2D-material growth and nanocatalysis, the most relevant
theoretical techniques and methods are KMC and continuum equations, while DFT and MD provide the microscale
information such as the reaction barrier or transition probability of kinetic events. Interestingly, the spirit of multiscale
calculations, that is, the approximation of coarse-graining “less-relevant” degrees of freedom, also runs through nearly
all of these methods for given scales themselves.

2.1 | Density functional theory

Basically, all of the observable properties for complex chemical systems are covered by quantum mechanics, which
should be obtained directly from solutions of the corresponding Schrödinger equation for the motion of electrons and
nuclei. However, exact solutions of the many-body Schrödinger equation with all degrees of freedom of a complex sys-
tem are essentially difficult to be obtained. As an approximation, DFT based on functional of the spatially dependent
electron density is proposed, where the electronic structure of the system is evaluated by applying effective potentials
determined by the structure of the system and inter-electronic interactions on electrons.17-20 DFT allows one to calcu-
late the energy of the system and the forces acting on atoms without any empirical information input. Its calculation
efficiency and sufficient chemical accuracy make DFT to be one of the most popular calculation methods at the atomic
scale where the electronic structure is the main concern such as calculation of bond dissociation energies and
corresponding activation barriers.
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2.2 | Molecular dynamics

When the spatial and time scales increase to be ones where long-time movements of large number of atoms and molecules
are important, DFT methods become computationally expensive to explicitly calculate interactions among them. Instead,
classical MD simulations adopt empirical force-field potentials to describe implicitly the electronic-structure-induced inter-
actions, by which forces acting on atoms and molecules are directly calculated and consequently the positions are updated
according to Newton's equations.23-25 The numerically solved trajectories of atoms and molecules can further be used to
determine thermodynamic properties of the system with certain thermodynamic ensembles such as isothemal-isobaric
ensembles (with constant number of particles, constant pressure, and constant temperature) or canonical ensembles (with
constant number of particles, constant volume, and constant temperature). MD simulations explore the dynamics of
atomic-level phenomena that cannot be observed directly in experiments, which have been widely applied in many fields
to provide insights for, such as motion of macromolecules, structure and folding of proteins, deformation of materials, and
so on.21-23,37 Moreover, MD simulations are also able to investigate the effects of formation and breaking of chemical bond
by using bond-order-based force-field potential.38,39 Classical MD simulations are much faster and more computationally
efficient than DFT calculations, however, the effective potentials governing the atomic interactions hold the key of accuracy
for this method. Hybrid methods of QM/MM MD combine the advantages of classical and quantum methods to describe
complex chemical systems. The basic idea of QM/MM is that, quantum methods are applied to ensure the accuracy for the
core region of the system where chemical processes of interests take place, while other surrounding parts of large number
of atoms and molecules are calculated by classical MD to obtain computational efficiency.40-45

2.3 | KMC simulations

MD describes all of the detailed movements of atoms and molecules on the potential energy surface of the complex
chemical systems. However, for scales that chemical kinetics of the whole complex systems is focused, ones are usually
not interested in such fast movements MD spend most of its time on, but in chemical events of slow jumps between dif-
ferent minima separated by energy barriers on the potential energy surface. KMC simulations model the system's kinet-
ics by determining sequence of consecutive slow chemical events with realistic physical time while the fast movements
of atoms and molecules are taken into account by stochastic transition probabilities for the events.26-30 Combining
KMC with other calculation methods is a powerful tool for multiscale simulations of complex chemical systems. For
example, KMC with input transition probabilities calculated by DFT may bridge the gap between electronic structure
and chemical kinetics. Analogue to the concept of QM/MM, combination of KMC focusing on a central region and con-
tinuum equations for others may facilitate computations of chemical engineering at nanoscales.

There are mainly two types of KMC algorithms, namely null-event algorithms and event-list algorithms. Given the
transition probabilities of chemical events (which may be derived from DFT or MD calculations or from experimental
data), null-event KMC samples the system's kinetics with a constant time scale by accepting or rejecting a candidate
chemical event corresponding to the transition probabilities.46-48 The null-event KMC is easy to be handled as the time-
consuming and coding-complicated updating of all chemical events of the system is not necessary. However, it is quite
inefficient if there are many trial events rejected. A general calculation procedure of the null-event KMC is as follows.

Step 1: Initialize the system.
Step 2: Randomly pick up a possible chemical event for the system.
Step 3: Estimate whether the selected event is allowed (a null event) depending on the current state of the system.
Step 4: If it is a null event, go back to Step 2.
Step 5: Update the state of the system according to the selected event.
Step 6: Go back to Step 2 till some termination conditions are fulfilled.
Event-list KMC, on the other hand, determines dynamically the next chemical event and the time step for its occur-

ring based on a complete list of all events for current state of the system.49,50 As there is certainly one chemical event
happening for each step, the simulated time steps are usually larger than ones in null-event KMC, which thus acceler-
ates the simulation process. In practice, the main challenge of the event-list KMC is that whether all the events can be
identified for a given state. The algorithm of event-list KMC consists of following steps.

Step 1: Initialize the system.
Step 2: Update the list of all chemical events allowed by the current state of the system, as well as their associated

rates ri, i = 1, …, M, where M is the total number of all events.
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Step 3: Calculate the cumulative function Ri =
Pi

j=1rj.
Step 4: Generate a uniform random number u1 and update the time by a time step Δt= ln 1

u1

� �
=RM .

Step 5: Generate a uniform random number u2 and update the system state by event i fulfilling Ri − 1 < u1RM ≤ Ri.
Step 6: Go back to Step 2 till some termination conditions are fulfilled.

2.4 | Continuum equations

For scales much larger than that for each chemical event, the essentially discrete KMC methods become inefficient in
simulation of chemical kinetics of the whole complex systems, too. As in such scales the number of molecules for chem-
ical species as well as its change are large enough, it is then convenient to describe the system's kinetics by continuum
equations mainly focusing on temporally (for well-mixed systems) or spatiotemporally (for spatially extended systems)
continuous and differentiable mass densities of chemical species.31-36,51 Other continuous quantities such as energy and
momentum can also be included if necessary. Depending on the intensity of fluctuations, continuum equations may be
formulated in the form of stochastic (for mesoscopic systems) or deterministic (for macroscopic systems) partial differ-
ential equations derived from basic physical principles such as the conservation of mass, energy or momentum, or by
coarse-graining degrees of freedom below the scale of interest. Continuum equations are able to efficiently simulate
mesoscopic or macroscopic systems for very long physical time, facilitating ones systematically investigate full kinetics
of complex chemical systems to identify the key factors for functions of interest. A major disadvantage of continuum
equations is that they are explicitly independent on atomic properties. However, if the continuum equations can be
directly derived from the atomic level or combined with DFT and/or KMC, there are still possibilities to capture micro-
scale effects on the macroscale behaviors.

A commonly used continuum equation for chemical systems is the reaction–diffusion equation consisting of reac-
tions and normal mass diffusion due to concentration gradient, which reads

∂ci
∂t

=
XM
j=1

f ij cif gð Þ+Dir2ci, i=1,…,N ,

where N is the total number of chemical species, M is the total number of reactions, ci is the concentration of the i-th
species, fij is the concentration change of the i-th species due to the j-th reaction, and Di is the diffusion constant of the
i-th species. Simulation of systems described by continuum equations usually involves numerical solving partial differ-
ential equations, for which many standard techniques can be adopted such as Euler's method or Runge–Kutta.

3 | MECHANISMS BEYOND ENERGETICS BY MULTISCALE KINETIC
MODELING

In this part, some mechanisms beyond energetics for complex chemical systems revealed by multiscale kinetic model-
ing and calculation are reviewed. It is known that the energetic barrier is the most essentially decisive factor for reac-
tions in simple chemical systems. However, when other scales of kinetic processes involve in complex systems, there
may be chances for these kinetic processes to determine the reaction mechanisms. As two typical complex chemical sys-
tems, epitaxial growth of 2D materials and electrocatalytic reactions on nanocatalysts are mainly focused on.

3.1 | Geometry of graphene-substrate lattice mismatch determined epitaxial growth

Epitaxial growth of 2D materials is able to produce large scale 2D materials with high quality.52-54 It has long been
established that the reactant-substrate molecular interaction is essential for heterogeneous catalysis. However, the same
quantic growth function of carbon monomer concentration was reported on both Ru(0001) and Ir(111) along the main
growth orientation R0, while a different growth behavior from the main orientation was observed along another orien-
tation R30 on the same Ir(111) surface.55,56 The interesting similar growth kinetics on different substrates and different
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growth kinetics on the same substrate imply a common growth mechanism independent on the specific carbon-metal
interactions.

To address such a mechanistic issue, a multiscale calculation combining DFT and KMC methods were proposed.57

Extensive DFT calculations were first performed to investigate all of the detailed chemical processes happening during
the epitaxial growth of graphene on Ir(111) surface along the R0 orientation. By calculating the potential energy, diffu-
sion barriers and attachment energy to the graphene edge for the most stable structures of surface carbon species, an
inhomogeneous growth picture was revealed (Figure 1(a)), that is, while most sites locating at hollows between sub-
strate atoms are thermodynamically favorable for attachment of carbon monomers (which is the most abundant carbon
species on surface), there are also some sites atop the substrate atoms very unfavorable for carbon monomers where the
growth must proceed via cluster attachment.

With the data and inhomogeneous growth picture revealed by DFT calculations, it still demands a mesoscopic cal-
culation to directly simulate the growth behavior. As it aims to reveal the growth process with information at the
atomic level, KMC calculation is a good choice. However, the KMC calculation of the epitaxial growth of graphene is
not straightforward as a result of the following two main difficulties, that is, a huge unit cell is required to get statisti-
cally reliable growth due to the moving growth front, and the large disparate time scales needs to be included for differ-
ent surface species due to their large density differences (e.g., the gap between densities of carbon monomers and
clusters of five carbon atoms is about 1015). As illustrated in Figure 1(b), a multiscale “standing-on-front” KMC model
was proposed to overcome these difficulties. Based on the different dominant chemical processes, the model divides the
whole surface into four regions. Contributions of the quasi-equilibrium distribution of carbon species in the far field
and diffusions across the diffusion layer are compacted into effective carbon flux to the growth front, so that KMC cal-
culation can focus the attachment and detachment processes of carbon species on the growth front. Furthermore, a
multiscale KMC algorithm was designed to handle disparate time scales for different surface species. By grouping the
KMC events by time scales of the relevant carbon species, a standard “event-list” KMC algorithm runs with groups of
all time scales together. The group of the fast time scale in present simulation will be ruled out if graphene front gets
stuck, so that the simulation can run automatically with the left slow time scales. The jump may keep to other slow
time scales until the front moves again, after which all of the ruled out groups are included again in the simulation.
The detail procedure of the algorithm is as follows.

Step 1. Initialize the system, and group all KMC events by their time scales.
Step 2. Run a standard event-list KMC algorithm with present groups of events (i.e., Step 2–6 in the procedure of

event-list KMC described in the part of calculation methods for complex chemical systems).
Step 3. If the graphene front gets stuck, rule out the group of events with the fast time scale in present simulation,

by which the simulation will automatically jump into the next slow time scale.
Step 4. Go back to Step 2 till the graphene front grows again.
Step 5. Include again all of the groups and go back to Step 2 till some termination conditions are fulfilled.
With all atomic parameters estimated by DFT, the KMC obtained a dependence of growth rate on the surface car-

bon monomer concentration with an exponent of 5.25, reproducing well observations in experiments.57 Detailed analy-
sis of the key KMC events revealed that, though carbon monomers dominate attachment over thermodynamically
favorable hollow sites, only large clusters with more than five carbon atoms can contribute neatly to the front growth
over thermodynamically unfavorable atop sites. As plotted in the inset in Figure 1(c), the reason is simply that only
clusters with more than five carbon atoms can complete and stabilize the growth front due to the lattice-mismatch
between graphene and the substrate.58 Remarkably, the growth exponent saturates to a constant value slightly larger
than 5 when the effective carbon-substrate interaction strength passes over a threshold, indicating a robust growth
mechanism solely determined by the geometry of lattice-mismatch between graphene and the substrate.58 Such a
geometry-determined growth mechanism was further verified by applying the above KMC calculation on growth over
R30 on Ir(111) surface. Similarly, the growth exponent is robust, too, if the carbon-substrate interaction is strong
enough, which is about 2 determined by the sparse distribution of atop sites along this orientation (Figure 1(d)). The
geometry-determined mechanism of graphene growth explains why similar kinetics have been observed in experiments
for different substrates and different kinetics for different orientations on the same substrate.

The theoretically revealed effect of lattice mismatch between graphene and the metal substrate on the growth of
graphene was then confirmed by experiments about kinetics of graphene formation on Rh(111) investigated by in situ
scanning tunneling microscopy.59 Interestingly, the experiments also present new challenges for simulations of
graphene growth kinetics. As the aforementioned “standing-on-front” KMC simulation is actually a quasi-1D calcula-
tion method, it is still not applicable for some growth behaviors have to be calculated by fully 2D methods. For example,
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experiments in Reference 59 observed time-resolved growth behaviors beyond conventional growths over the large scale
of moiré patterns when several adjacent fragments merge into one whole piece of grown graphene. To explore large-
scale graphene growth of fully 2D shapes, a coarse-grained KMC model was further established based on the above

FIGURE 1 (a) Heterogeneous growth of carbon monomers on a zigzag Ir R0 ribbon. The attachment is thermodynamically favorable to

occupy a top site (the left panel) and unfavorable to occupy a hollow one (the right panel). (b) Schematic diagram of the KMC model

standing on the graphene growth front. The dependence of growth exponent γ on effective carbon-substrate interaction strength α for (c) R0

and (d) R30 orientation. Insets show the lattice-mismatch for R0 and R30, respectively. (Figure adapted with permissions from References

57 and 58. Copyright 2012 American Chemical Society and 2013 American Physics Society)
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multiscale calculation combining DFT and KMC methods, where only chemical events of net contribution to growth
are maintained.60 The coarse-grained KMC model facilities simulation of graphene growth over surface of at least mil-
lions of sites, and revealed that the nonlinear time-resolved growth behaviors over vacancy islands inside the flake of
graphene observed in experiments in Reference 59 is also a result of the geometry-determined growth mechanism.60

3.2 | Micro-orientations determined grain boundary formation mechanism

Beside of the epitaxial growth for one single grain, a realistic growth process may consist of multiple grains.61,62 As a
typical defect for systems with multigrain growth, formation of grain boundary strongly affects the mechanical, ther-
mal, electric, or optical properties of 2D materials.63-66 Therefore, a fundamental understanding of the formation mech-
anism for grain boundaries is demanded.

Specifically, grain boundary formation of monolayer MoS2 was investigated by a KMC model combined with first-
principles calculations.67 The KMC model considered growth of two initial grains of equilateral triangle shape sepa-
rately located with different micro-orientations (Figure 2(a)). Each grain grows up by the attachment of S and Mo
adatoms along its own lattice structure. As the experimental growth is usually in sulfur-rich environment, the adjacent
S vacancies will be quickly filled as soon as a Mo adatom attached. DFT calculated energetic barriers for adatoms
attachment show that adatoms attached to a complete zigzag edge, that is, kink nucleation, is hard, after which conse-
quent attachment, namely kink propagation, is much faster (Figure 2(b)). A grain boundary will be formed once two
independent grains impinge and no more adatoms are able to fill in between the two grains.

With standard procedures as described in the part of calculation methods for complex chemical systems, the KMC
simulations well reproduced experimental observations in refs. [61, 68, 69] with the same setup as in experiments. It
was revealed that the overall growth orientation of the grain boundary exactly equals to the composition of kink propa-
gation micro-orientations for the two approached edges (Figure 2(c)). What's more, the grain boundary roughness is
determined by the difference between the micro-orientation angles of the two grains (Figure 2(d)). When the angle dif-
ference is small, a smooth grain boundary will be formed. On the contrary, a rough grain boundary will be observed
when the difference is large. Therefore, this work actually found a micro-orientations determined grain boundary for-
mation mechanism for the multigrain growth of MoS2.

3.3 | Reactant flux affected anisotropic growth of 2D transition metal dichalcogenide

Controllable anisotropic growth is another issue in synthesis of 2D materials for the fabrication of electronic and opto-
electronic devices.70-72 However, some typical 2D materials such as transition-metal dichalcogenides (TMDCs) tend to
form isotropic nanoplates rather than anisotropic nanoribbons.73,74 Understanding key factors for anisotropic growth
then facilitates its controllable synthesis.75,76

As shown in Figure 3(a), anisotropic WS2 nanoribbons were successfully fabricated by a space-confined and
substrate-directed strategies combined with the chemical vapor deposition method.77 In experiments, one piece of SiO2/
Si substrate was placed at the center of furnace with tungsten trioxide powder randomly scattered on the substrate sur-
face, and another piece of SiO2/Si substrate was put facedown above the bottom substrate forming a confined space.
Sulfur powder was placed about 24–25 cm away from the central region of furnace. H2/Ar was used as the carrier gas
with a fixed flow rate. It was found that the gap between two substrates provides a steady environment to precisely con-
trol the growth kinetics, so that the kinetic growth dominants to produce TMDC nanoribbons even though TMDC
nanostructures are generally thermodynamic stable. To illustrate this effect clearly, a computational fluid dynamics
method is performed using a commercial computational fluid dynamics software package (CFD-ACE 2008, ESI) to sim-
ulate the flow field and velocity distribution of gas flux in the tube and confined space at the mesoscopic scale. While
calculated flux velocities vary largely at different locations outside the confined space, ones in the confined space are
much slower and stable, validating the conclusion in experiments (Figure 3(b)).

In another theoretical work, a KMC model combining DFT calculations was proposed to understand the growth kinet-
ics at the atomic level.78 The model aims to simulate the anisotropic growth of monolayer WS2 on ST-X quartz by the
chemical vapor deposition method. Essential kinetic events concerned in the growth process, such as adsorption, desorp-
tion, and diffusion, are included and simulated by standard KMC procedures. KMC calculations showed that chalcogen/
metal ratio determined by the reactant flux at the mesoscopic scale contributes mainly to the anisotropic growth of WS2. As
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plotted in Figure 3 (c), an appropriate chalcogen/metal ratio window facilitates kinetic growth of anisotropic nanoribbons,
while triangle flakes may form for smaller ratio and dendritic flakes for lager ratio. The KMC simulation at the atomic scale
along with the above fluid dynamics calculations illustrates a reactant flux affected anisotropic growth of 2D TMDC.

3.4 | Diffusion-influenced electrochemical responses on nanoparticle-covered
electrodes

Design of nanoscale electrocatalysts with desired selectivity and activity plays a significant role in energy conversion
and environment preservation. When catalysts downsize to nanoscale, the mass transfer deviates from the prediction of
conventional theories due to the comparability of length scales between the catalyst size and reaction region. The signif-
icance of mass transport on nanoscale may not be neglected for reactions on nanoscale electrocatalysts.

FIGURE 2 (a) Schematic of MoS2 grain growth model. (b) Kink nucleation and propagation at a MoS2 zigzag edge. (c) Grain boundary

formation in KMC simulations. The overall growth orientation of the grain boundary (vb) is the composition of kink propagation vectors at

the two edges (v1 and v2). (d) Formation kinetics of (bi–biii) smooth BC grain boundary and (ci-ciii) rough CD grain boundary during two-

grain growth in KMC simulations. High-resolution STEM image of (biv) smooth and (civ) rough grain boundaries. Scale bars are 1 nm.

(Figure adapted with permissions from Reference 67. Copyright 2019 American Chemical Society)
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To understand the effect of mass transport by diffusion at nanoscale, Compton and co-workers proposed a kinetic
model of a nanoparticle on a planar electrode, where diffusion from bulk solution to the particle surface and
electrocatalytic reactions are included10 (the left panel in Figure 4(a)). Without loss of generality, continuum mass-
transport equations were employed to describe diffusion of species with boundary conditions containing a simple elec-
trochemical reaction A + ne− $ B on the nanoparticle, as

∂a
∂t

=
∂2a

∂R2 +
1
R
∂a
∂R

+
∂2a

∂Z2

FIGURE 3 (a) Schematic of controlled synthesis procedure for TMDC nanoribbons. (b) Flow field distribution within the tube and

space-confined region. (c) The KMC simulated growth morphologies of monolayer WS2 under diverse experiment conditions.

(Figure adapted from Reference 77 with permissions and from Reference 78 under the terms of the Creative Commons CC BY license for

open access articles. Copyright 2020 Elsevier.)
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where a is the normalized concentration of reactant A, Z is the axial coordinate which is defined normal to the plane,
and R is the cylindrical radial coordinate. By a specially designed discreetness of the nanoparticle to be girds (the right
panel in Figure 4(a)), the mass-transport equations are able to be solved in cylindrical polar coordinates, so that the

FIGURE 4 (a) Schematic of a spherical particle sitting upon a supporting planar surface (left) and the grid used for discretization of the sphere

(right). (b) Simulated concentration profile around the spherical particle at scan rate δ = 0.1,1,10,100,1000, respectively. (c) Simulated voltammetry for

a reversible electrode transfer at δ = 0.001,1,1000, respectively. (Figure adapted with permissions from Reference 10. Copyright 2007 American

Chemical Society)
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nanoscale diffusion can be related to the measured electric current in linear sweep voltammetry at the experimental
scale.

In Figure 4(b), concentration profiles around the nanoparticle are plotted. A significant depletion of the reactant
emerges when the sphere meets the supporting plane. The diffusion layer thickness is enlarged and then leads to larger
reactant depletion region as the scan rate decreases. This diffusion-influenced concentration distribution further deter-
mined the overall electrochemical responses of the system as shown in Figure 4(c). When the scan rate varies from slow
to fast, the flux density becomes uniform over the sphere surface as the reactant depletion region reduced with the
decreased size of diffusion layer, revealing a diffusion-influenced electrochemical response for electrocatalysis on
nanoparticles.

Compton et al. further studied the diffusion-influenced electrochemical responses of electrode covered by multiple
catalytic nanoparticles with the same kinetic model.9 They found that overlapped diffusion layer between adjacent par-
ticles would lead to several types of concentration distributions for different coverage of nanoparticles, which then
result in various electrochemical responses. Besides, the influence of the nanoparticle size is also explored with this
model.12 Moreover, the kinetic model can also be applied to oxygen reduction reaction on a gold macroelectrode and
on an electrodeposited gold nanoparticle modified glassy carbon electrode, where the mechanism of diffusion-
influenced electrochemical response also works.79,80

3.5 | Local-field-induced mass transfer enhanced electrocatalytic performance

Besides of the mass transport due to normal diffusion, there may be directional mass transfer by emerged micro-
interactions at the nanoscale. Recently, Liu et al. reported a fascinating yet simple strategy to enhance electrocatalytic
reduction of CO2 by placing catalytic tips of different curvature on Au electrode.14 The reduction rate can be increased
to be two orders of magnitude higher on needle type of catalysts (of diameter about 50 nm) than that on particle type
ones (diameter about 500 nm) while the efficiency was enhanced up to 90%. It was observed experimentally that high
curvature of catalysts can, on the one hand, lower the reaction barrier about 51 kJ/mol, on the other hand, increase the
CO2 concentration around catalysts by curvature induced local electric field. It is known from the Arrhenius equation
that the reaction should be accelerated about seven orders of magnitude for such a decrease of the reaction barrier,
which is much faster than the experimental observation. The large discrepancy thus indicates a mechanism other than
lowering the reaction barrier for the sharp-tip enhanced electrocatalytic reduction of CO2.

Jiang, et al. then proposed a multiscale kinetic model and corresponding calculation method to reveal the underly-
ing mechanism of the sharp-tip enhanced electrocatalytic reduction of CO2.

15 As shown in Figure 5(a), the model con-
sists of a cell of one single catalytic tip with periodic boundary conditions. Main kinetics of the whole catalytic process
is considered, including adsorption of CO2 from solution to the electrode, diffusion over the surface, and reductions at
the tip. Specially, as CO2 molecules can be concentrated on the tip by curvature-induced local electric field, the conven-
tional continuum reaction–diffusion equations were not applicable to the system. The reaction–diffusion equations tak-
ing the molecule-field interaction into account were derived from the system's free-energy density functional by
dividing the surface into N × N boxes inside each of which the total number of chemical molecules is large enough to
ensure the definition of relevant thermodynamic quantities, and also small enough so that these quantities can be con-
sidered as constants. The system's free-energy density functional in box locating at r with molecule-field interaction
potential V(r) then reads

f rð Þ=V rð Þ+ kBT θ rð Þln θ rð Þð Þ+ 1−θ rð Þð Þln 1−θ rð Þð Þ½ �

where kB is the Boltzmann constant, T is the temperature, θ is the surface concentration normalized by its maximal
values. The chemical potential can be derived as

μ rð Þ= ∂f rð Þ
∂θ

= ∂θV rð Þ+ kBTln
θ rð Þ

1−θ rð Þ :

By assuming the transport process is not too far from equilibrium, the diffusion flux depends linearly on the
corresponding driving force as
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J rð Þ= −Lrμ rð Þ= −L r ∂θVð Þ+ kBT
θ rð Þ 1−θ rð Þð Þrθ rð Þ

� �
,

which should back to Fick's law if V(r) is absent. Thus, L = [Dθ(r)(1 − θ(r))]/kBT can be derived, and eventually the
reaction–diffusion equations with molecule-field interaction read

FIGURE 5 (a) The kinetic model for electrocatalytic reduction of CO2 near a tip on electrode surface. SP denotes side products rather

than CO. Insets show the experimental setup in Reference 14 (top left) and the numerical simulation setup (top right). Optimal performance

depending on (b) the energetic barrier, (c) the interaction strength between adsorbed CO2 and the locally induced electric field, and (d) the

effective adsorption rate for CO2 on the electrode surface. Where R*, v*, and e* are the tip size, CO producing rate, and efficiency when the

optimal performance is achieved. (Figure adapted with permission from Reference 15. Copyright 2017 John Wiley and Sons)
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∂θ rð Þ
∂t

=φ0 1−θð Þ−kdθ−kθ−ksθ+Dr2θ

−
D
kBT

r � θ 1−θð Þr ∂θVð Þ½ �
∂θco rð Þ

∂t
+ kθ−kcod θco +Dcor2θco �

∂θsp rð Þ
∂t

= ksθ−kspd θsp +Dspr2θsp

Here, φ0, kd, k, and ks are rate constants of the effective adsorption, desorption, reaction from CO2 to CO, and the effec-
tive reaction to possible side products SP, respectively. The corresponding quantities with subscript “co” and “sp” are
those for CO and SP. V is the interaction potential between CO2 molecules and the local electric field.

With the proposed kinetic model and derived reaction–diffusion equations, numerical simulations showed that the
energy barrier alone is not the decisive factor that controls the optimal overall reaction rate and efficiency (Figure 5(b)),
implying that the reaction has already been accelerated enough so that the optimal sharp-tip enhanced performance
cannot be further enhanced by simply lowering the energy barrier of the main reaction. Alternatively, the field-induced
mass transfer on the surface and adsorption of the reagent to the surface were shown to be key factors(Figure 5(c), (d)),
providing a kinetic view of the sharp-tip enhanced electrocatalytic reduction of CO2 that when normal diffusion of CO2

to the tip cannot match the fast reaction, the field-induced attraction can supply extra CO2 to provide a better perfor-
mance. The mechanism of local-field-induced mass transfer enhanced electrocatalytic performance implies possibility
to boost electrocatalytic reaction on nanocatalysts besides of reducing the reaction barrier.

Soon after, well-designed nanocatalysts with periodic structures were demonstrated to be of abilities to enhance cat-
alytic performance of the methanol oxidation reaction or formic acid oxidation reaction on catalytical nanowires,
nanoparticles, nanorods, or nanoflakes.81 Based on similar multiscale modeling and simulations, it was found that the
enhancement stems from regulation of the surface reactant flux by the gradient of the local electric field directing uni-
formly to the nearest catalyst on ordered patterns, so that the kinetics was optimized to enrich the local concentration
of reactant molecules for reactions. Furthermore, the mechanism has also been verified in electroreduction of CO2 on
high curvature transition metal chalcogenide nanostructures,82,83 Cu@Bi nanocones,84 sharp Cu@Sn nanocones on Cu
foam,85 Cu-based heterogeneous electrocatalysts,86 sharp tipped zinc nanowires,87 polytetrafluoroethylene protected
copper nanoneedles,88 fluorine doped cage-like carbon electrocatalysts,89 nickel-nitrogen-modified porous carbon/car-
bon nanotube hybrid with necklace-like geometry,90 as well as sharp-tip enhanced catalytic CO oxidation by atomically
dispersed Pt1/Pt2 on a raised graphene oxide platform91 and electrocatalytic hydrogen evolution on atomically dis-
persed platinum supported on curved carbon supports.92

3.6 | Confinement effect of electrode on the selectivity of desired production

Similar to the above, precisely controlled morphology of nanofabricated electrodes was reported to be an efficient strat-
egy for systematically controlling the product selectivity and reaction kinetics of electrocatalytic reaction.93 Catalysts
with hollow or porous structures have been demonstrated as a specific morphology of ideal electrode to control the
selectivity of higher-order carbon products (C2+) in electrocatalytic reduction of CO2/CO recently.93,94

Multiscale kinetic simulations combining DFT and continuum diffusion–reaction equations are employed to reveal
the mechanism of confinement-enhanced selectivity of C2+ feedstock at hollow-structured catalysts.95,96 Energy land-
scape of C2+ formation as well as its competing pathways such as H2 or C1 production was calculated by DFT, where
C2 is produced by CO dimerization and further couples with CO to be C3 productions.

95,97 With reaction pathways and
energetic parameters calculated by DFT, a more comprehensive kinetic model in terms of reaction–diffusion equations
is employed focusing on the hollow-confined mass transfer effects.96 As the reaction–diffusion equations are standard
ones, they were solved by using the COMSOL Multiphysics software package.

Simulations of the kinetic model found that, the outflow of local produced C2 species is restricted by the cavity of
the hollow-structured catalyst, leading to higher C2 intermediate concentration in the cavity. Consequently, desorption
of C2 will be reduced and ultimately generates a heightened C3 production inside the cavity (Figure 6(a)). This kinetic
model successfully reveals that the confinement effect of catalysts would regulate the flow of intermediate and further
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modify the local concentration of intermediate to optimize the catalytic selectivity. Interestingly, it can also be obtained
from the kinetic model that the open angle of the cavity influences the ratio of C3/C2. An optimized open angle for the
highest selectivity of C3/C2 can be derived with the simulation results, which agrees with the experimental data well
(Figure 6(b)). This kinetic model, therefore, uncovers a mechanism of confinement-tuned selectivity for CO
electrocatalytic reduction. This mechanism was further utilized to propose a multi-hollow structured catalyst which
enhances the selectivity of C2+ product for electrocatalytic reduction of CO2

94 (Figure 6(c); Box 1).

FIGURE 6 (a) The concentration distributions of CO (left), C2(middle), C3(right). (b) The morphology structures of solid, cavity I, cavity

II and fragment (left) in experiments. The simulation results of the C3/C2 product selectivity on different catalysts show a good agreement

with experimental ones (right). (c) Computed concentration and distribution of species. CO2, C1, C2, and C3 concentrations on the

multihollow structure. (Figure adapted with permissions from References 96 and 94. Copyright 2020 American Chemical Society and 2018

Springer Nature)
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4 | CONCLUSION AND FUTURE PERSPECTIVE

In past decades, we have witnessed a tendency that theoretical and computational chemistry focused more and more
on the energetic. However, there were also some experiments suggested that others such as mass transport could also
be crucial for complex systems where chemical reactions are coupled with kinetics. We reviewed in this paper some
recent progress of mechanisms beyond energetics revealed by multiscale kinetic modeling in epitaxial growth of 2D
materials and electrocatalysis on nanocatalysts. As the rapid development of experimental techniques, there will be
many new interesting findings observed in similar complex chemical systems. Due to the complexity of involved multi-
ple scales, it is a great opportunity for the development of multiscale modeling and calculation methods. Generally,
future studies may follow three steps. First, establishing a system-dependent multiscale method to understand a special
experimental observation in a complex chemical system of particular importance. Then, the established method may be
extended to similar systems to verify its application as well as the revealed mechanism. The validated method and
mechanism in return provide solid theoretical basis for rational design of complex chemical systems with desired func-
tions in experiments. Technically, there are two major issues need to be addressed to establish multiscale modeling and
calculation method. The first one is how to fast identify the most relevant freedoms for multiscale modeling of the sys-
tems. So far, success of the established model can only rely on the experience of the researchers. Some general ideas
adopted in statistical-mechanics-based methods revealing kinetics of other complex chemical systems, such as kinetic
network models for self-assembly and protein dynamics,1,2 may be helpful for addressing such an issue. The second one
is how to integrate calculation methods at different scales together to provide quantitatively reliable calculations with
sufficient efficiency, requiring not only well designed algorithms, but also how fine the multiscale models is when we
address the first issue. We believe that multiscale modeling and calculation will play an important role in future studies
of complex chemical systems where reactions meet kinetics.
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