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ABSTRACT

Understanding stochastic thermodynamics of the active Brownian particles system has been an important topic in very recent years.
However, thermodynamic uncertainty relation (TUR), a general inequality describing how the precision of an arbitrary observable current is
constraint by energy dissipation, has not been fully studied for a many-body level. Here, we address such an issue in a general model of an
active Brownian particles system by introducing an effective Fokker–Planck equation, which allows us to identify a generalized entropy
production only by tracking the stochastic trajectory of particles’ position, wherein an activity and configuration dependent diffusion coeffi-
cient come into play an important role. Within this framework, we are able to analyze the entropic bound as well as TUR associated with any
generalized currents in the systems. Furthermore, the effective entropy production has been found to be a reliable measure to quantify the
dynamical irreversibility, capturing the interface and defects of motility induced phase separation. We expect the new conceptual quantities
proposed here to be broadly used in the context of active matter.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0094211

I. INTRODUCTION

Over the past two decades, stochastic thermodynamics has
gained extensive attention for describing nonequilibrium thermody-
namics of mesoscopic systems.1–5 Due to the small size of such sys-
tems, fluctuations are significant, so that thermodynamic quantities
become stochastic variables. This observation allows ones to generalize
laws of thermodynamics at single trajectory level,6–8 which leads to the
study of stochastic energetics and fluctuation theorems (FT). In partic-
ular, an important universal inequality between the fluctuation in cur-
rents and thermodynamic cost, the thermodynamic uncertainty
relation (TUR), has been discovered.9–17,19–22 Specifically, TURs con-
strain the Fano factor of an arbitrary observable current by the total
entropy production, presenting a trade-off relation between precision
and dissipation, and provide an alternative method to obtain a lower
bound on the entropy production. Moreover, TURs make an irre-
placeable contribution to our understanding of non-equilibrium phe-
nomena (e.g., work extraction under measurement and feedback19,20,23

and biological clocks24), which can provide more detailed information
about the systems than the second law. TUR was first proposed for
biological processes by Barato and Seifert9 and then extended to many
other situations, such as diffusion process,11,13 finite-time

generalization,11,12,16 periodically driven systems,14,21 biological oscilla-
tors,17,18,22,25 and time-delayed systems.26

Very recently, the frontiers of stochastic thermodynamics have
shifted to the active particle systems. Active particles form a class of
nonequilibrium systems, which have the ability to perform directional
motion through self-propulsion by consuming energy from the envi-
ronment.27–35 Study of active particles encompasses a wide variety of
biological and soft matter systems, such as schools of fish,27 biological
microorganisms,36–40 and colloidal particles.41–43 Such systems can
usually show a range of typical collective behaviors, including phase
separation,44–46 turbulence,47–49 and self-assembly.50 It has been
reported that even the purely repulsive active systems can yield a
motility induced phase separation (MIPS) where particles spontane-
ously separate into solid-like and gas phases,30,34 which has attracted
much attention. So far, the laws of thermodynamics, the definition of
related entropy production, or the construction of fluctuation theorem
in active particle systems has been discussed in a few studies.51–67

Most studies require not only tracking the particles’ position but also
full information including the self-propulsion,54,65–67 which is a great
challenge in experiments.68 Therefore, how to understand the behav-
iors of many-body active particle systems from a thermodynamics
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perspective in most practical scenarios when only partial information
is available, such as the establishment of TUR, is a great challenge.

In this article, based on the approximation of mapping the active
particles system to an “effective equilibrium” one,69–72 we have intro-
duced a generalized entropy production (EP) Sg, which only needs to
track the position of particles. We compare the proposed EP with defi-
nitions in other studies and demonstrate the hierarchical order
between them by analyzing the degree of coarse-graining. Direct simu-
lations help us to identify the generalized EP at each point in the phase
diagram. Detailed analysis of the spatial distributions of the proposed
quantity allows us to identify the interface and defects of MIPS, which
means that it can unambiguously be utilized to measure the dynamic
irreversibility on a macroscopic scale. Furthermore, the entropic
bounds73,74 and generalized TURs9–22,26,67 of active systems based on
the demonstrated approximation provide a convenient tool for
entropy production inference.75

II. MODEL

We consider a homogeneous system of N active Brownian par-
ticles with spatial coordinates xðtÞ ¼ fxiðtÞg, self-propelling with con-
stant velocities 0 along its direction of orientations ni ¼ ðcos hi; sin hiÞ
for ith particle. Assume that the particles move in a viscous medium
and hydrodynamic interactions are neglected, the resulting governing
equations are

_xðtÞ ¼ lFðxÞ þ v0nðtÞ þ nðtÞ; (1)

_hiðtÞ ¼ fiðtÞ: (2)

Here, F ¼ �rxU is the mechanical force generated from the
total interactions UðxÞ and l is the mobility. The stochastic terms
niðtÞ and fiðtÞ are Gaussian white noises with correlations
hniðtÞnjðsÞi ¼ 2Dtdijdðt � sÞ and hfiðtÞfjðsÞi ¼ 2Drdijdðt � sÞ. The
translational diffusion coefficient Dt satisfies Dt ¼ lkBT , where kB is
the Boltzmann constant (which is set to be 1 throughout the paper)
and T is the ambient temperature. The rotational diffusion coefficient
Dr relates to persistent time as sp ¼ ð2DrÞ�1. To derive an explicit
TUR for the ABPs system, we now introduce a coarse-grained active
Ornstein–Uhlenbeck process with thermal noise (AOU-T) as a direct
mapping model, which reads

_xðtÞ ¼ lFðxÞ þ nðtÞ þ gAðtÞ: (3)

Here, the active term gAðtÞ represents the OU active components with
zero mean and time correlation

hgAi ðtÞgAj ðsÞi ¼
v20
3
e�jt�sj=spdij: (4)

In the limit sp ! 0, the time correlation becomes hgiðtÞgjðsÞi
¼ 2Dadijdðt � sÞ with Da ¼ v20sp=3, i.e., the system reduces to an
equilibrium one with effective diffusion coefficientDt þ Da.

Over the past decade, study of ABPs is a very hot topic and has
gained extensive research attention. In particular, stochastic thermody-
namics of ABPs has become a frontier area very recently. The main
motivation of the present work is to address a TUR for the many-body
ABPs system. Following the scheme proposed by Seifert,2 one can
define the EP of the system along a given stochastic trajectory
vðtÞ ¼ fxðtÞjt¼tf

t¼0 g as SsysðtÞ ¼ �ln Pðx; tÞ, where Pðx; tÞ is the con-
figurational probability distribution for the state variable to take the

value x at time t. In order to establish the framework of stochastic
thermodynamics of many-body active systems, we need to obtain
the Fokker–Planck equation (FPE), which governs the evolution of
probability distribution Pðx; tÞ.69 To proceed, we adopt the Fox
method71,72 to get an effective FPE, which can best approximate the
process of physical interest and make accurate predictions,77–79

which reads

@tPðx; tÞ � �
XN
i¼1

@xi Jiðx; tÞ: (5)

The probability current is given by

Jiðx; tÞ ¼ DiðxÞbFeff
i ðxÞPðx; tÞ � DiðxÞ@xiPðx; tÞ; (6)

where b ¼ 1=T , and DiðxÞ denotes a configuration-dependent diffu-
sion coefficient given by

DiðxÞ ¼ Dt þ Da 1� bs@xiFi xð Þ½ ��1; (7)

where s ¼ spDt=d2 is a dimensionless persistence time and d is the

typical diameter of a particle. Feff
i ðxÞ ¼ D�1

i ðxÞ½DtFiðxÞ � T@xiDiðxÞ�
gives the effective force exerting on the ith particle. For a passive sys-

tem in the absence of gAðtÞ, DiðxÞ ¼ Dt , and F
eff
i ðxÞ ¼ FiðxÞ, while in

the limit s ! 0, DiðxÞ ¼ Dt þ Da and Feff
i ðxÞ ¼ DtFiðxÞ=ðDt þ DaÞ.

The Fox method is an approximation, which is valid in lower powers
of the persistence time sp, as shown in the original paper.71,72

Nevertheless, it may go beyond this by including contributions to
higher orders in sp.

69,70 Indeed, detailed studies of different systems
demonstrate the validity of Fox approximation over a large range of sp
values.76 Thus, one may expect that Fox approximation could be
applied in a certain range of sp, the exact values of which may be
system-dependent. In the current system of active particles, there still
exists another condition for the Fox approximation to be valid, i.e.,
1� bs@iFiðxÞ > 0, such that DiðxÞ is positive in the entire area. Thus,
the range of accessible sp values depends upon the specific form of the
bare interaction potential.

III. EFFECTIVE ENTROPY PRODUCTION

Based on the Fox approximation, the AOU-T equation Eq. (3)
corresponds to an equivalent Langevin equation. Within this frame-
work, Feff ðxÞ represents the effective interparticle force done on the
particle, which is related to the heat flux of the system. According to
Sekimoto’s suggestion,1 we can define a generalized heat dissipation in
the medium along a stochastic path vðtÞ as

Rm v½ � ¼
ðtf
0
Feff ðxÞT � _xdt; (8)

where “�” stands for the Stratonovich product and the superscript
“T” means transposition. Since the effective force Feff ðxÞ is the
total force done on the system, including the effect of activity, the
generalized heat dissipation will recover to the normal heat dissi-
pation

Ð tf
0 FðxÞT � _xdt in passive systems.2 The difference between

these two types of heat dissipation is the activity-induced extra
entropy flux.

According to Eq. (6), the change rate of the system entropy is
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_Ssys tð Þ ¼ �@t ln Pðx; tÞ;

¼ � 1
Pðx; tÞ

@Pðx; tÞ
@t

þ
XN
i¼1

@xiPðx; tÞjxðtÞ _xi
" #

;

¼ � 1
Pðx; tÞ

@Pðx; tÞ
@t

�
XN
i¼1

Jiðx; tÞ
DiðxÞ

����
xðtÞ

_xi

" #
;

� bFeff ðxÞT _x: (9)

Clearly, the final term in the third equality is related to the generalized
heat dissipation in Eq. (8), i.e., bFeff ðxÞT � _x ¼ _Rm=T . Then, Eq. (9)
can be rewritten as a balance equation for the trajectory-dependent
total EP _Sg ¼ _Rm=T þ _Ssys,

_Sg tð Þ ¼ � @tPðx; tÞ
P x; tð Þ

����
xðtÞ

�
XN
i¼1

Jiðx; tÞ
DiðxÞP x; tð Þ

����
xðtÞ

_xi: (10)

By averaging over the path ensemble, we can obtain the following
equation:

h _Sg tð Þi �
XN
i¼1

ð
J2i ðx; tÞ

DiðxÞPðx; tÞ dx � 0; (11)

where
Ð
dx@tPðx; tÞ ¼ 0 and h _xijx; ti � Jiðx; tÞ=Pðx; tÞ have been

used. All the information about particle activity is contained in DiðxÞ
and JiðxÞ. The second law Eq. (11) ensures that the averaged total EP
must increase with time. The equality holds if all the currents JiðxÞ
vanish, i.e., the system can be exactly mapped to an equivalent equilib-
rium system.

In general, the generalized EP Sg along a stochastic trajectory is
an apparent measure of the time-reversal symmetry broken of the sys-
tem at the scale of observed trajectories. In the current work, the pro-
posed EP can be obtained simply by tracking the trajectory vðtÞ
¼ fxðtÞjt¼tf

t¼0 g for particle positions xðtÞ. To this end, two steps have
been used. First, the orientational degree of freedom nðtÞ has been
eliminated and replaced by a colored noise within a mean-field level of
description. Second, the system with a non-Markovian colored noise is
approximated to an effective equilibrium one on a coarse-grained
timescale via the Fox method. Therefore, the instantaneous entropy
production rate (EPR) _Sg ¼ Feff ðxÞT � _x=T þ d

dt lnPðx; tÞ defined in
our work can be viewed as a “coarse-grained” measure of dynamic
irreversibility of the system (In steady states, _Sg ¼ Feff ðxÞT � _x=T).
Based on this effective mapping, a clearcut TUR for the coarse-grained
EPR can then be well established. Other frameworks for studying EPR
and related properties for the ABPs system have been proposed.
Nevertheless, many-body TUR has not been addressed so far. In the
following, we elucidate the precise hierarchy of EPs.

First, in Ref. 65, Szamel has proposed an EPR _Ssz ¼ _Rsz=T
þ d

dt lnPðx; n; tÞ for the active particles with the heat dissipation
_Rsz ¼ ðF þ l�1v0nÞT � _x . _Ssz was constructed at the full dynamics
level described by Eqs. (1) and (2), including the information of orien-
tation trajectory with difficulty in tracking. As discussed above, the
generalized heat dissipation rate _Sg proposed by us can be regarded as

a coarse-grained form of _Ssz , since the orientational degree of freedom
nðtÞ has been reduced and the memory effects have been coarse-
grained. The difference between _Sg and _Ssz is commonly referred to as

“hidden EPR,” which can be identified as the loss of information quan-
tifying the correlation between particle trajectory and the active
term.53,63,64,66,80–84

Second, based on the AOU-T model Eq. (3), Debalow et al. has
proposed an instantaneous EPR _Sda ¼ Fm½v; t�T � _x=T (here Fm½v; t�
is defined as the nonlocal “memory forces”), which depends not only

on xðtÞ but also on the whole trajectory vðtÞ ¼ fxðtÞjt¼tf
t¼0 g of the par-

ticles’ position.53 In contrast, according to the definition of generalized
EPR in our work, _Sg ¼ Feff ðxÞT � _x=T þ d

dt lnPðx; tÞ, one can clearly
find that it is only dependent on the current configuration xðtÞ in the
steady state, which is easily accessible in experiments. On the other
hand, since AOU-T model is a coarse-grained form of Eqs. (1) and
(2), we also have another EP hierarchy: _Ssz > _Sda.

Third, in the literature, various continuous field theories based
on coarse-graining procedures have been proposed to capture the large
scale physics of active particles, such as “Active Models” A, B, and H.88

In Ref. 62, based on Active model B, Nardini et al. proposed an EPR
_Sna to quantify the dynamic irreversibility of the many-body active
particle systems at a macroscopic scale, even when phase separation
happens. Therein, the local steady-state EPR was defined as
_Sna ¼ � 1

D hlA _/i, where /ðx; tÞ denotes the fluctuating density field,
lA is the additional contribution to the chemical potential due to the
effect of activity and D is collective diffusivity. Due to its field depen-
dence, _Sna is more coarse-grained than our version _Sg .

At last, to highlight the effect of activity and effective interactions,
it would be instructive to consider a comparative case, where one can
treat the active system as another “effective equilibrium” system with a
high effective temperature Teff ¼ l�1ðDt þ DaÞ, corresponding to the
case in the limit sp ! 0. The corresponding total EPR is given by
_S
ð1Þ
g ¼ FðxÞT � _x=Teff . Such scheme has been reported to establish the

TUR for a single hot Janus swimmer successfully.56 The difference
between hDSgi and hDSð1Þg i, treated as some kind of the “hidden EP”
discussed above, is dominant especially when the gradient of mechani-
cal force @xiFiðxÞ is significant.

Generally, due to the above discussion, the hierarchical structure
of the mentioned EPRs can be rationalized as _Ssz > _Sda > _Sg
> _S

ð1Þ
g > _Sna by clarifying their corresponding degree of coarse-

graining. Such a hierarchy has a similar counterpart in Maxwell’s
demon system.90,91

In the following, we also present some discussion about the phys-
ical quantities by our formulation and the Harada–Sasa relation
(HSR), which provides a useful tool to calculate the heat dissipation of
the nonequilibrium systems.85 Specifically, Harada and Sasa proposed
an exact equality quantifying heat production in terms of the violation
of the fluctuation dissipation relation (FDR), which has been devel-
oped for active particle systems. For instance, in Ref. 62, Nardini et al.
have derived a generalized HSR within a field-theoretical description
of an active matter. Chaki and Chakrabarti have utilized the HSR to
calculate the heat dissipation of a colloidal particle immersed in an
active bath.58 More recently, Jones et al. have analyzed the power dissi-
pation of an active microswimmer (Chlamydomonas reinhardtii)
based on the HSR.86 Moreover, another meaningful application of the
HSR is that the seemingly hidden entropy production can be partially
probed from the violation spectrum of FDR.84 First of all, we state that
both quantities can provide proper measures of deviation from equi-
librium of many-body active particles. The difference is that in the
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experimental investigation, only the information of the spatial steady-
state trajectories is required under our framework, while for HSR, the
response spectrum and fluctuation spectrum of the system must be
accessible. The amount of information contained in the violation spec-
trum determines how well the HSR probes the heat dissipation of the
system. On the one hand, in small stochastic systems, it is a nontrivial
task to directly measure the response functions, whereas details about
spatial trajectories are easily observed. In fact, determining the
response spectrum requires measuring each frequency separately,
which must cover the high frequency region to ensure convergence of
the integration in the HSR, substantially increasing the statistical
effort.87 On the other hand, to experimentally test the HSR, one needs
to perturb the system. Conversely, our framework is noninvasive in
experiments.

IV. ENTROPIC BOUNDS AND THERMODYNAMIC
UNCERTAINTY RELATION(TUR)

According to Refs. 73 and 74, the entropic bounds on _Sg , stron-
ger than the second law, can be obtained by using the Cauchy–
Schwarz inequality

h _Sg i � hD � Feffð Þ2i: (12)

This conclusion worthy of attention implies that the change rate
of the generalized EP is bounded by an activity and configuration-
dependent term. Actually, activity affects both sides of the equation,
mainly through the activity dependent diffusivityDðxÞ and interaction
Feff ðxÞ.

Now, we turn to an important universal inequality between the
fluctuations in current and thermodynamic cost, the thermodynamic
uncertainty relation (TUR).9–22,26,67 To see the TUR of ABPs, we con-
sider a generalized current H½v� along a single trajectory v defined
as26,73

H v½ � ¼
ð
KðxÞT � _xdt; (13)

where KðxÞ ¼ ðK1ðxÞ;K2ðxÞ;…;KNðxÞÞ is a projection operator.
Using different projection operator, one can get different kinds of cur-
rent, such as the moving distance of particles or the EP in a time inter-
val. The change rate ofH can be written as

h _Hi ¼
ð
KðxÞTJðx; tÞdx: (14)

For instance, for the choice KiðxÞ ¼ dik in a steady state, the general-
ized observable current is the drift velocity of the kth active particle

FIG. 1. Validation of our key results, the TURs on the current H1 ¼ Sg . Here, B1 ¼ BðH1Þ ¼ 2hH1i2
Var½H1 � measures the uncertainty of total entropy production and v0 is the self-

propelling velocity. We also plot the generalized entropy production hDSgi, and the alternative entropy production hDSð1Þg i by treating the active system as an equilibrium sys-
tem with a high effective temperature is also presented for comparison. Comparison between these quantities from the simulations has been presented for different values of
the persistent time sp: sp ¼ 0:0167 (a), sp ¼ 0:0333 (b), sp ¼ 0:0833 (c), and sp ¼ 0:167 (d).
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and WiðxÞ ¼ dikDiðxÞ only depends on the current configuration of
the system.

Due to the markovity of effective dynamics, one can obtain16

Var H½ �
hHi2 � 2

hDSgi ; (15)

which serves as a TUR for currents based on information of particle-
position trajectories in the steady states. The effect of particle activity is
reflected in the activity-dependent total EP hDSgi. Mathematically, we
have approximated the colored noise by a white one and obtained the
effective Fokker–Planck equation, which facilitates following deriva-
tion. Only through this mapping, can we then set up a TUR, which
can be numerically checked for real systems or even by experiments.
Several notable points are presented as follows. First, in a steady state,
the change in system entropy vanishes and, thus, hDSgi ¼ hRgi=T
¼ T�1hÐ tf0 Feff ðxÞT � _xdti. Second, the TUR hDSgi � 2hHi2=Var½H�
gives the lower bound, and the entropic bound h _Sg i � hD � ðFeff Þ2i
provides the upper bound of the generalized EP. Furthermore, as
the generalized EP will decrease after coarse-grained approximation,
Eq. (15) can even be used to infer the exact EP including the
self-propulsion’s contribution. Third, in Ref. 19, Tan Van Vu et al.
indicated that the current fluctuation is constrained not only by the
entropy production but also by the average dynamical activity in an
athermal AOU model, by mathematically mapping the system into an
underdamped one. As with the framework in most studies, the
dynamic irreversibility measure that they define requires tracking the
self-propelled velocities of active particles.

V. NUMERICAL RESULTS OF ABPs MODEL

In this part, we have discovered the generalized EP as well as the
validity of entropic bound and TUR by direct numerical simulations.
We consider a system with N disk-shaped particles in a two-
dimensional xy plane. Here, the exclusive-volume pair potentials
of ABPs are modeled by the Weeks–Chandler–Anderson (WCA)
potential: UðrÞ ¼ 4�½ðdrÞ�12 � ðdrÞ�6 þ 1

4� for r < 21=6; � ¼ kBT and
U¼ 0. Here, r ¼ jx1 � x2j is the particle separation and � is the inter-
action strength. Proper values of parameters have been chosen to illus-
trate our main results while N¼ 5120 throughout the paper. Here, we
focus on the steady-state thermodynamics of the system, where the
system entropy change vanishes. We need to emphasize that the ther-
modynamic quantities are obtained from the trajectories generating
from Eqs. (1) and (2).

For a sufficiently large particle density /, our numerical results
show the MIPS: a coexistence between vapor and dense at a critical
self-propulsion velocity vc0(/), which is phase density dependent. To
further demonstrate the phase separation, we introduce the local order
parameter with respect to particle i46,66

q6ðiÞ ¼ 1
6

X
j2Ni

exp i6uij
� �����

����; (16)

whereNi is the closest six neighboring particles of i and uij is the angle
between the bond vector connecting particle i to j.

A. TUR and entropic bound

To test the validity of TUR and entropic bound, we explore the
ABPs model over 0, sp, and /. In Fig. 1, we begin by choosing the cur-

rent H1 ¼ Sg and plot the generalized EP hDSgi and hDSð1Þg i with the

TUR bound B1 ¼ BðH1Þ ¼ 2hH1i2=Var½H1� over sp by varying 0.
Indeed, one can see that all the data for B1 lie below hDSgi, demon-
strating the validity of our TUR Eq. (15). Nevertheless, if one use

hDSð1Þg i instead of hDSgi, obvious violation presents while increasing
the persistent time sp. Therefore, the simulation results clearly indicate
that our method to treat the many-body ABPs system correctly estab-
lishes the TUR in a large range of persistence time sp.

In Fig. 2(a), we also plot how the generalized EP, hDSgi and

hDSð1Þg i, and TUR bound behave for different particle density /. We

find that the difference between hDSgi and hDSð1Þg i (normalized by the
particles density) increases for larger /. This means that the

FIG. 2. Further validation of the TURs and entropic bounds. (a) Comparison between
the TUR bound B1 ¼ BðH1Þ ¼ 2hH1i2=Var½H1�, the generalized entropy produc-
tion hDSgi and the alternative entropy production hDSð1Þg i (normalized by the particles
density) for different particle density /. Here, we choose H1 ¼ Sg; sp ¼ 0:0167,
and v0 ¼ 50. (b), (c) Numerical results of TURs of larger range sp. (b) Log ratio of the

TUR parameter gg ¼ 2hHi2
Var½H�hDSgi and g

ð1Þ
g ¼ 2hHi2

Var½H�hDSð1Þg i for v0 ¼ 50 and v0 ¼ 100.

When ln g � 0, our TUR Eq. (15) is established, otherwise, the TUR is invalid. (c)
The non-monotonic persistent time dependence of the generalized entropy production
rate Sg when v0 ¼ 50. (d) Numerical validation of the entropic bound, Eq. (12), for a
larger range of self-propelling velocity v0. Here, we choose sp ¼ 0:0167.
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generalized EP Sg that we proposed may partially recover the informa-
tion loss when simply treating the active particles system as an effective
system with high temperature by considering the interparticle correla-
tions at a coarse-grained level via Fox approximation. The difference

between hDSgi and hDSð1Þg i becomes significant especially in a high
density system.

Furthermore, in Fig. 2(b), we numerically calculate the TUR

parameter gg ¼ 2hHi2
Var½H�hDSg i and gð1Þg ¼ 2hHi2

Var½H�hDSð1Þg i for a large range of

sp when v0 ¼ 50 and v0 ¼ 100. If gg � 1, our TUR Eq. (15) is estab-
lished; otherwise, the TUR is invalid. The TUR still holds for a quite
large sp ¼ 10, even though the Fox approximation might break down
for such a large sp. Further increasing the value of sp, it can be
observed that our TUR Eq. (15) also fails. In addition, we also plot the
persistent time dependence of the generalized EP for larger range of sp
in Fig. 2(c). More interestingly, we find that DSg has a non-monotonic
dependence on the persistence time, which is not consistent with the
physical expectation that increasing the persistent time displaces the
active particle systems progressively away from equilibrium. The
non-monotonic persistence time dependence implies that the mea-
sure of dynamic irreversibility is not monotonically related to the
degree of departure from equilibrium quantified by character of the
effective equilibrium hypothesis necessarily.89 In our opinion, this
nontrivial phenomenon is mainly due to the fact that the coarse-
grained method may not effectively restore the irreversibility of the
system in large persistent-time regime. Actually, the establishment
of the breakdown of the time-reversal symmetry for active systems
with significant persistent motion is of great challenge. Thus, a
deeper investigation of this disconnect is still an open question and
deserves further investigation.

At last, we also validate the entropic bound Eq. (12) h _Sg i
� hD � ðFeff Þ2i. In Fig. 2(d), we choose sp ¼ 0:0167 and the entropic
bound has been numerically proved by varying the self-propelling
velocity 0.

B. Generalized entropy production and MIPS

Another fundamental question in the context of stochastic ther-
modynamics is whether entropy production/dynamical irreversibility
can act as a tool for typifying phase transitions. Insight into this ques-
tion has been gained in some recent studies.18,92–100 For instance, by
analyzing the majority-vote model, Noa et al.95 have argued that there
are specific hallmarks of entropy production for a given transition,
whether it is continuous or discontinuous.

We now focus on the relation between the dynamical irreversibil-
ity and MIPS in the ABPs system. The simulations are performed at a
fixed particle density / ¼ 0:768 by varying the velocity 0, and the
MIPS occurs at a critical value vc0j/¼0:768 � 54:3. In Fig. 3(a), the
steady-state generalized EPs, hDSgi, have been shown. As 0 increases,
the systems are driven far away from equilibrium with hDSgi increas-
ing. Furthermore, we find that the hDSgi � v0 derivative has inflection
points and reaches the maximum near the phase transition point, pro-
viding the evidence that the generalized EP DSg can be used to indicate
the large scale MIPS. On the other hand, we also calculate the local
entropy production (density), hDSlgðxÞi, by averaging the particles’
entropy production in a local lattice around given position x. As shown
in Fig. 3(b), the local EP shows a strong contribution in the vicinity of

the interfaces between phases.62 In addition, we find that local entropy
production almost vanishes in the high density phase due to the
dynamical arrest effect.101,102 Thus, the coarse-grained entropy produc-
tion DSg also acts as a reliable measure to determine the boundary of
MIPS. Finally, to investigate the connection between EP and defects,
typical snapshots for / ¼ 0:768 and v0 ¼ 80 > vc0 of the MIPS are
shown in Fig. 4. Specifically, the structural information coded in the
spatial distribution of the local order parameter for individual particles
is shown in Fig. 4(a) with the generalized EP in Fig. 4(b) as a contrast.
The defects are found to allow for the increase in the generalized EP of
active particles. To confirm this conclusion clearly, we calculate the
mean EP, hDSgia, by averaging DSg for all particles with same q6 in a
high density phase in Fig. 4(c). Clearly, the mean EP hDSgia decreases
with the local order parameter q6 increasing as expected.

VI. CONCLUSIONS

In conclusion, we focus on the thermodynamic quantities for
active systems over a finite time interval in steady states. We establish
the stochastic thermodynamics for the many-body active particle sys-
tem based on an approximate FPE obtained via a time-local approxi-
mation. By mapping the systems into an equivalent Langevin
equation, one can identify a generalized trajectory-dependent EP DSg ,
wherein particle activity comes into play by a configuration-dependent
diffusion coefficient and a many-body effective interaction force. The
relationship between the generalized EP and the rich collective behav-
iors of active matter has been illustrated. Precisely, we utilize the gener-
alized entropy production to identify the phase transition point, the
interface and the defects in high density phases of MIPS, showing that
the generalized EP acts as a tool to quantify the dynamical irreversibil-
ity on a macroscopic scale. Furthermore, the TUR and entropic bound
for the currents in the steady state can be established successfully for a

FIG. 3. (a) The generalized entropy production hDSgi and the corresponding first
derivative have been plotted over the kinetic phases of MIPS. Here, the particles
density / ¼ 0:768 to guarantee the occurrence of MIPS. Vertical blue dashed dot
lines indicate the critical velocity vc0. (b) Density and generalized entropy productionhDSgi in a local lattice for ABPs model with MIPS have been plotted. Here, we
choose / ¼ 0:768 and v0 ¼ 80 > vc0. Vertical blue dashed dot lines indicate the
interface of MIPS.
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large range of persistent time. In contrast, we show that simply map-
ping the system to an equivalent one with an effective temperature
does not capture the right bounds, highlighting the suitable coarse-
grained approach via Fox approximation. Due to the link between
TURs and anomalous diffusion,103 our results may help to bound the
timescale of anomalous kinetics in active systems. We believe that our
work can provide a deeper understanding of the stochastic thermody-
namics in the many-body active particles system.
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