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Mode-coupling Theory for the Dynamics of Dense Underdamped Active Brownian
Particle System

Mengkai Feng and Zhonghuai Hou∗
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University of Science and Technology of China, Hefei, Anhui 230026, China

We present a theory to study the inertial effect on glassy dynamics of the underdamped active
Brownian particle (UABP) system. Using the assumption of the nonequilibrium steady-state, we
obtain an effective Fokker-Planck equation for the probability distribution function (PDF) as a
function of positions and momentums. With this equation, we achieve the evolution equation of the
intermediate scattering function (ISF) through the Zwanzig-Mori projection operator method and
the mode-coupling theory (MCT). Theoretical analysis shows that the inertia of the particle affects
the memory function and corresponding glass transition by influencing the structure factor and a
velocity correlation function. The theory provides theoretical support and guidance for subsequent
simulation work.

I. INTRODUCTION

Active matter covers a broad range of different materi-
als, including biological living tissues, self-propelled col-
loidal particles, etc. A number of different systems have
been studied in depth, from experimental, theoretical and
simulation aspects [1–8]. In recent years, a few novel-
ties of glassy dynamics have been observed in dense ac-
tive matter systems [9–22]. Results showed that activity
changes the glassy behavior of dense passive colloidal flu-
ids rather than simply erasing the glassy phase. Except
for the features observed in equilibrium glass-forming liq-
uids, such as dynamic slowing down, non-exponential re-
laxations and dynamical heterogeneity[23–27], glass tran-
sitions of the active matter systems have unique features
like non-trivial velocity correlation [14, 20, 21] and dif-
ferent kinds of effective temperatures [20, 28–31]. Al-
though a complete understanding of the glassy dynam-
ics and mechanism of glass transition is still lacking un-
til now [32–41], much less for the active matter glassy
behavior with non-equilibrium property, the research of
glassy dynamics in active system has received extensive
attention[42–49].

In terms of theoretical research, the active glassy dy-
namics of a variety of models have been studied with
different methods. For example, Farage and Brader
[50] treated the active Brownian particle (ABP) as nor-
mal Brownian particles except the diffusion coefficient
as single particle diffusion coefficient. Both this work
and Liluashvili et al.’s [17] used the idea of integration-
through-transient(ITT) to deal with the non-equilibrium
characteristic. Meanwhile, Szamel derived an approx-
imate theory for the glassy dynamics of athermal ac-
tive Ornstein-Uhlenbeck particles (AOUP) at the non-
equilibrium steady-state [15], and extended the theory
to another system which includes the thermal noises
[51]. Both his works depend on the assumption that
the non-equilibrium steady-state currents are zeros. The
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result of the former one predicted a non-monotonic de-
pendence of structural relaxation time on the persistent
time of AOUPs, which is consistent with the computer
simulations[14]. In this research field, we also proposed
a theoretical work on the glassy behavior of ABPs [16],
wherein we used the Fox’s approximation to handle the
active noise as a colored noise. By introducing an effec-
tive diffusion coefficient and a persudo-structure factor,
our result showed that the activity of particles acceler-
ates the structural relaxation and then pushes the glass
transition point to a higher density, in accordance with
prior simulation data [12].

Most recently, inertial effect on self-propelled particle
system has been studied[30, 52–62]. Ordinarily, the typ-
ical Brownian particle moves in a solvent at a very low
Reynolds number, which means these particles are highly
overdamped, so that the mass of particle is neglectable.
However, for some active Brownian particle systems such
as self-propelled particles with large size or in solvent free
environment, the low Reynolds number condition is on
longer satisfied. Finite inertia is relevant for macroscopic
objects covering at least three orders of magnitude in
size(10−3 ∼ 100m) [63]. An important example is self-
propelled granules generated by a vibrating plate, which
has been commonly used as a model system in experi-
ment recently [64–67]. In simulations, Löwen et al. ob-
served a distinct inertial delay between orientation and
velocity of particles [52]. Mandal et al. found that in the
underdamped active particle system, a temperature dif-
ference exists when the motility induced phase separation
(MIPS) appears [30]. They also found that a novel re-
entrant MIPS upon the particle inertia [30]. This result
indicates a clear inertial effect on the system structure
in nonequilibrium situation. It motivates us to further
ask whether this effect exists in glass transition region.
Other examples of inertial active particles include the
swimmers at air-water interface [68], toy active particle
model [69], etc. All these works lead us to contemplate
whether the mass of active particles affects the glassy dy-
namics in dense colloidal systems. So far, the discussion
about inertial effect of glass transition is little. Physi-
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cally, this question may not be a relevant issue in equi-
librium statistical mechanics, since the structure factor
of dense fluids is only dependent on the temperature and
the interactions, instead of the mass of particle. How-
ever, this analysis is unsuitable for the non-equilibrium
situation, based on the preceding discussions.

Here in this present paper, we developed a mode-
coupling theory to study underdamped active Brown-
ian particle in three dimensions. The model is mainly
suitable for large particle or solvent-free systems, whose
contribution of thermal noises can be neglected. We as-
sume that a nonequilibrium steady-state (NESS) exists,
and thereby a PDF can be identified along with the av-
erage over this distribution. To study the structure re-
laxation and glassy dynamics of such systems, we used
the Zwanzig-Mori projection operator method and stan-
dard mode-coupling factorization approximations, which
have been already successfully used in active systems [14–
17, 36, 51, 70–72]. Results show that the inertial effect of
ABPs is reflected as a correlation function of momentum
and structure, which further influences the memory func-
tion. Our theory also gives a prediction that the inertia
of particles accelerates the structure relaxation.

This paper is organized as follows. In Sec. II, we intro-
duce and briefly discuss the underdamped active particle
model with randomly rotational noise, and give some free
particle properties for such model. In Sec.III, we discuss
the steady-state assumption and corresponding distribu-
tion function. In Sec IV, we use the projection operator
method and mode-coupling method to derive the evo-
lution equation of a correlation function. We end with
discussion in Sec. V.

II. UNDERDAMPED ACTIVE BROWNIAN
PARTICLES

A. Modeling

We consider a three-dimensional system consisting
of N -interacting self-propelled underdamped particles.
Each particle i is propelled by an external force with
randomly rotating direction ei and constant magnitude
f0. The interaction between two particles is a spherically
symmetric potential V (|ri − rj |), and hydrodynamic in-
teraction has been neglected. The equations of particle
motion read

ṙi =
pi
m

(1a)

ṗi = − γ
m
pi + Fi

(
rN
)

+ f0ei (1b)

ėi = ηi × ei (1c)

where ri and pi are the position and momentum vectors
of particle i, m and γ are the particle mass and the fric-
tion coefficient which are assumed to be the same for each
particle, Fi = −

∑
j 6=i∇iV (|rij |) is the total interacting

force acting on particle i. In Eq.(1c), ηi is a Gaussian

white noise vector with zero mean 〈ηi (t)〉noise = 0 and
variance

〈
ηi (t)ηj (t′)

〉
noise

= 2Dr1δijδ (t− t′), where
Dr is the rotational diffusion coefficient and 1 the unit
tensor. The correlation of the direction of propulsion
force is 〈ei(t)ej(t′)〉noise = 1

3 exp (−2Dr |t− t′|)1δij and
τR = (2Dr)

−1 gives the correlation time. Note that we
have ingnored the thermal noises in Eq.(1b) and Dr and
γ are set as independent parameters. In addition, when
the characteristic time scale of inertia τI = m

γ tends to
zero, Eq.(1b) reduces to ṙi = γ−1Fi

(
rN
)

+ v0ei with
v0 = f0/γ, i.e. the overdamped athermal active Brown-
ian particle model.

B. Free particle behavior

For a free UABP, i.e. Fi = 0 in Eqn.(1b), the momen-
tum satisfies 〈pi〉 = 0 over the noise average (omitting
subscript ’noise’ for convenience), as well as variance

〈
p2
i

〉
=

f2
0

(γ/m) (γ/m+ 2Dr)
, (2)

(see details in App.A). Although the system clearly vio-
lates the fluctuation-dissipation theorem and thereby the
equilibrium state could never be reached, we can still as-
sume that a formal equipartition theorem remains valid
here, i.e.

〈
p2
i

〉
= 3mkBTeff . Then, an effective tempera-

ture Teff can be defined as

kBTeff =

〈
p2
i

〉
3m

=
f2

0 τRτ
2
I

3m (τI + τR)
. (3)

In the limit of Dr → ∞, 〈ei(t)ei(t′)〉 =

(6Dr)
−1
δ (t− t′)1 which corresponds to a white

noise with infinitesimal variance. In this circumstance, if
f0 is a finite value, variance of momentum

〈
p2
i

〉
tends to

zero too. Unless, if f2
0 /Dr is set as a nonzero finite value

under Dr → ∞ limit, one has kBTeff =
f2
0

6γDr
. In this

case, the particle actually undergoes an effective passive
underdamped Brownian motion with effective diffusivity
Deff =

v20
6Dr

.
Now we consider the mean square displacement (MSD)

of free UABP. By integrating the momentum correlation
function, we have

〈
∆r2 (t)

〉
=

2t

m2

∫ t

0

(
1− s

t

)
〈p(s) · p(0)〉ds

=
2v2

0τR
τ2
R − τ2

I

[
τ2
R

(
t− τR + τRe

−t/τR
)

− τ2
I

(
t− τI + τIe

−t/τI
) ]
. (4)

For long-time limit t → ∞, one has
〈
∆r2 (t)

〉
= 2v2

0τRt,
thereby an effective long-time diffusion coefficient can be

defined as Deff = limt→∞
〈∆r2(t)〉

6t =
v20τR

3 =
v20

6Dr
. Yet for
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Figure 1. Mean square displacement of free UABP, with v0 =
1, and different τR, τI . Lines(a,b): for τI = τR case; lines(c,d):
for τR � τI ; lines(e,f,g): for τR � τI . All lines show ballistic
movements at short-time region and turn to normal diffusions
in long-time scale.

short-time limit t → 0, one has
〈
∆r2 (t)

〉
=

v20τR
(τR+τI) t

2,
which indicates a superdiffusion behavior at short-time
region. Besides, the overdamped limit τI → 0 is also
covered by

〈
∆r2 (t)

〉
= 2v2

0τR
(
t− τR + τRe

−t/τR
)
. In

Fig.1, the MSDs with constant v0 and various τI and τR
are plotted. Clearly, curves (b) and (c) share the same
long-time behavior (also the same for (a), (f) and (g)),
curves (a) and (d), (c) and (d) share the same short-time
behaviors respectively. All MSD curves show crossovers
between superdiffusion and normal diffusion. The time
scale of transition point τc increases with both τI and τR,
roughly τc ≈ max (τI , τR). In addition, it is worth noting
that the interplay between τR and τI significantly in-
fluences the movements of the UABP, and consequently
the MSDs. We discuss this issue with following cases:
(i) τI � τR, the MSD reduces to

〈
∆r2 (t)

〉
= v2

0t
2 at

short-time scale, thereby all MSDs collapse at this re-
gion, see curves (c) and (d); (ii) τI � τR, the short-
time MSD reduces to

〈
∆r2 (t)

〉
=

v20τR
τI

t2, therefore the
spatial range of superdiffusion is very small in this case
(curves (e-g)); (iii) specially τR = τI , the MSD reduces to〈
∆r2 (t)

〉
= 2v2

0τR
(
t− τR + τRe

−t/τR
)
, which is equiva-

lent to the overdamped athermal ABP case.

Comparing with the typical time scale of glassy dy-
namics, say τα, both τI and τR are much smaller than
τα. However, based on the discussion above, we realize
that τI and τR have effects on long-time behavior such as
MSD. This motivates us to investigate how these char-
acteristic time scales influence glassy dynamics, through
theoretical method in the present work.

III. EFFECTIVE FOKKER-PLANCE
EQUATION

The time evolution of the N -particle PDF
P
(
rN ,pN , ωN , t

)
is governed by the Fokker-Planck

equation(FPE), which can be written as

∂tP
(
rN ,pN , ωN , t

)
= Ω̂P

(
rN ,pN , ωN , t

)
, (5)

Ω̂ ≡
N∑
j=1

[
∂

∂pj
·
( γ
m
pj − Fj − f0ej

)
− ∂

∂rj
· pj
m

+DrR̂
2
j

]
(6)

where ωi = (θi, φi) denotes the orientational angle of
ei, Ω̂ denotes the Fokker-Planck operator, R̂j = θ̂j∂θj +

1
sin θj

φ̂j∂φj and R̂2
j = 1

sin θj
∂θj
(
sin θ∂θj

)
+ 1

sin2 θj
∂2
φj

is
the rotational diffusion operator in spherical coordinates
(θi, φi). For convenience, we define Ω̂R = Dr

∑N
j=1 R̂

2
j to

describe the self-propulsion direction part.

A. NESS assumption and reduced PDF

The treatment of NESS is actually a fundamental dif-
ficulty in driven systems, due to the absence of detailed
balance nature. In principle, it allows the existence of
nonzero currents in such steady-state [73]. On the other
hand, after the coarse-graining over a certain time scale,
the currents vanish at a mesoscopic level, for some sys-
tems without any alignment interactions [74]. This in-
deed brings convenience to the theoretical study of dense
active systems. However in the present underdamped
system, it is unclear whether this conclusion is still reli-
able. To avoid this ambiguity, we just assume that the
non-equilibrium steady-state exists, satisfying

∂tP
ss
(
rN ,pN , ωN

)
= 0, (7)

where “ss” stands for steady-state, and do not place fur-
ther restrictions on steady-state currents.

Our main target is to calculate the ISF Fq(t), which
is the time correlation function of density function in
Fourier space (also knows as density fluctuations) ρq(t) =∑N
j=1 e

iq·rj(t),

Fq(t) =
1

N

〈
ρ∗q(0)ρq(t)

〉
=

1

N

N∑
j=1

N∑
l=1

〈
e−iq·rl(0)eiq·rj(t)

〉
(8)

Here the bracket 〈· · · 〉 is redefined as the average over
the NESS distribution mentioned above, explicitly

〈· · · 〉 =

∫
(· · · )P ss

(
rN ,pN , ωN

)
drNdpNdωN . (9)
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Using the Fokker-Planck equation and operator, we can
rewrite the ISF as

Fq(t) =
1

N

〈
ρ∗qe

Ω̂tρq

〉
(10)

where we must emphasize that, in this bracket, any op-
erator acts on all of the objects standing right of itself,
including the steady-state distribution function P ss [75].

According to Eqs.(1a)-(1c), the position and momen-
tum variables do not influence the evolution of self-
propulsion. This suggests that it should be available to
derive an effective equation of motion for a reduced PDF
without self-propulsion variables. Therefore, we intro-
duce the reduced PDF as

Pe
(
rN ,pN ; t

)
≡
∫
P (rN ,pN , ωN ; t)dωN (11)

where dωN = dω1dω2 . . . dωN and dωi = sin θidθidφi.
Considering the position, momentum and self-propulsion
variables are coupled in the distribution function, one
cannot write P ss

(
rN ,pN , ωN

)
as a product of steady-

state distribution functions of each variable. Yet, we
can integrate out the self-propulsion variable to obtain
a reduced PDF at steady-state, viz., P sse

(
rN ,pN

)
=∫

P ss
(
rN ,pN , ωN

)
dωN . Furthermore, since ∂tP

ss
e =∫

Ω̂P ssdωN = 0, we get a continuity equation

∂tP
ss
e = −

∑
j

(
∂

∂rj
· jrj +

∂

∂pj
· jpj
)

= 0 (12)

with two current densities jrj =
pj

m P
ss
e and jpj =

−
(
γ
mpj − Fj − f0 〈ej〉lss

)
P sse , where

〈· · · 〉lss =
1

P sse (rN ,pN )

∫
(· · · )P ss

(
rN ,pN , ωN

)
dωN .

(13)
is the so-called ’local steady-state’ average[15]. Although
these currents may not be zeros in such system without
detailed balance, a main assumption of our theory is that
for each j-particle ∂

∂rj
· jrj + ∂

∂pj
· jpj = 0 holds , i.e.,

∂

∂pj
·
[( γ
m
pj − Fj − f0 〈ej〉lss

)
P sse

]
=

pj
m
· ∂

∂rj
P sse .

(14)
Comparing the Szamel’s works Ref.[14, 15] where the

overdamped athermal AOUP system were studied, the
continuity equation leads to a vanishing currents assump-
tion, Fj + 〈fj〉lss = 0, i.e. local system force Fj acting

on particle j is balanced by the local steady-state aver-
aged active force 〈fj〉lss in the NESS. Here in the under-
damped case, however, such a force balance is violated
because the particle has a momentum pj . Phenomeno-
logically, during the time interval ∆tj ∼ ∆rj/ (pj/m),
the momentum itself is balanced by the impulse net force(
γ
mpj − Fj − f0 〈ej〉lss

)
acting on the particle, which is(

γ
mpj − Fj − f0 〈ej〉lss

)
∆tj ∼ ∆pj , in accordance with

Eq.(14). Such a qualitative discussion here highlights the
difference between underdamped and overdamped sys-
tems. For shorthand notation, we may rewrite Eq.(14)
as Ω̂IP

ss
e = 0, where

Ω̂I ≡
∑
j

[
∂

∂pj
·
( γ
m
pj − Fj − f0 〈ej〉lss

)
− ∂

∂rj
· pj
m

]
(15)

and the subscript I means “inertial” since Ω̂I would re-
duce to

∑
j γ
−1
[
Fj + f0 〈ej〉lss

]
= 0 if inertial effect is

not taken into account.

B. Projection operator and effective FPE

Here we follow the standard procedure of the Zwanzig-
Mori’s projector operator method [76]. Setting

(
rN ,pN

)
as the relevant subspace, we can define a projection op-
erator

Plss (· · · ) =
P ss

(
rN ,pN , ωN

)
P sse (rN ,pN )

∫
(· · · ) dωN , (16)

Acting this projection operator Plss onto the distribution
function P (rN ,pN , ωN , t), one has

PlssP (rN ,pN , ωN ; t) =
P ss

P sse

∫
P (rN ,pN , ωN ; t)dωN

≡ P ss

P sse
Pe(r

N ,pN ; t) (17)

Applying the Laplace transform, LT , to both
sides, we have PlssP̃ (z) = (P ss/P sse ) P̃e(z), where
P̃ (z) ≡ LT

[
P (rN ,pN , eN ; t)

]
(z) and P̃e(z) ≡

LT
[
Pe(r

N ,pN ; t)
]

(z) are Laplace transforms of the orig-
inal and reduced PDFs, respectively. After a so-call
“Dyson decomposition” (see details in App.B), time evo-
lution of Eq.(17) in Laplace domain is written as

LT [∂tPlssP (t)] (z) = PlssΩ̂PlssP̃ (z) + PlssΩ̂
(
z −QlssΩ̂Qlss

)−1

QlssΩ̂PlssP̃ (z). (18)
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Using the definition of Ω̂ and Plss, the first term is solved as

PlssΩ̂PlssP̃ (z) =
P ss

P sse

∑
j

[
∂

∂pj
·
( γ
m
pj − Fj − f0 〈ej〉lss

)
− ∂

∂rj
·
(pj
m

)]
P̃e(z) ≡

P ss

P sse
Ω̂I P̃e(z) (19)

where Ω̂I was introduced in Eq.(15). As already discussed in the last section, this term is nonzero, which is distinct
from the case of overdamped systems. For the second term in the rhs of Eq.(18), we need to firstly deal with(
z −QlssΩ̂Qlss

)−1

term. Herein, an approximation has to be introduced

QlssΩ̂Qlss ≈ Ω̂R = Dr

∑
j

R̂2
j , (20)

indicating that the rotation of the self-propulsion direction plays a major rule in the dynamical evolution in orthogonal
phase space. Then the second term in Eq.(18) is calculated as

PlssΩ̂Qlss
(
z −QlssΩ̂Qlss

)−1

QlssΩ̂PlssP̃ (z)

≈ f2
0

z + 2Dr

P ss

P sse

∑
ij

∂pi
·
{(
〈eiej〉lss − 〈ei〉lss 〈ej〉lss

)
·
[
∂pj
−
(
∂pj

lnP sse
)]}

P̃e(z)

≡P
ss

P sse
Ω̂A(z)P̃e(z) (21)

where the subscript A simply indicates “activity”. Herein, 〈eiej〉lss − 〈ei〉lss 〈ej〉lss is the steady-state correlations of
the self-propulsion (directions), and Ω̂A(z) describes how such correlations would influence the evolution of particles
motion in the subspace

(
rN ,pN

)
.

Combining all these results together, we have LT [∂tPlssP (t)] (z) = P ss

P ss
e

[
Ω̂I + Ω̂A(z)

]
P̃e(z). On the other hand,

considering LT [∂tPlssP (t)] (z) = P ss

P ss
e
LT [∂tPe(t)] (z), we achieve the evolution equation for reduced PDF that does

not contain self-propulsion variables

LT [∂tPe(t)] (z) = Ω̂eff (z) P̃e(z) (22)

where

Ω̂eff (z) =Ω̂I + Ω̂A(z)

=

N∑
j=1

[
∂

∂pj
·
( γ
m
pj − Fj − f0 〈ej〉lss

)
− ∂

∂rj
·
(pj
m

)]

+

N∑
i,j=1

f2
0

z + 2Dr
∂pi ·

{(
〈eiej〉lss − 〈ei〉lss 〈ej〉lss

)
·
[
∂pj −

(
∂pj lnP sse

)]}
(23)

is the effective Fokker-Planck operator, wherein the first term Ω̂I comes from the inertial effect and the second term
Ω̂A(z) results from particle activity. This operator serves as one of the main results of present work.

In an overdamped ABP system, Szamel obtained
a similar effective evolution operator for distribution
function[51],

Ωeff
sz (z) =

∑
ij

∇i ·

[
Dtδij +

v2
0

z +Dr

(
〈eiej〉lss

− 〈ei〉lss 〈ej〉lss
)]
· [∇j − (∇j lnP sse )] (24)

wherein we use subscript ’sz’ to denote the operator in
Szamel’s work to avoid confusion. Comparing our result
with this operator, Ω̂I in Ω̂eff(z) has no counterpart here,
since particle momentum was not considered. Then, the
second term Ω̂A(z) in Ω̂eff(z) is quite similar in form to
the whole effective operator Ωeff

sz (z), except that ∂pi in
Ω̂A(z) was replaced by ∇j in Ωeff

sz (z), since the relevant
reduced subspace only involved particle positions there.
In addition, the last term ∂pj

−
(
∂pj

lnP sse
)
in Ω̂A(z) in-

dicates the diffusion and drift effects of distribution func-
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tion evolution in momentum space, which is governed by
self-propulsion force correlation.

Applying inverse Laplace transform on Eq.(22), we also
have

∂

∂t
Pe
(
rN ,pN , t

)
= Ω̂IPe(t)

+ Ω̂′A

∫ t

−∞
e−2Dr(t−t′)Pe(t

′)dt′ (25)

in real-time domain, where Ω̂′A = (z + 2Dr)Ω̂A(z) is
z-independent. This equation shows that operator Ω̂′A
contributes a memory effect of self-propulsion correla-
tions on the distribution function evolution. In ad-
dition, for reduced steady-state distribution function
P sse

(
rN ,pN

)
, considering limt→∞ Pe(t) = P sse , we have

∂
∂tP

ss
e =

[
Ω̂I + Ω̂A(0)

]
P sse = Ω̂eff (0)P sse = 0.

IV. MODE-COUPLING THEORY

A. Dynamical variables and correlations

Using the effective operator Ω̂eff (z), the intermediate
scattering function can be rewritten as in the Laplace
domain

LT [Fq (t)] (z) ≡ F̃q (z) =
1

N

〈
ρ∗q

(
z − Ω̂

)−1

ρq

〉
≈ 1

N

〈
ρ∗q

(
z − Ω̂eff (z)

)−1

ρq

〉
e

, (26)

wherein the last approximation sign is due to the ap-
proximation in the derivation of Ω̂eff(z). This equation
is the starting point of this section. We derive a memory
function representation of F̃q (z) by using a projection
operator approach similar to those used in in Ref.[77],
[78]and[79].

Note that now the subspace involves particle posi-
tions and momenta, which is reminiscent of the standard
mode-coupling theory for glass transition of supercooled
atomic fluids[27, 32]. To proceed, we introduce a dynam-
ical variable vector A = (A1, A2) =

(
ρq, j

L
q

)
, where

jLq =
∑
j

q̂ · pj
m
eiq·rj =

1

i |q|
ρ̇q (27)

is the longitudinal current. We introduce its correlation
function as

ω‖(q) =
1

N

〈
jL∗q jLq

〉
=

1

N

∑
ij

q̂ ·
〈pipj
m2

eiq·(ri−rj)
〉
· q̂, (28)

which can be obtained from direct simulations. The ex-
pression explicitly considers the correlations between ve-
locity and density fluctuation. We emphasize that this

correlation is necessary, since it has been revealed that
a hidden velocity ordering exists in dense suspensions of
self-propelled disks [21, 80]. In addition, we point out
that for any dynamical variable A which does not explic-
itly contain self-propulsion variables, 〈A〉 = 〈A〉e exactly
holds.

To better illustrate the physical nature of ω‖(q), we
naively ignore the correlations between momentums of
different particles, leading to

Nω‖(q) ≈
∑
ij

q̂ ·
〈
δij

pipj
m2

eiq·(ri−rj)
〉
· q̂

=
∑
i

1

3m2

〈
p2
i

〉
≡ Nv2

T

3
, (29)

where vT denotes an averaged velocity which could be
dependent on system parameters like Dr, v0 or particle
density ρ = N/V . As a rough approximation, one may
assume that v2

T = 3kBTeff/m, where Teff is the effective
temperature defined for the free active particle. In this
case, using Eq.(2), one has

vT =
f0√

γ (γ + 2Drm)
=

v0√
1 + τI/τR

(30)

and kBTeff

m =
v20

1+τI/τR
,which should be suitable for dilute

active particle systems. However, such approximation is
not justified for moderate and dense systems, since for
underdamped active systems, the ’temperature’ could be
different for different phases as demonstrated in some
previous works on MIPS [30, 31]. For dense active parti-
cles system as studied here (beyond MIPS region), a well-
defined effective temperature Teff, should be homoge-
neous in space [20]. A similar system, overdamped active
Ornstein-Uhlenbeck particle system, has been found that
an effective temperature can be well-defined[28]. Never-
theless, Eq.(29) is instructive to understand the physics
of correlation function ω‖(q).

B. Projection for density fluctuation mode

With the treatments of last subsection, we can
introduce the correlation function matrix C(t) =

〈A∗A(t)〉, the Laplace transform of which reads C̃ (z) =〈
A∗
[
z − Ω̂eff(z)

]−1

A

〉
e

. To obtain the evolution func-

tion of C̃ (z), we introduce another projection operator

P (· · · ) =

2∑
m,n=1

Am [〈A∗A〉e]
−1
mn
〈A∗m (· · · )〉e (31)

where [〈A∗A〉e]
−1

=

[
[NS(q)]

−1
0

0
[
Nω‖(q)

]−1

]
and

Sq = 1
N

〈
ρ∗qρq

〉
e
is the steady-state structure factor.

We also introduce an orthogonal projection operator
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Q = 1−P. Using the standard Mori-Zwanzig projection
procedures[76], one can obtain the evolution equation of
the correlation matrix as

zC̃ (z)− C (t = 0) = iΩ(z) · C̃ (z)− K̃ (z) · C̃ (z) , (32)

wherein iΩ(z) is the collective frequency matrix and
K̃ (z) is the memory kernel matrix. The collective fre-
quency is written as

iΩ(z) =
〈
A∗Ω̂eff(z)A

〉
e
· 〈A∗A〉−1

e

=

[
0 −iq

−iq ω‖(q)S(q) −
f2
0Θ(q)

(z+2Dr)m2ω‖(q)

]
(33)

where

Θ (q) = −2Drm
2

Nf2
0

〈
j∗qΩ̂eff(z)jq

〉
e

=
1

N
q̂ ·
〈∑

ij

(
〈eiej〉lss − 〈ei〉lss 〈ej〉lss

)
× e−iq·rieiq·rj

〉
e

· q̂ (34)

denotes a correlation function for active force directions
between particle pairs (see derivation details in App.C),
which can be obtained by direct simulations in practice.
The memory kernel matrix is written as

K̃ (z) = −
〈
A∗Ω̂effQ

(
z −QΩ̂effQ

)−1

QΩ̂effA

〉
e

· 〈A∗A〉−1
e

=

[
0 0
0 m̃q (z)

]
(35)

where m̃q (z) is the memory function, reads

m̃q (z) = − 1

Nω‖(q)

〈
jL∗q Ω̂effQ

(
z −QΩ̂effQ

)−1

QΩ̂effjLq

〉
e

(36)

Comparing the left lower corner of the matrix equa-
tion(32), we get

F̃q (z) =
Sq

z +
Ω2
q

z + ν̃q(z) + m̃q (z)

(37)

where Ω2
q =

q2ω‖(q)

Sq
, ν̃q(z) =

f2
0Θ(q)

(z+2Dr)m2ω‖(q)
≡ 2Drνq

z+2Dr
so

that νq = limz→0 ν̃q(z). Applying inverse Laplace trans-
form to bring this equation back to real-time space, one
gets the evolution equation for ISF Fq (t)

∂2
t Fq (t) + Ω2

qFq (t)

+

∫ t

0

[
mq (t− u) + 2Drνqe

−2Dr(t−u)
]
∂uFq (u) du = 0

(38)

This equation is one the main results of the present work.
C. Mode-coupling-like approximation

To make Eq.(38) practicable, one needs to solve the
memory function mq(t). We use a factorization approxi-
mation which was developed in the mode-coupling theory
for the glass transition.

Firstly, we introduce another projection operator, to
project quantities onto the density pair subspace ρpρk,

P2(· · · ) =
∑
k,p

ρpρk〉eG−1
pk〈ρ

∗
pρ
∗
k(· · · )〉e (39)

where Gpk = 2N2SpSk is the normalization factor, due
to the factorization approximation〈

ρ∗pρ
∗
kρp′ρk′

〉
e
≈
〈
ρ∗pρk′

〉
e
〈ρ∗kρp′〉e

+
〈
ρ∗pρp′

〉
e
〈ρ∗kρk′〉e

=(δpp′δkk′ + δpk′δkp′)N
2SpSk (40)

Secondly, we insert the projection operator P2 into
the memory function, substitute the QΩ̂effjLq with
P2QΩ̂effjLq , and at the same time, replace the evolu-

tion operator
(
z −QΩ̂effQ

)−1

in the orthogonal space

by
(
z − Ω̂eff

)−1

, leading to
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m̃q (z) =− 1

Nω‖(q)

〈
jL∗q Ω̂effQ

(
z −QΩ̂effQ

)−1

QΩ̂effjLq

〉
e

≈− 1

Nω‖(q)

〈
jL∗q Ω̂effQP2

(
z − Ω̂eff

)−1

P2QΩ̂effjLq

〉
e

=− 1

Nω‖(q)

∑
pp′kk′

〈jL∗q Ω̂effQρpρk〉eG−1
pk

×
〈
ρ∗pρ
∗
k

(
z − Ω̂eff

)−1

ρp′ρk′

〉
e

×G−1
p′k′

〈
ρ∗p′ρ

∗
k′QΩ̂effjLq

〉
e

(41)

Thirdly, using factorization technique to solve
〈
ρ∗pρ
∗
k

(
z − Ω̂eff

)−1

ρp′ρk′

〉
e

, note that it has to be done in the time

domain

LT −1

[〈
ρ∗pρ
∗
k

(
z − Ω̂eff

)−1

ρp′ρk′

〉
e

]
≈LT −1

[〈
ρ∗p

(
z − Ω̂eff

)−1

ρp′

〉
e

]
LT −1

[〈
ρ∗k

(
z − Ω̂eff

)−1

ρk′

〉
e

]
+ LT −1

[〈
ρ∗p

(
z − Ω̂eff

)−1

ρk′

〉
e

]
LT −1

[〈
ρ∗k

(
z − Ω̂eff

)−1

ρp′

〉
e

]
=N2

(
δpp′δkk′ + δpk′δkp′

)
Fp(t)Fk(t) (42)

where LT −1 means inverse Laplace transform. Then we just need to calculate

〈jL∗q Ω̂effQρpρk〉e = 〈jL∗q Ω̂effρpρk〉e − 〈jL∗q Ω̂effρq〉e(NSq)−1〈ρ−qρpρq〉e (43)

The second term includes a three-point correlation, that can be calculated by a standard procedure called “convolution
approximation”[27]

〈ρ−qρpρk〉 ≈ δp+k,qNSkSpSq. (44)

Using an equality Ω̂eff (ρkρpP
ss
e ) = −i

(
kjLk ρp + pjLpρk

)
P sse , the first term can be reduced as

〈jL∗q Ω̂effρpρk〉e = −ik
〈
jL∗q jLk ρp

〉
e
− ip

〈
jL∗q jLpρk

〉
e

(45)

To proceed, we introduce an approximation which is a generalized version of convolution approximation (44), by
involving particle momentums,

〈
jL∗q jLpρk

〉
e

=

〈∑
ij

pi
m
· q̂e−iq·ri pj

m
· p̂eip·rjρk

〉

≈δq−p,kq̂ ·Nω(q) ·

〈
1

N

∑
j

pjpj
m2

〉−1

· ω(p) · p̂Sk

=Nδq−p,kq̂ · p̂
ω‖(q)ω‖(p)

ω‖(∞)
Sk (46)

where ω(q) = 1
N

∑
ij

〈pipj

m2 e
iq·(ri−rj)

〉
, ω‖(∞) = limq→∞ ω‖(q) and notice that limq→∞ ω(q) =

〈
1
N

∑
j

pjpj

m2

〉
. As a

result, memory function can be rewritten as

mq(t) =
ρω‖(q)

16π3q2

∫
dk [q · (pCp + kCk)]

2
Fp(t)Fk(t) (47)

wherein a new correlation function is defined as Ck = 1
ρ

(
1− ω‖(k)

ω‖(∞)Sk

)
. Notice that if omitting the correlations
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between velocity and structure, we have
〈
jL∗q jLpρk

〉
e
≈

kBTeff

m Nδq−p,kq̂ · p̂Sk, so that in the memory function
(47), Ck reduces to ordinary direct correlation function
ck = ρ−1 (1− 1/Sk). We also note that the vertex term
q̂ · (pCp + kCk) does not explicitly include the activity
parameters, which is different from our previous MCT
study for dense active colloidal system[16, 81] but same as
Ref.[15]. The direct reason is, herein we do not use effec-
tive interaction and diffusion approximations, but rather
explicitly consider the correlation between velocity and
structure.

V. DISCUSSION

Motivated by a series of works on inertial effect in ac-
tive systems and recent research for glassy dynamics of

dense active particle systems, we presented a theoreti-
cal method for studying the dynamics of dense under-
damped active particle system, and showed the details of
the derivation.

Comparing with our previous MCT work for ABP[16],
the present framework no longer subjects to the small
self-propulsion persistent time region since the starting
points of these two theories are different. In terms of
other MCT works for overdamped active particle [14, 15,
51] that share the same assumption of NESS, our theory
can reduce to them when taking the overdamped limit.

In the limit of vanishing persistent time, our formulas
can be reduced to an equivalent equilibrium Brownian
particle system. For better comparison, we write the
mode-coupling equation for dense underdamped Brown-
ian particle system in equilibrium,

∂2
t Fq(t) +

γ

m
∂tFq(t) + Ω2

eq,qFq(t) +

∫ t

0

meq
q (t− u)∂uFq(u)du = 0, (48)

meq
q (t) =

ρkBT

16π3mq2

∫
[q · (pcp + kck)]

2
Fp(t)Fk(t)dk (49)

where Ω2
eq,q = kBT

mq2Sq
. The mode-coupling equation and

the memory kernel are similar to that in Eq.(38) and
Eq.(47). The differences are given in turn: (i) the sec-
ond term in Eq.(48) is γ/m rather than an exponen-
tial decaying memory kernel 2Drνqe

−2Drt in UABP case;
(ii) the coefficient of mode-coupling kernel in Eq.(49)
is kBT

m rather than Ω2
qSq/q

2 = ω‖(q) in UABP sys-
tem; and (iii) direct correlation function ck,p in the
memory kernel (49) rather than Ck,p. In fact, it can
be proved that when Dr → ∞ while keeping f2

0 /Dr

as a nonzero finite value, both our model and de-
rived MCT equation reduce to the corresponding equi-
librium version. Firstly, we have limDr→∞Θ(q) = 1

3 ,

lim′Dr→∞ ω‖(q) =
f2
0

6mγDr
(prime labels that f2

0 /Dr is
a nonzero finite value), so that lim′Dr→∞ νq = γ

m .
Considering limDr→∞

∫ t
0

2Drνqe
−2Dr(t−u) ∂

∂uFq(u)du =

vq
∂
∂tFq(t), the difference (i) is restored. Secondly, by

simply defining f2
0

6γDr
= kBTeff , then they share the same

form. Finally, as we discussed above in last section, Ck
reduces to ordinary version direction correlation function
ck.

The solution of Eqs.(37) and (38) provides a predic-
tion of the glass transition through the ergodic parameter
fq = limt→∞ Fq(t)/Sq. When fq = 0 the system is liquid,
otherwise fq 6= 0, the system is in glass state. According
to Eq.(37), by taking the limit fq = limz→0 zF̃q(z)/Sq,

we find out that

fq
1− fq

= lim
t→∞

mq (t) /Ω2
q, (50)

which means that the glass transition point only depends
on the memory function, or essentially the nonequilib-
rium steady-state structure factor Sk and function Ck,
rather than the correlation of active force direction Θ (q)
directly. As for how the inertia influences the glass tran-
sition, Eqs.(47) and (50) show that the particle mass m
does not change the critical point directly, and the ques-
tion boils down to how the inertia influences the structure
Sq and correlation function ω‖(q), which requires further
simulation research.

To analyse the structure relaxation of dense UABP sys-
tem, i.e. the long-time scale behavior of ISF (Eq.(38) is
inconvenient for this analysis), we review Eq.(37) in small
z region and apply inversed Laplace transform, leading
to

∂

∂t
Fq(t) + ωqFq(t) + ωq

∫ t

0

Mq(t− t′)
∂

∂t′
Fq(t

′)dt′ = 0,

(51)

where the frequency term ωq =
Ω2

q

νq
= 2Dr

SqΘ(q)

(
qmω‖(q)

f0

)2

and the memory kernel

Mq(t) =
mq(t)

Ω2
q

=
ρSq

16π3q4

∫
dk [q · (pCp + kCk)]

2
Fp(t)Fk(t)

(52)
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To briefly analysis the relaxation behavior, we firstly con-
sider the small τR case, since ω‖(q) has little oscillations
[14, 42] and can be estimated with Eq.(29) in this case.
According to Eq.(30), and keeping the friction and v0

as constants, we may expect that mω‖(q) ≈
v20m

1+τI/τR
in-

creases with the particle inertia, since kBTeff/m is an
estimation of ω‖(q). Therefore, if the structure and ac-
tive force correlation are not sensitive to a small change of
mass, the increasing of the mass will accelerate the struc-
tural relaxation, which means a shorter relaxation time
for larger mass. Beyond to small τR region, there might
be a nontrivial influence of mω‖(q) on the relaxation be-
havior. Herein we emphasize that, this effect only exists
in active underdamped system, since for passive system,
the frequency term reads m

γ Ω2
eq,q = kBT

γq2Sq
= Dt

q2Sq
, mean-

ing that the relaxation is invariant with the change of the
particle mass.

In summary, our theory begins with a non-equilibrium
steady-state assumption. Using the projection operator
technique on the distribution function, the variables of
self-propulsion direction are eliminated so that we can
achieve the effective evolution equation for the distri-
bution function of positions and momentums of parti-
cles. After that, we proceed with the Zwanzig projec-
tion operator method and standard mode-coupling the-
ory procedure, to obtain the evolution equation for in-
termediate scattering function. The form of the equation
is very similar to other glassy systems, which means a

mode-coupling transition is also valid for UABP system,
although the quantitative results still require computer
simulations to gain the steady-state structure and related
correlation functions, which will be expressed in our up-
coming work. In addition, our theory is essentially inde-
pendent on the type of active particle, for example, one
can easily extend our theoretical framework to a similar
active particle model such as active Ornstein-Uhlenbeck
particles.

In future work, we will firstly simulate the UABP sys-
tem to obtain the steady-state structure and velocity cor-
relations, then solve the equations numerically and study
the inertial effect on glassy dynamics and ergodicity tran-
sition. And as a comparison, direct simulations of UABP
in long-time scales are also required. Moreover, the pro-
jection method we used in two places are not limited in
MCT study. Based on the non-equilibrium steady-state
assumption, one can study many other questions further,
such as effective temperature, stochastic thermodynam-
ics for active systems and active bath problems.
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Appendix A: Velocity correlation for free active particle

For free ABP in d- dimensional space, the EOM is written as

ṙ =p/m (A1a)
ṗ =− pγ/m+ v0γe (A1b)

ė =
√

2Dre× η (A1c)

wherein the white noise term satisfies 〈ηα(t)ηβ(t′)〉 = δαβδ(t− t′). Subequations (a) and (b) give the formal solution
for the particle momentum

p(t) = p(0)e−γt/m + γv0

∫ t

0

e−(t−u)γ/me(u)du, (A2)

and the final one can be rewritten as

ė(t) = H(t)e(t), (A3)

where H(t) =
√

2Dr

 0 ηz(t) −ηy(t)
−ηz(t) 0 ηx(t)
ηy(t) −ηx(t) 0

 for 3D systems and H(t) =
√

2Dr

(
0 ηz(t)

−ηz(t) 0

)
for 2D systems.

This matrix equation has a formal solution

e(t) = lim
dt→0

eH(t)dteH(t−dt)dt · · · eH(t0)dte(t0)

≡ e
∫ t
t0

H(s)ds

+ e(t0), (A4)
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where subscript ’+’ labels to the summation order and its transposition is

eT (t) = e(t0)e

∫ t
t0

HT (s)ds

− = lim
dt→0

e(t0)eH
T (t0)dt · · · eH

T (t−dt)dteH
T (t)dt

= e(t0)e

∫ t
t0
−H(s)ds

− , (A5)

since for all case HT = −H. For convenience, we set t0 = 0 in the following. The time correlation function of
self-propulsion direction is

〈e(t)e(t′)〉 =

〈
e
∫ t
0
H(s)ds

+ e(0)e(0)e
∫ t′
0
−H(s)ds

−

〉
=

1

d

〈
e
∫ t
0
H(s)ds

+ e
∫ t′
0
−H(s)ds

−

〉
=

1

d

〈
e
∫ t
t′ H(s)ds

+

〉
=

1

d
lim
dt→0

〈
eH(t)dt

〉〈
eH(t−dt)dt

〉
· · ·
〈
eH(t′)dt

〉

if t′ 6 t, without loss of generality. Then, using eH(t′)dt =
∑∞
n=0

1
n! (Hdt)

n, and expectations for Gaussian variables,

E
[
(Hdt)

2
]

= −(d− 1)2DrdtI, E
[
(Hdt)

2k+1
]

= 0 and E
[
(Hdt)

2k
]

= (2k − 1)!!E
[
(Hdt)

2
]k

(for k ∈ Z+), one has

E
[
eH(t′)dt

]
= I +

∞∑
k=1

1

(2k)!
E
[
(Hdt)

2k
]

= I +

∞∑
k=1

1

2kk!
[−2(d− 1)Drdt]

k
I

= e−(d−1)DrdtI

and therefore

〈e(t)e(t′)〉 = d−1Ie−(d−1)Dr|t−t′| (A6)

or in an inner product form

〈e(t) · e(t′)〉 = e−(d−1)Dr|t−t′| (A7)

For convenience, we define τI = m/γ, τR = [(d− 1)Dr]
−1, and calculate the time correlation function of momentum

〈p(t) · p(t′)〉, (assume t > t′ and t, t′ � 0 )

〈p(t) · p(t′)〉 =e−(t+t′)/τI
∫ t

0

du

∫ t′

0

du′e(u+u′)/τIf2
0 〈e(u) · e(u′)〉

=f2
0 e
−(t+t′)/τI

∫ t

0

du

∫ t′

0

du′e(u+u′)/τIe−|u−u
′|/τR

=f2
0 e
−(t+t′)/τI

[∫ t′

0

du

∫ t′

0

du′ +

∫ t

t′
du

∫ t′

0

du′

]
e(u+u′)/τIe−|u−u

′|/τR

=f2
0 [(1) + (2)]
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Let x = u+ u′, y = u′ − u, these two integrals become

(1) =
1

2
e−(t+t′)/τI

∫ t′

−t′
e−y/τRdy

∫ 2t′−|y|

|y|
ex/τI dx

=e−(t+t′)/τI
∫ t′

0

e−y/τRdy

∫ 2t′−y

y

ex/τI dx

=e−(t+t′)/τI τI

∫ t′

0

e−y/τR
[
e(2t′−y)/τI − ey/τI

]
dy

=τI

[
e−(t−t′)/τI 1− e−(τ−1

I +τ−1
R )t′

τ−1
R + τ−1

I

− e−(t+t′)/τI 1− e−(τ−1
R −τ

−1
I )t′

τ−1
R − τ−1

I

]
limt,t′→∞

= τI
e−(t−t′)/τI

τ−1
R + τ−1

I

and

(2) =e−(t+t′)/τI
∫ t

t′
du

∫ t′

0

du′e(u+u′)/τIe−(u−u′)/τR

=e−(t+t′)/τI e
(τ−1

I −τ
−1
R )t − e(τ−1

I −τ
−1
R )t′

τ−1
I − τ−1

R

e(τ−1
I +τ−1

R )t′ − 1

τ−1
I + τ−1

R

=
1

τ−2
I − τ−2

R

[
e−t

′/τIe−t/τR − e−t/τIe−t
′/τR

] [
e(τ−1

I +τ−1
R )t′ − 1

]
limt,t′→∞

=
1

τ−2
I − τ−2

R

[
e−(t−t′)/τR − e−(t−t′)/τI

]
The momentum correlation reads

〈p(t) · p(t′)〉 =f2
0

1

τ−2
I − τ−2

R

[
e−(t−t′)/τR − e−(t−t′)/τI + τI

(
τ−1
I − τ−1

R

)
e−(t−t′)/τI

]
=f2

0

1

τ−2
I − τ−2

R

[
e−(t−t′)/τR − τI

τR
e−(t−t′)/τI

]
=

f2
0 τRτ

2
I

(τ2
R − τ2

I )

[
τRe
−(t−t′)/τR − τIe−(t−t′)/τI

]
(A8)

Therefore 〈
p2
〉

= lim
t→∞

〈p(t) · p(t)〉

=
f2

0 τRτ
2
I

(τR + τI)
=

f2
0

γ
m

(
γ
m + (d− 1)Dr

) (A9)

This is Eq.(2) in the main text.

Appendix B: Derivation of effective Fokker-Planck equation

In this section, we show the details of the derivation for effective Fokker-Planck equation.
Applying Laplace transform of Eq.(5), we get the equations for PlssP (t) and QlssP (t),

LT [∂tPlssP (t)] (z) =zPlssP̃ (z)− PlssP (0)

=PlssΩ̂ (Plss +Qlss) P̃ (z) (B1)

LT [∂tQlssP (t)] (z) =zQlssP̃ (z)−QlssP (0)

=QlssΩ̂ (Plss +Qlss) P̃ (z) (B2)
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where Qlss is defined as Qlss = I − Plss which is also a projection operator saytisfying Q2
lss = Qlss and PlssQlss =

QlssPlss = 0. The second equation formally gives

QlssP̃ (z) =
(
z −QlssΩ̂Qlss

)−1

QlssΩ̂PlssP̃ (z) (B3)

Herein, for arbitrary operator Ô, the expression
(
z − Ô

)−1

expresses the summation of infinite operator series(
z − Ô

)−1

=
∑∞
i=0 z

−(i+1)Ôi. And the fact that QlssP (0) = 0 has been used in the second equality since the
initial state is usually chosen to stay at the relevant subspace. Substituting Eq.(B3) into Eq.(B1), we get the closed
equation for PlssP̃ (z)

LT [∂tPlssP (t)] (z) = PlssΩ̂PlssP̃ (z) + PlssΩ̂
(
z −QlssΩ̂Qlss

)−1

QlssΩ̂PlssP̃ (z). (B4)

i.e. Eq.(18) in main text.
To solve this equation, we introduce two well-behaved function g = g

(
rN ,pN , eN , t

)
and ge =∫

g
(
rN ,pN , eN , t

)
dωN , then we have

PlssΩ̂g =
∑
j

P ss

P sse

∂

∂pj
·
( γ
m
pj − Fj

)
ge −

P ss

P sse

pj
m
· ∂ge
∂rj
− f0

P ss

P sse

∂

∂pj
·
∫

ejgdωN , (B5)

and

PlssΩ̂Plssg =
∑
j

P ss

P sse

∂

∂pj
·
( γ
m
pj − Fj

)
ge −

P ss

P sse

pj
m
· ∂ge
∂rj
− f0

P ss

P sse

∂

∂pj
·
(
〈ej〉lss ge

)
=
∑
j

P ss

P sse

∂

∂pj
·
( γ
m
pj − Fj − f0 〈ej〉lss

)
ge −

P ss

P sse

pj
m
· ∂ge
∂rj

, (B6)

This leads to the first term of rhs of Eq.(B4)

PlssΩ̂PlssP̃ (z) =
P ss

P sse

∑
j

[
∂

∂pj
·
( γ
m
pj − Fj − f0 〈ej〉lss

)
− ∂

∂rj
·
(pj
m

)]
P̃e(z) (B7)

Then, one has

PlssΩ̂Qlssg =PlssΩ̂g − PlssΩ̂Plg

=− f0
P ss

P sse

∂

∂pj
·
∫ (

ei − 〈ej〉lss
)
gdωN , (B8)

as well as

Ω̂Plssg =
∑
j

∂

∂pj
·
( γ
m
pj − Fj − f0ej

)(
P ss

ge
P sse

)
− pj
m
· ∂

∂rj

(
P ss

ge
P sse

)
+DrR̂

2
j

(
P ss

ge
P sse

)
=
∑
j

ge
P sse

∂

∂pj
·
( γ
m
pj − Fj − f0ej

)
P ss +

( γ
m
pj − Fj − f0ej

)
P ss · ∂

∂pj

ge
P sse

− ge
P sse

pj
m
· ∂

∂rj
P ss − P sspj

m
· ∂

∂rj

ge
P sse

+Dr
ge
P sse

R̂2
jP

ss

=
∑
j

( γ
m
pj − Fj − f0ej

)
P ss · ∂

∂pj

ge
P sse
− P sspj

m
· ∂

∂rj

ge
P sse

+
ge
P sse

Ω̂P ss. (B9)
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such that

QlssΩ̂Plssg =Ω̂Plssg − PlssΩ̂Plssg

=
∑
j

∂

∂pj
·
( γ
m
pj − Fj − f0ej

)(
P ss

ge
P sse

)
− P ss

P sse

∂

∂pj
·
( γ
m
pj − Fj

)
ge +

P ss

P sse

pj
m
· ∂ge
∂rj

− pj
m
· ∂

∂rj

(
P ss

ge
P sse

)
+DrR̂

2
j

(
P ss

ge
P sse

)
+ f0

P ss

P sse

∂

∂pj
·
(
〈ej〉lss ge

)
=
( γ
m
pj − Fj

)
ge · ∂pj

P ss

P sse
− pj
m
ge · ∂rj

P ss

P sse
+DrR̂

2
j

(
P ss

ge
P sse

)
− f0ge 〈ej〉lss · ∂pj

P ss

P sse
− f0

∂

∂pj
·
[(
ej − 〈ej〉lss

) P ss
P sse

ge

]
. (B10)

We emphasize that, so far, the projection method is exact, no matter the self-propulsion variables are fast variables

or not. To deal with
(
z −QlssΩ̂Qlss

)−1

, nevertheless, an approximation has to be introduced. Now we rewrite the

Fokker-Planck operator as Ω̂ = Ω̂I + δΩ̂I + Ω̂R, where

δΩ̂I =
N∑
j=1

[
f0

∂

∂pj
·
(
〈ej〉lss − ej

)]
. (B11)

Since projector Qlss evolves in a space that is orthogonal to the relevant subspace spanned by
(
rN ,pN

)
, and operator

Ω̂I does not contain ω variables, we haveQlssΩ̂IQlss = 0. On the other hand, since PlssΩ̂R = 0, we haveQlssΩ̂RQlss =
Ω̂R. Considering the operator δΩ̂I (defined in Eq.(B11)) actually reflects a fluctuating effect

(
ej − 〈ej〉lss

)
, it is

reasonable to assume that the operator is entirely due to the free relaxation of the self-propulsion, i.e.

QlssΩ̂Qlss ≈ Ω̂R = Dr

∑
j

R̂2
j . (B12)

Notice that this approximation is essentially same as the one used in Szamel’s work [15, 51].Due to the structure

of Eq.(18), to proceed, we need to calculate
∫
ei

(
z −QlssΩ̂Qlss

)−1

gdωN . Using the approximation QlssΩ̂Qlss ≈

Dr

∑
j R̂

2
j , and the operator definition

(
z −QlssΩ̂Qlss

)−1

≈
∑∞
k=0

(Dr
∑

j R̂
2
j)

k

zk+1 , with integration by parts technique,
we have

∫
ei

Dr

∑
j

R̂2
j

k

gdωN

=− 2Dr

∫
ei

Dr

∑
j

R̂2
j

k−1

gdωN

= (−2Dr)
k
∫

eigdωN (B13)

(R̂2
jej = −2ej in 3D) and therefore

∫
ei

∞∑
k=0

(
DrR̂

)k
zk+1

gdωN

=

∞∑
k=0

(−2Dr)
k

zk+1

∫
eigdωN

=
1

z + 2Dr

∫
eigdωN (B14)
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Hence we get ∫
ei

(
z −QlssΩ̂Qlss

)−1

gdωN ≈ 1

z + 2Dr

∫
eigdωN (B15)

and similarly ∫
〈ei〉lss

(
z −QlssΩ̂Qlss

)−1

gdωN =
1

z
〈ei〉lss

∫
gdωN (B16)

Next we just need to calculate
∫
QlssΩ̂PlssgdωN and

∫
eiQlssΩ̂PlssgdωN . The first one is∫

QlssΩ̂PlssgdωN

=
∑
j

∂

∂pj
·
( γ
m
pj − Fj − f0 〈ej〉lss

)
ge −

∂

∂pj
·
( γ
m
pj − Fj

)
ge

+
pj
m
· ∂ge
∂rj
− pj
m
· ∂ge
∂rj

+ f0
∂

∂pj
·
(
〈ej〉lss ge

)
= 0 (B17)

and the second one ∫
eiQlssΩ̂PlssgdωN

=
∑
j

−〈ei〉lss
ge
P sse

∂pj

( γ
m
pj − Fj

)
P sse − f0 〈eiej〉lss · P

ss
e ∂pj

ge
P sse

P sse ∂pj

ge
P sse

+ f0 〈ei〉lss 〈ej〉lss P
ss
e ∂pj

ge
P sse

+ 〈ei〉lss
ge
P sse

∂pj
·
(
f0 〈ej〉lss P

ss
e

)
+ 〈ei〉lss

ge
P sse

pj
m
· ∂rjP sse

=−
∑
j

f0

(
〈eiej〉lss − 〈ei〉lss 〈ej〉lss

)
· P sse ∂pj

ge
P sse

(B18)

The last step utilizes Eq.(14) in maintext. Then,

∑
i

∂pi
·
∫

eiQlssΩ̂PlssgdωN

=−
∑
ij

∂pi
· f0

(
〈eiej〉lss − 〈ei〉lss 〈ej〉lss

)
· P sse ∂pj

ge
P sse

=−
∑
ij

∂pi
·
{
f0

(
〈eiej〉lss − 〈ei〉lss 〈ej〉lss

)
·
[
∂pj
−
(
∂pj

lnP sse
)]
ge
}

(B19)

and finally

PlssΩ̂Qlss
(
z −QlssΩ̂Qlss

)−1

QlssΩ̂Plssg

≈P
ss

P sse

f2
0

z + 2Dr

∑
ij

∂pi
·
{(
〈eiej〉lss − 〈ei〉lss 〈ej〉lss

)
·
[
∂pj
−
(
∂pj

lnP sse
)]
ge
}

(B20)

≡P
ss

P sse
Ω̂A(z)P̃e(z)

Now we reconsider the approximation (B12) through this equation. Although the influence of the fluctuation(
ej − 〈ej〉lss

)
on the evolution of eN was neglected (omitting of δΩ̂I), its correlation function 〈eiej〉lss−〈ei〉lss 〈ej〉lss

still contributes on Ω̂A.
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Appendix C: Derivation details of MCT

In this part, we show the details of derivation for mode-coupling equation, including the frequency term, memory
function, etc.

For convenience, we begin with some useful properties of density fluctuation, longitudinal current and steady-
state distribution function. Firstly we introduce the adjoint operator O† for any operator O, which is defined as∫ (
O†f

)
gdΓ =

∫
fOgdΓ. Using integration by parts, the adjoint of Ωeff is

Ω̂eff† (z) =
∑
i

−
(
γ
pi
m
− Fi − f0 〈ei〉lss

)
· ∂pi +

pi
m
· ∂ri

+
f2

0

z + 2Dr

∑
ij

[
∂pj

+
(
∂pj

lnP sse
)]
·
(
〈eiej〉lss − 〈ei〉lss 〈ej〉lss

)
· ∂pi

(C1)

For convenience, we introduce the inversed gradient operator ∂−1
pi

, which is defined as ∂−1
pi
∂pj

= δij1, then the
steady-state equation (14) formally becomes

γ

m
pj − Fj − f0 〈ej〉lss =

1

P sse
∂−1
pj

pj
m
· ∂

∂rj
P sse (C2)

This equation associates the total force acting on each particle and the geometrical property of marginal steady-state
distribution function. The non-equilibrium characteristic is also shown in this equation, because if we replace the
distribution function with equilibrium distribution, right-hand side of the equation reduces to zero.

Now back to the derivation,〈
jL∗q Ω̂effjLq

〉
e

=
〈(

Ω̂eff†jLq

)∗
jLq

〉
e

=
∑
ij

〈
− 1

m

(
γ
pj
m
− Fj − f0 〈ej〉lss

)
· q̂e−iq·rj q̂ · pi

m
eiq·ri

〉
e

− iq
〈(

q̂ · pj
m

)2

e−iq·rj q̂ · pi
m
eiq·ri

〉
e

+
f2

0

z + 2Dr

∑
ijk

〈(
∂pj

lnP sse
)
·
[
〈eiej〉lss − 〈ei〉lss 〈ej〉lss

]T · q̂
m
e−iq·ri q̂ · pk

m
eiq·rk

〉
e

=
∑
ij

− 1

m

∫
q̂ ·
(
∂−1
pj

pj
m
· ∂

∂rj
P sse

)
e−iq·rj q̂ · pi

m
eiq·ridrNdpN

− f2
0

z + 2Dr

∑
ijk

〈
∂pj
·
[
〈eiej〉lss − 〈ei〉lss 〈ej〉lss

]T · q̂
m
e−iq·ri q̂ · pk

m
eiq·rk

〉
e

(C3)

the first term equals ∑
ij

1

m

∫
q̂ ·
(
∂−1
pj

pj
m
· ∂

∂rj
P sse

)
e−iq·rj q̂ · pi

m
eiq·ridrNdpN

=
∑
ij

1

m

∫
q̂ ·
(
∂−1
pj

pj
m
· ∂

∂rj
P sse

)
e−iq·rj

(
∂pi∂

−1
pi
· pi
m

)
· q̂eiq·ridrNdpN

=−
∑
ij

1

m

∫
q̂ ·
(
δij1

pj
m
· ∂

∂rj
P sse

)
· q̂
(
∂−1
pi
· pi
m

)
e−iq·rjeiq·ridrNdpN

=
∑
i

1

m

∫ (
pi
m
· ∂
∂ri

P sse

)(pi · pi
2m

+ C
)

drNdpN

=
∑
i

− 1

m

∫
P sse

∂

∂ri
·
[pi
m

(pi · pi
2m

+ C
)]

drNdpN

=− 1

m

∑
i

〈
∂

∂ri
·
[pi
m

(pi · pi
2m

+ C
)]〉

e

= 0 (C4)
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since the terms containing pi are all odd powers. Herein, we treat the operator ∂−1
pi

as an integral essentially. The
second part of Eq.(C3) is

∑
ijk

〈
∂pj
·
[
〈eiej〉lss − 〈ei〉lss 〈ej〉lss

]T · q̂
m
e−iq·ri q̂ · pk

m
eiq·rk

〉
e

=
∑
ijk

〈
q̂ · δjk

m
1 ·
[
〈eiej〉lss − 〈ei〉lss 〈ej〉lss

]T · q̂
m
e−iq·rieiq·rk

〉
e

=
∑
ij

1

m2
q̂ ·
〈(
〈eiej〉lss − 〈ei〉lss 〈ej〉lss

)
e−iq·rieiq·rj

〉
e
· q̂

≡ 1

m2
NΘ (q) (C5)

where Θ (q) is a function that quantifies correlations of active force direction for each particles. Finally, we get〈
jL∗q Ω̂eff (z) jLq

〉
e

= − f2
0

z + 2Dr

1

m2
q̂ ·

〈∑
ij

(
〈eiej〉lss − 〈ei〉lss 〈ej〉lss

)
e−iq·rieiq·rj

〉
e

· q̂

≡ − 1

z + 2Dr

f2
0

m2
NΘ (q) (C6)

and therefore the collective frequency term

iΩ(z) =

 0
〈
ρ∗qΩ̂eff(z)jq

〉〈
j∗qΩ̂eff(z)ρq

〉 〈
j∗qΩ̂eff(z)jq

〉  ·( [NS(q)]
−1

0

0
[
Nω‖(q)

]−1

)

=

(
0 −iqNω‖(q)

−iqNω‖(q) −
f2
0

(z+2Dr)m2NΘ (q)

)
·

(
[NS(q)]

−1
0

0
[
Nω‖(q)

]−1

)

=

(
0 −iq

−iq ω‖(q)S(q) −
f2
0

(z+2Dr)m2

Θ(q)
ω‖(q)

)
. (C7)

This is Eq.(33) in the main text.
For equilibrium situation, i.e. the passive undredamped Brownian particle system,〈

jL∗q Ω̂eqjLq

〉
eq

=
〈(

Ω̂eq†jLq

)∗
jLq

〉
eq

=
∑
ij

〈
− 1

m

(
γ
pj
m
− Fj

)
· q̂e−iq·rj q̂ · pi

m
eiq·ri

〉
− i |q|

〈(
q̂ · pj

m

)2

e−iq·rj q̂ · pi
m
eiq·ri

〉

=
∑
ij

− 1

m

∫
q̂ ·
(
∂−1
pj

pj
m
· ∂rjPeq − kBTγ

∂

∂pj
Peq

)
e−iq·rj q̂ · pi

m
eiq·ridrNdpN

=
∑
ij

− 1

m

∫
q̂ ·
(
∂−1
pj

pj
m
· ∂rjPeq

)
e−iq·rj q̂ ·

(
∂pi

∂−1
pi
· pi
m

)
eiq·ridrNdpN

+
1

m

∫
q̂ · kBTγ

∂

∂pj
Peqe

−iq·rj q̂ · pi
m
eiq·ridrNdpN

=
∑
ij

1

m

∫
q̂ · δij1 · q̂

pj
m
·
(
∂rjPeq

) (
∂−1
pi
· pi
m

)
e−iq·rjeiq·ridrNdpN

− 1

m

∫
kBTγPeqe

−iq·rj q̂ ·
(
∂pj

pi
m

)
· q̂eiq·ridrNdpN

=
∑
i

1

m

∫
pi
m
· (∂riPeq)

(pi · pi
2m

)
drNdpN − NkBTγ

m2

=− NkBTγ

m2
(C8)
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Thus the frequency term is

iΩ =

(
0 −i |q| NkBTm

−i |q| NkBTm −NkBTγm2

)( 1
NS(q) 0

0 m
NkBT

)
=

(
0 −i |q|

−i |q| kBTmS(q) − γ
m

)
(C9)

This eventually gives the MCT equation for underdamped passive Browian particle system, Eq.(48) in the main text.
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