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Designing autonomous Maxwell’s demon via stochastic resetting
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Autonomous Maxwell’s demon is a new type of information engine proposed by Mandal and Jarzynski
[Proc. Natl. Acad. Sci. USA 109, 11641 (2012)], which can produce work by exploiting an information tape.
Here, we show how stochastic resetting can notably enhance the performance of autonomous Maxwell’s demons
in two ways: the speed of reaching their functional states and the range of their effective work regions. We
propose some design principles for this system using stochastic resetting. Firstly, one can drive any autonomous
demon system to its functional periodic steady state at a fastest pace from any initial distribution through
resetting the demon for a predetermined critical time and then stopping the reset. Secondly, we can make the
system achieve a new functional state with a larger effective working region by keeping the reset on. We also
discover a dual-function region in a new phase diagram of the demon with resetting, where the demon can
remarkably produce work and erase information on the tape at the same time, apparently breaking the second
law of thermodynamics. We resolve this paradox by deriving a modified Clausius inequality that includes the
cost of resetting.
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I. INTRODUCTION

In 1867 [1], James C. Maxwell conceived the thought
experiment of Maxwell’s demon, a hypothetical creature that
can use information to apparently violate the second law
of thermodynamics. In 1961, Rolf Landauer and Charles
Bennett showed that Maxwell’s demon does not actually
violate the second law of thermodynamics [2,3]. They demon-
strated that the demon must expend energy to store the
information gained from measurements, which upholds the
validity of the second law of thermodynamics. Maxwell’s
demon thought experiment has led to a series of interdisci-
plinary studies focusing on the interplay between information
theory and thermodynamics. Recent years have witnessed
great progress in this field known as information thermo-
dynamics, including fruitful experimental [4] and theoretical
studies [5].

Over the past 150 years, Maxwell’s-demon-like mod-
els have undergone extensive theoretical scrutiny [5–8].
These models can be broadly classified into two categories:
measurement-feedback-controlled demons and autonomous
demons. On the one hand, T. Sagawa and M. Ueda have
developed the theoretical framework for the first class of
measurement-feedback demons [9]. On the other hand, Man-
dal and Jarzynski have constructed two analytically solvable
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autonomous demon models [8,10], each consisting of a mem-
ory tape and a demon. These memory-tape autonomous
demons can realize processes that apparently defy the second
law of thermodynamics by exploiting information. Subse-
quent research has delved into these two types of Maxwell’s
demon models, resulting in a rich body of papers [11–19].
Additionally, both of these demon models have been further
extended to quantum systems [20–22].

Stochastic resetting, a rather common driving mechanism
that randomly halts and restarts a dynamical process, has
recently captured significant attention in the field of statistical
physics [23–32]. It has been revealed that stochastic reset-
ting can, counterintuitively, accelerate dynamical processes
on average. For instance, Evans and Majumdar [23] were the
first to theoretically investigate stochastic resetting, demon-
strating that the mean time for a freely diffusing Brownian
particle to reach a fixed target becomes finite with constant-
rate Poisson resetting, whereas it diverges without resetting.
Subsequently, the benefits of resetting have been observed in
various stochastic processes in real world, including animal
foraging, RNA polymerase backtrack recovery [33], and re-
laxation processes [34]. Furthermore, the effect of stochastic
resetting on thermodynamics is also of interest [35–40]. For
more discussions on stochastic resetting, refer to two recent
reviews [41,42]. Generally, this stochastic resetting mecha-
nism could be used to optimize controlling protocols in small
systems.

Autonomous demons possess two critical features that are
central to evaluating their performance. The first feature is
the relaxation timescale required for the demon to attain its
functional periodic steady state [43]. It would be more ex-
perimentally accessible to initially prepare the demon in an
equilibrium state, typically distinct from the periodic steady
state. This incurs a time cost as the demon transitions into
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its working state, where it begins converting information re-
sources into work. The phase before working state is often
referred to as the warming-up phase in the literature [44].
In most cases, minimizing the time cost associated with the
demon’s initial deviation from the functional state is desirable,
leading to a shorter warming-up phase. The demons operate
effectively in two key regions: one where they can produce
positive work by harnessing information resources (the in-
formation engine region) and another where they function as
erasers, replenishing information resources (the information
eraser region, characterized by the decrease in the information
entropy of the memory tape on average). The second crucial
feature is the scope of these two functional regions. One
would desire to extend these two regions of the demon to
enhance its performance.

In the current study, we employ a discrete-time stochastic
resetting mechanism to establish design principles for the
autonomous Maxwell’s demons. The mechanism can enhance
the demon’s performance in two critical aspects: the time
cost and the effective working regions. To achieve control
over these key features of the autonomous demon, we intro-
duce two distinct resetting strategies, one aimed at reducing
time cost and the other at expanding the useful working re-
gions. The first strategy involves resetting the demon to a
predefined state with a constant probability at discrete-time
intervals (typically at the end of each cycle) for a fixed du-
ration, denoted as tc. Subsequently, we stop the reset and
allow the demon to evolve according to its original dynamics.
Strikingly, this approach can drive the demon to reach its
functional periodic steady state at the fastest pace, regardless
of its initial distribution. This acceleration strategy draws in-
spiration from the so-called “strong” Mpemba effect, which
recently aroused widespread attention [45–50]. The second
strategy entails ceaseless resetting of the demon to a specified
state, leading the demon system to ultimately reach a new
periodic steady state, the characteristics of which differ from
the original autonomous demon. In the phase diagram of this
modified autonomous demon with resetting, the information
engine region is extended while the information eraser region
remains largely unchanged. Remarkably, an overlapping re-
gion, which we term the “dual-function region,” emerges in
the new phase diagram. In this region, the second law of ther-
modynamics is apparently violated. To restore the second law,
we derive aClausius inequality that incorporates an additional
term resulting from the stochastic resetting effect, which re-
stores the second law of thermodynamics in the presence of
resetting.

This article is organized as follows. In Sec. II, we present
the methods employed to analyze autonomous Maxwell’s de-
mon models introduced by Mandal and Jarzynski. Moreover,
the formalism of discrete-time stochastic resetting is intro-
duced. Moving on to Sec. III, we delve into our approach
for inducing significantly faster relaxations of the autonomous
demon towards functional periodic steady states through the
utilization of stochastic resetting strategies. Section IV unveils
phase diagrams for an autonomous demon operating with
incessant resetting, where we observe an expansion of the
anomalous work region and the emergence of a fascinating
“dual-function” region. In Sec. V, we make some discussions
and conclude the paper.

II. MODEL AND FRAMEWORK

In this section, we first briefly review the autonomous
demon model. Subsequently, we introduce the discrete-time
stochastic resetting mechanism, an extension intended for in-
corporation into the original autonomous demon framework.

Preliminary: The autonomous demon. An autonomous
Maxwell’s demon consists of a demon with k states and an
infinitely long memory tape (a stream of bits) encoding in-
formation with bit 0 and 1. In our setup, the k-state demon is
initially in equilibrium with a thermal reservoir at temperature
Tin, then it will be coupled to a memory tape to constitute
a 2k states combined system. This memory tape plays the
roles of measurement and feedback as in the conventional
Maxwell’s demon system. The tape moves through the demon
frictionlessly at a constant speed to a given direction, with
the bit sequence on it written in advance (e.g., 011100...).
The bit sequence is described by a probability distribution
pB

in = (p0, p1)T, where p1 and p0 are the probabilities of
the incoming bit to be in states 1 and 0. For later use, we
define δ ≡ p0 − p1 as the proportional excess of 0’s among
all incoming bits in the tape. The demon interacts with the
incoming bits one by one as they pass by, i.e., it only interacts
with the nearest bit for a fixed time τ , after that the current
bit leaves and a new bit comes in. During each interaction
interval, the demon undergoes intrinsic transitions between
some pair of states. The bit can also transition between state
0 and 1, and the demon’s transition is coupled to the bit’s
transition. These type of cooperative transitions cannot occur
in the absence of either the demon or the bit. These cooper-
ative transitions can lead to anomalous work production. The
demon’s disordered transitions (which are similar to fluctua-
tions) can be rectified by the incoming bits, which is the key
idea of the autonomous demon. If the outgoing bit stream
becomes more disordered than the incoming bit stream (the
information entropy of the bit increase), then the transition
of the demon is rectified on average to a given direction.
The transition to this direction can produce work at the cost
of information resources, while the transition to the opposite
direction produces no work. The direction of transition that
produces positive work depends on the setup of the combined
system. In this paper, we set the transition of bit from 0 to 1 as
the desired event. This can rectify the demon’s transitions to a
given direction, producing positive output work. Therefore, 0
is the information resource that can be consumed to drive the
system to the desired direction. Then, a quantity δ = p0 − p1

can be introduced to quantify the information resource. The
larger the δ is, the more information resource is contained in
the tape. When δ = 1, the tape contains the maximum amount
of information resource, since all of the bits are 0.

Before proceeding, we list some notations for later use.
Importantly, tN := Nτ is the beginning time of the (N + 1)th
interaction interval, with τ being the interaction time of each
interval. pD(t ) is a column vector with k entries, which de-
scribes the probability distribution of the demon at time t .
Similarly, pB(t ) is a vector with two entries, denoting the state
of the bit at time t . pD

τ (tN ) and pB
τ (tN ) are the distributions of

the demon and bit at the end of the N th interval, compared to
pD

in(tN ) and pB
in(tN ), which are the distributions at the start of

the N th interval. p(t ) is the statistical state of the combined
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system with 2k entries. Finally, pD,ps
in denotes the periodic

steady-state distributions at the beginning of each interval
of the demon, pD,ps

τ and pB,ps
τ are the periodic steady-state

distributions at the end of each interval of the demon and the
bit. Here, we stress that the beginning time of the (N + 1)th
interval should be distinguished from the end time of the
N th interval because states of the demon or the bit may un-
dergo abrupt changes due to instantaneous resetting events. In
other words, there may be discontinuities of probability states
pD(t ) and pB(t ) at t = tN , i.e., pB

in(tN ) �= pB
τ (tN−1) or pD

in(tN ) �=
pD

τ (tN−1) [without resetting, the equality pD
in(tN ) = pD

τ (tN−1)
always holds]. The statistical state of the combined system
comprised of the k-state demon and the current bit (with two
states 0 or 1) of the tape at the beginning time of the N th
interval is given by the 2k dimensional vector

pin(tN ) = MpD
in(tN ), M =

(
p0I
p1I

)
,

where I is a k × k identity matrix and M is a 2k × k ma-
trix denoting a mapping from the demon subspace (k × 1)
to the total combined space (2k × 1). What is more, through
defining some projectors, it would also be easy to extract the
distributions in demon subspace and bit subspace from the
distributions in the combined space at any time t as follows:

pD(t ) = PD p(t ),

PD = (I, I), (1)

pB(t ) = PB p(t ),

PB ≡
(

1 ... 1 0 ... 0
0 ... 0 1 ... 1

)
2×2k

, (2)

with PD and PB denoting the projectors from the combined
space to the demon subspace and to the bit subspace re-
spectively. The combined system of the demon and the tape
evolves under the master equation

d

dt
p(t ) = Rp(t ) (3)

during an interval from t = Nτ to t = (N + 1)τ , where R is a
2k × 2k transition matrix whose diagonal elements are Rii =
−∑

i �= j R ji, and off-diagonal elements Rji are the transition
rates from state i to state j. As a result of the evolution equa-
tion (3), the probability distribution of the combined system
at the end of the current interval reads pτ (tN ) = eRτ p(tN ) =
eRτMpD(tN ). Then the corresponding statistical state of the
demon can be written as

pD
in(tN+1) = T pD

in(tN ), T ≡ PDeRτM.

We assume that the transition matrix T is aperiodic and
irreducible throughout this work. Then, according to the
Perron-Frobenius theorem [51], any initial distribution pD

in,0
at the start of the first interval will evolve asymptotically to
a unique periodic steady state pD,ps

in , which can be obtained
by solving the eigenequation of T corresponding to its largest
eigenvalue λ1 = 1,

T pD,ps
in = pD,ps

in , (4)

with pD,ps
in = lim

n→∞ T n pD
in,0. (5)

This unique periodic steady state is just the functional state
of the autonomous Maxwell’s demon, which can produce
anomalous work stably. To calculate the work produced by
the information engine through exploiting the memory tape,
Mandal and Jarzynski have defined a quantity named as aver-
age production,

�(τ ) ≡ pf
1 − p1 = p0 − pf

0 , (6)

where pf
1 and pf

0 are probabilities of the outgoing bit to be in
states 1 and 0 (in the periodic steady state). The values of pf

1

and pf
0 are determined by

pB,ps
τ ≡

(
pf

0

pf
1

)
= PBeRτMpD,ps

in . (7)

Then the average output work per interaction interval can be
computed as (in the unit of kBT )

〈W 〉 = �(τ ) · w,

with w being the work done by the combined system when
a single jump of the bit from 0 to 1 happens. A positive
value of 〈W 〉 implies that the autonomous demon is converting
information resources into work.

We employ the simplest two-state demon model, referred
to as the information refrigerator, as our primary illustrative
example, which is our main focus in this paper. This model
involves a demon possessing two energy states, namely, an
up state u with energy Eu and a down state d with energy Ed

(Eu > Ed ). The demon is coupled with a memory tape, result-
ing in a four-state composite system (see Fig. 1), with two heat
baths at different temperatures being the environment. Dur-
ing each interaction interval, when the demon autonomously
transitions randomly between its up and down states, with the
current bit remaining unchanged, it interacts with the heat bath
at a higher temperature Th. These intrinsic transitions of the
demon is irrelevant to bits. Moreover, another kind of coop-
erative transitions 0d ↔ 1u are allowed. In these transitions,
the demon shifts from the down state to the up state only if
the current bit undergoes a simultaneous transition from 0
to 1. Conversely, the demon transitions from the up state to
the down state when the bit changes from 1 to 0. When these
cooperative transitions happen, the demon comes into contact
with the heat bath at low temperature Tc. During this interac-
tion, energy is exchanged between the demon and the cold
heat bath. All transition rates, whether intrinsic transitions
(Rd→u, Ru→d ) or cooperative transitions (R0d→1u, R1u→0d )
adhere to the detailed balance conditions as follows:

Rd→u

Ru→d
=e−βh�E ,

R0d→1u

R1u→0d
=e−βc�E

where βh,c = 1/(kBTh,c). For later convenience, we paramet-
rize them as: Rd→u = �(1− σ ), Ru→d = �(1+ σ ), R0d→1u =
1 − ω, R1u→0d = 1 + ω. The characteristic transition rate �,
which quantifies the intrinsic transition rate of the demon is
set to be 1 in the rest of the text. Note that � can be regarded
as the time unit. Here, 0 < σ = tanh(βh�E/2) < 1 and
0 < ω = tanh(βc�E/2) < 1. We also define

ε = ω − σ

1 − ωσ
= tanh

(βc − βh)�E

2
,
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FIG. 1. The information refrigerator model. (a) The two-state
demon interacts with a sequence of bits and two reservoir at different
temperature. (b) Graph depiction of the composite 4-state system.
Nodes denote the combined states and edges denote the allowed
transitions, and each pair of transitions satisfies detailed balance
conditions. The red edge represents the transition under the low
temperature Tc, the other edges correspond to the transition at tem-
perature Th.

with 0 < ε < ω quantifying the temperature difference be-
tween the two reservoirs. It is a central quantity in the studies
of thermal machines.

For each interaction interval, if a single bit turns from 0
to 1 due to the cooperative transition, then a fixed amount of
energy �E = Eu − Ed is extracted from the cold reservoir,
which can be identified as the anomalous work done by the
demon. Consequently, the average output work due to the two-
state demon in this model reads 〈W 〉 ≡ Qc→h = �(τ ) · w =
�(τ )(Eu − Ed ), where the average production �(τ ) can be
computed using Eqs. (3)–(5). More details about this model
are described in the Appendix A.

Formalism of discrete-time stochastic resetting. Here we
would like to introduce a discrete-time resetting mechanism,
which is randomly imposed on the k-state demon at the end
of each interaction interval with a probability γ = 1 − e−rτ ,
where r is the resetting rate (a protocol, which may be used
to experimentally realized this mechanism is proposed in the
Appendix B). Under this setting, the larger the resetting rate
r and the time interval τ , the more possible a resetting event
will happen. When a resetting event takes place, the demon
would be taken to a given state � instantaneously. Let pD

in,0
denote the initial distribution of demon, which is prepared as
an equilibrium state by letting the demon be in contact with
a thermal reservoir whose temperature is Tin. Then, in the
absence of resetting, the evolution of the state of demon at

the beginning of each interval can be described as

pD
in(tN ) = T N pD

in,0. (8)

With fixed-rate resetting events all happening at the end of
interaction intervals, the demon’s evolution reads

pD
in(r, tN ) = e−rτT pD

in(r, tN−1) + (1 − e−rτ )�. (9)

Thus the demon’s initial distribution at time t = Nτ is for-
mally determined by

pD
in(r, tN ) = e−rNτ pD

in(tN ) + (1 − e−rτ )
N−1∑
n=0

[e−rnτ�nτ ], (10)

where �nτ ≡ T n� refers to the state � evolves to after n in-
tervals. This is a renewal equation connecting the distribution
at the beginning of each interval under discrete-time resetting
with the distribution under the reset-free dynamics. On the
right-hand side of Eq. (10), the first term e−rNτ pD

in(tN ) ac-
counts for the situation when there is no resetting events until
time t = Nτ , the corresponding probability of which is e−rNτ .
The nth term in the summation denotes the case in which the
last restart happened at time t = (N − n)τ , whose probability
is (1 − e−rτ )e−rnτ . The summation of the probabilities of all
possible events mentioned above is

ptot = e−rNτ + (1 − e−rτ )
N−1∑
n=0

e−rnτ

= e−rNτ + 1 − e−rNτ = 1,

satisfying the normalization condition. Note that when τ → 0,
our renewal equation for discrete-time resetting distribution
reduces to the continuous time counterpart as in [34],

pD(r, t ) = e−rt pD(t ) + r
∫ t

0
dt ′e−rt ′

�t ′ , (11)

because when τ → 0, one has (1 − e−rτ ) → rτ ≡ rdt ′.
To obtain the whole dynamics with resetting, it would be

helpful to utilize the spectral analysis method, solving the
eigenvalues problem of the evolution matrix T . The matrix
T has right eigenvectors {Ri} and left eigenvectors {Li} sat-
isfy T Ri = λiRi and LT

i T = λiLT
i , with λi (i = 1, 2, ..., k) the

eigenvalues, which are sorted as 1 = λ1 > |λ2| � |λ3| � ... �
|λk| (we assume that λ2 is nondegenerate). Then according to
completeness relation the initial state pD

in,0 and resetting state
� can be expanded separately as

pD
in,0 = pD,ps

in +
k∑

i�2

aiRi,

� = pD,ps
in +

k∑
i�2

diRi. (12)

where ai = LT
i ·pD

in,0

LT
i ·Ri

and di = LT
i · 
�

LT
i ·Ri

are coefficients. Thus the
state of the demon at the beginning of the N th time interval
can be written as

pD
in(tN ) = T N pD

in,0 = pD,ps
in +

k∑
i�2

aiλ
N
i Ri, (13)
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FIG. 2. An illustration of two resetting strategies. (a) The first
resetting strategy: closing the reset after a critical time tc. (b) The
second resetting strategy: always keeping the reset on.

and

�nτ ≡ T n� = pD,ps
in +

k∑
i�2

diλ
n
i Ri. (14)

It is worth mentioning that Eq. (13) may be generally used
to analyze relaxation processes in other time-periodic or
discrete-time Markov systems. One can identify the second
term on the right-hand side of Eq. (13) as a slowest decaying
mode dominating the relaxation time scale, once the second
coefficient a2 is not equal to zero. In this case, the relaxation
timescale is typically characterized by τrel = −1/ ln |λ2| (see
Appendix C).

To proceed, we describe the two resetting strategies, which
we would use to devise the autonomous demon in detail. The
first resetting strategy is randomly resetting the demon to the
reset state and then switching off the resetting after a given
time tc = Ncτ , causing the system to evolve according to the
original dynamics without resetting. The whole dynamics of
the first strategy can be formulated as (recall that γ = 1 −
e−rτ is the probability that a resetting event happens at the
end of an interval)

pD
in(r, tN ) = [

γT pD
in(r, tN−1) + (1 − γ ) 
�]

(Nc − N )

+ T pD
in(r, tN−1)(N − Nc), (15)

where  is the Heaviside step function. The first strategy
can be used to eliminate the slowest decaying mode (making
a2 = 0) so that the demon would reach its functional state
at a greatly faster pace. The second strategy is simply to
keep the stochastic resetting mechanism always on so that the
combined system will eventually reach a new periodic steady
state, whose properties depend on the resetting rate r. For an
illustration of the two resetting strategies, see Fig. 2.

Note that the resetting state is chosen to be a single state
[e.g., (0, 1)T for the two-state demon] instead of a mixed state
in this paper. Physically, resetting the demon to a mixture
of states is equivalent to the superposition of the events that
demon being reset to different single states with probabilities
smaller than one. This may be more challenging to achieve
experimentally. Equipped with these discrete-time resetting
formalism and the eigenvector-expansion formula, the design

principles for autonomous Maxwell’s demons are provided in
the next two sections.

III. INDUCING FASTER RELAXATION
THROUGH RESETTING

In this section, we show how the first resetting strategy
accelerate the relaxation from an arbitrary initial distribution
to demon’s functional steady state significantly. That is, our
aim here is to provide a strategy to shorten the warming-up
phase of any autonomous information engine. This signifi-
cantly fast relaxation phenomenon induced by the stochastic
resetting is similar to the Markovian Mpemba effect [46,48–
50]. To eliminate the slowest decaying mode of the system (so
that it would not be trapped in a metastable state), we just need
to turn off the resetting mechanism at a critical time tc = Ncτ ,
after which the demon system will relax freely obeying the
original evolutionary dynamics (8) with the coefficient of the
relaxation mode (ith coefficient of the eigenvector expansion)
Ri being ai(r, Nc). Under this protocol, one can conveniently
modify the value of a2(r, Nc), the coefficient of the slowest
decaying mode in the free relaxation process, through control-
ling the value of r and Nc. Plugging (13) and (14) into Eq. (10)
one can obtain (see Appendix B for details)

pD
in(r, tN ) = pD,ps

in +
k∑

i�2

ai(r, N )λN
i Ri, (16)

where the modified ith coefficient at N th interaction interval
ai(r, N ) reads

ai(r, N ) =
[

ai − di(1 − e−rτ )

1 − λie−rτ

]
e−rNτ + di(1 − e−rτ )

1 − λie−rτ
· λ−N

i .

(17)

Here di is the ith coefficient of the expanded form of the

�, depending on the choice of the reset state. Therefore, the
whole dynamics under the first resetting strategy obeys

pD
in(r, tN ) = pD,ps

in +
k∑

i�2

ai(r, N )λN
i Ri N � Nc,

pD
in(r, tN ) = pD,ps

in +
k∑

i�2

ai(r, Nc)λN
i Ri N > Nc. (18)

By closing the reset at an appropriate critical time tc, one can
make the second coefficient being zero so that the relaxation
gets accelerated to the maximum extent, corresponding to
the so-called “strong” Mpemba effect. That is, the crucial
condition to realize significantly fast relaxation is given by

a2(r, N ) = 0, (19)

from which the appropriate time to close the reset can be
obtained as shown below. Combining Eq. (19) with Eq. (17)
one gets the appropriate critical number of interaction
intervals if the second eigenvalue λ2 > 0,

Nc = 1

rτ − ln λ2
ln

[
1 − a2

d2

1 − λ2e−rτ

1 − e−rτ

]
, (20)

which is our first main result. From the expression of Nc we
clearly see that the sufficient condition for the existence of
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a physical critical number Nc � 1 is just a2/d2 � 0 (when
a2/d2 > 0, one may still find Nc � 1 by making rτ − ln λ2 <

0), since the right-hand side is a decreasing function of rτ
that can sweep the full interval (0,∞) when rτ � ln λ2. The
calculated Nc may not be an integer, which is forbidden in our
setting. However, one can always make Nc be an integer by
controlling the value of r. Furthermore, we expect to make Nc

be a small positive number (like the smallest positive integer,
one) through modifying the resetting rate r whenever the
condition a2/d2 � 0 is fulfilled, thus the resetting strategy
could always significantly reduce the total time cost to
demon’s functional state compared to the reset-free dynamics.

Besides, when λ2 < 0, one can still tune the resetting rate r
to let Nc = 1 in the region a2/d2 � 0. In this case, the value of
Nc should be obtained by solving the self-consistent equation

Nc = 1

rτ − ln |λ2| ln

[
(−1)Nc

(
1 − a2

d2

1 − λ2e−rτ

1 − e−rτ

)]
, (21)

which does not have a closed-form solution. But when Nc is
given, one can use the equation to obtain the corresponding
value of r that can realized the desired Nc. For instance, if we
want Nc to be 1, we can tune the resetting rate r to make the
equation

Nc = 1

rτ − ln |λ2| ln

[
a2

d2

1 − λ2e−rτ

1 − e−rτ
− 1

]

hold (when a2/d2 � 1 the r always exists).
To illustrate how the above strategy can be utilized to

improve the performance of autonomous Maxwell’s demon,
we focus on a specific model, the two-state information re-
frigerator mentioned above. In this model, we always have
λ2 > 0 when δ � 0 (see Appendix D).

For the two-state information refrigerator, the resetting
state could be 
�d = (0, 1)T or 
�u = (1, 0)T, we choose the
former one. Initially, we let the two-state demon be in contact
with a heat bath whose temperature is Tin for long enough time
so that the demon reaches the thermal equilibrium. Then the
initial distribution of the two-state demon is just

pD
in,0 =

(
e−�E/Tin

1 + e−�E/Tin
,

1

1 + e−�E/Tin

)T

, (22)

which makes the second coefficient a2(Tin) be a function of
the initial temperature, so is the modified second coefficient
a2(r, N, Tin ). It is clear from Eq. (20) that once the initial tem-
perature allows the critical interaction number to be positive,
then one can always make Nc the smallest positive integer 1
by virtue of adjusting the resetting constant r, whatever the
dynamical details (i.e., values of δ = p0 − p1 and the tem-
perature difference quantifier ε of the two heat baths) of the
system is. Note that for the information refrigerator system,
there is only one right eigenvector R2 as the relaxation mode
apart from the stationary distribution, i.e.,

pD(r, tN ) = pD,ps
in + a2(r, N, Tin )λN

2 R2.

In result, a2(r, Nc, Tin ) = 0 signifies the arrival of the func-
tional periodic steady state pD,ps

in . Thus for the two-state
demon one can invariably expect the shortest time tc = τ to
enter the functional state through controlling the resetting
parameter r. It should be noted that in our setting, the time for

FIG. 3. The phase diagram for the relaxation behavior of the
information refrigerator. The parameter is set as τ = 0.1, ω =
1/2, δ = 0.5, �E = 1 and the reset state is the down state. The blue
part is the fast relaxation region (a2/d2 � 0), where the demon can
reach the functional state significantly faster by stochastic resetting
with appropriate rate. The yellow part is the dud region where reset-
ting cannot take effect. However, when the reset state is set to the
up state, the yellow region becomes the useful region, while the blue
region becomes the useless region. In the red dash line, a2 = 0.

the demon to reach its functional state can never be smaller
than τ (one interaction interval), which is the smallest time
unit for demon’s performance. Therefore, the optimal value
of the resetting rate r to make the critical time tc shortest in
this case is obtained by solving the equation Nc = 1 when
other dynamical parameters are fixed, with the expression of

Nc given by Eq. (20). Here, a2 = LT
2 ·pD

in,0

LT
2 ·R2

, d2 = LT
2 ·�

LT
2 ·R2

and λ2

can be figured out by the spectral analysis of the matrix T . In
Fig. 3 we build a phase diagram for the dynamical behavior
of the information engine before reaching its functional state.
The blue area of the phase diagram corresponds to the fast
relaxation (a2/d2 � 0) region, where an optimal resetting rate
that can lead to the smallest time cost tc = τ always exists.
This diagram provides guidance to prepare the initial state
of the demon to be in an appropriate temperature. What is
more, if we set the up state as the reset state, the yellow
area in the current diagram would turn to be the efficacious
region of resetting. The asymmetry of the efficacious region
between up state and down state arises from the energy differ-
ence between two states. Then, to illustrate the accelerating
effect of stochastic resetting, we further fix the dynamical
parameters as ω = 1/2, δ = 0.5, ε = 0.2 and prepare the
demon initially at βin = 0.1, then numerically gives several
dynamical trajectories of the probability of the up state pu(t )
under different resetting rates, as plotted in Fig. 4. Note that
the resetting dynamics is switched off after a given critical
time tc(r) = Nc(r)τ , depending on the resetting rate r. The
optimal value of r, which can make tc = τ is also a threshold
value. It is shown in Fig. 4 that when the resetting rate r is

043066-6



DESIGNING AUTONOMOUS MAXWELL’S DEMON VIA … PHYSICAL REVIEW RESEARCH 5, 043066 (2023)

FIG. 4. The evolution of the demon’s state under different reset-
ting dynamics. For each dynamics with different resetting rate r, the
resetting is closed right after the critical time tc(r) = Nc(r)τ. We take
the dynamics of probability of the up state as an illustration. The
dynamical parameters are given by τ = 0.1, δ = 0.5, ε = 0.2, and
βin = 0.1. The inset shows the relation between the critical number
Nc and the resetting rate r, and the optimal resetting rate r = 1.82
is marked by a red circle in the inset. When r > 1.82, the resulting
Nc < 1 cannot be realized since Nc should be a positive integer.

below this threshold value, the larger the r is, the sooner the
refrigerator could get to its functional periodic steady state.
However, when the resetting rate is made to be larger than
the optimal value, the time cost would become greater than τ.

In the limiting case of r → ∞, the demon would be reset to
the down state (which can never be the functional state) with
probability 1 at the end of each interval, making the critical
time tc go to zero, which is the same as the reset-free dynam-
ics. Under current conditions, the threshold value of r (the
optimal r) turns to be 1.82, which is obtained by solving the
equation Nc(r) = 1. It should be noted that when r > 1.82 one
has Nc(r) < 1, but it cannot be realized. To make it clearer, we
plot the relation between the critical number Nc and resetting
rate r in the inset of Fig. 4, with the parameters being fixed at
the same values as above.

Further, to better illustrate our first strategy that can shorten
the warming-up phase of information engines, we provide
another example in Appendix E, i,e., a modified three-state
information engine introduced in Ref. [43].

We should note that the tailored relaxation time may
be worse than the original relaxation time scale τrel ∼
−1/ ln |λ2|. However, one can guarantee that Ncτ < τrel

through tuning the value of r, so for the two-state demon in
which the relaxation time equals Ncτ , the tailored relaxation
time can be assured to be shorter than the original one. For
general cases, we assume that there is a gap between λ2 and
λ3, in which case the original process can be significantly
accelerated by the first resetting strategy.

At the close of this section, we would like to discuss
the connection between the first resetting strategy and the
Mpemba effect for completeness. In the relaxation process
of a given system, it may be trapped in a metastable state,

which is characterized by the dominant eigenmode (i.e., the
slowest decaying mode) of the system corresponding to the
second largest eigenvalue (e.g., λ2 in our information refriger-
ator system) of the transition matrix [see Eq. (13) for better
understanding. Here a2λ

n
2R2 is the dominant eigenmode].

Therefore, the relaxation time scale is mainly determined by
the spectral gap of the transition matrix, having assumed that
λ2 is unique, i.e., λ2 > λ3. Based on the above arguments,
Z. Lu and O. Raz have proposed a possible mechanism to
explain (in Markovian systems) the Mpemba effect that a
system can cool down faster at high temperature than at lower
temperature under certain conditions, since the Mpemba ef-
fect can be regarded as the effect of initial conditions (initial
temperature) on the thermal relaxation processes [48]. The

key point is that the coefficient a2 = LT
2 ·pD

in,0

LT
2 ·R2

of the dominant
eigenmode depends on initial conditions of the system of
interest. This coefficient quantifies the degree of overlapping
between the initial state pD

in,0 and the dominant eigenmode,
so that the smaller the |a2| is, the less likely that the system
will be stuck in the metastable state, i.e., will relax faster.
As a consequence, if |a2| turns out to be a nonmonotonic
function of the initial temperature Tin, the Mpemba effect
could happen within a certain temperature range where |a2|
is a decreasing function of temperature. Within this range, the
system at higher temperature is initially farther away from the
target state with low temperature, but it has more chances to
avoid being trapped in the metastable state compared to the
same system at lower temperature (still higher than the tem-
perature of the target state). When |a2| equals to zero at some
temperature, the strong Mpemba effect could happen [46].

In our case, the first resetting strategy can tune the value
of a2 as in Eq. (17). By controlling the critical time tc = Ncτ

to close the reset and the resetting rate r, the fixed value of
a2 [i.e., a2(r, Nc) ] after closing the reset can be made to be
any value no matter what the initial state is. Therefore, the
Mpemba effect or even the strong Mpemba effect is able to
be induced by the first resetting strategy through the control
of Nc and r. Our first resetting strategy can be optimal over
other possible accelerating approaches for the information
refrigerator system, since there is only one eigenmode in this
system, and it can be eliminated at the fastest pace (Nc can
always made to be 1) by the strategy. For the demon with
more than two states, there may be some other protocols can
eliminate more eigenmodes (simultaneously making a2 = 0,
a3 = 0,...), such as the temperature protocol in the reference
[45]. However, these protocols are usually more complex than
our resetting strategy, which is convenient to realize.

IV. AUTONOMOUS DEMON WITH RESETTING

In this section, we focus on the second resetting strategy,
exploring the second dimension of the demon’s performance:
its effective working range. To study the effective working
range of the demon, we first need to analyze the functional
state performance of the autonomous demon with the second
strategy being imposed on it.

There are two pivotal facets of the functional state perfor-
mance of the autonomous demon, including the average work
production � per cycle and the information erasing capability
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quantified by the reduction in Shannon entropy of bit per
cycle. If the autonomous demon is always under resetting,
it eventually converges to a new periodic steady state in the
large time limit (the number of interactions N → ∞), which
is given by (see Appendix B for details)

pD,ps
in (r) = pD,ps

in +
∑
i�2

1 − e−rτ

1 − λie−rτ
diRi. (23)

As a consequence, the marginal distribution of the outgoing
bit in the new periodic steady state can be written as

PB,ps
τ (r) = PBeRτMpD,ps

in (r) = (
pr

0, pr
1

)T
. (24)

Then, we would like to quantify the two important properties
mentioned above in this new functional state, i.e., the average
work production and the information erasing capability of the
demon, so that the efficacious region could be analyzed in de-
tail. In what follow, the properties of the new functional state
are our main focus. Therefore, in the remaining part of this
section, we assume the demon has reached its new functional
periodic steady state. For simplicity, we take the two-state
Maxwell’s refrigerator model as an illustrative example. The
distribution of demon at the start of each interval is

pD,ps
in (r) = pD,ps

in + 1 − e−rτ

1 − λ2e−rτ
d2R2.

The performance of the information refrigerator with resetting
can be evaluated by the average production of 1’s per interac-
tion interval, recalling that the initial distribution of the bit is
given by pB

in = (p0, p1)T ,

�tot(r, τ ) ≡ pr
1 − p1 = p0 − pr

0. (25)

The average transfer of energy from the cold to the hot reser-
voir is Qc→h = �tot�E = �tot(Eu − Ed ). The total average
production per interaction interval is given by

�tot = ([
T ′ pD,ps

in

]
2 − p1

) + 1 − e−rτ

1 − λ2e−rτ
d2[T ′R2]2

≡ �0 + �r (26)

where T ′ = PBeRτM. It has been shown that the contribu-
tion �0 = �tot|r=0 when there is no reset is (see Appendix A
for details)

�0 ≡ [
T ′ pD,ps

in

]
2 − p1 = δ − ε

2
η(�), (27)

where η(�) is a positive function of all the dynamical pa-
rameters. Thus we just need to compute the contribution �r

arising from stochastic reset. The second right eigenvector
is obtained as R2 = (1,−1)T . We set the resetting state as

� = (0, 1)T (down state) or 
� = (1, 0)T (up state), and study
their contributions respectively. When the demon is reset to
the up state, we find that the contribution �r always takes
negative value whatever the value of r is. This implies that
the up state is not a good choice for the reset state because
resetting the demon to up state only has negative impact on the
engine’s performance, i.e., shrinking the refrigerator region.
We will see that the down state 
� = (0, 1)T would be an
appropriate option for the demon to be reset to, even might
be optimal.

Now consider another important feature of performance of
the refrigerator in the new functional state, the information-
processing capability of the demon. To quantify the capability,
the Shannon entropy difference between the outgoing bit and
the incoming bit is introduced as

�SB = S
(
pB,ps

τ

) − S
(
pB,ps

in

) = S(δ − 2�tot ) − S(δ),

S(δ) ≡ −
1∑

i=1

pi ln pi

= − 1 − δ

2
ln

1 − δ

2
− 1 + δ

2
ln

1 + δ

2
, (28)

which is a measure of how much information content con-
tained in the memory tape is changed due to the demon during
each interaction interval. To illustrate the relation between
the tape and the value of its Shannon entropy more clearly,
we take two specific cases δ = ±1 as examples. In these
cases S(pB,ps

in ) = 0, which means that all bits in the memory
tape are 0 (or 1). When δ = 1, all bits in the memory tape
are 0, in which case the amount of information resource is
maximal as mentioned in Sec. II. The number of “1” in the
tape will always increase, following the positive output of
work on average. On the other hand, when δ = −1, all bits
in the tape are 1, so that the demon will be useless in this
case. This is because the total number of “1” in the tape will
always decrease, making the output work negative on average.
The information entropy will increase simultaneously, so the
demon cannot serve as an eraser either.

Finally, to illustrate the extended effective region of the
refrigerator, we fix � = 1, ω = 1/2, τ = 1 and construct
several phase diagrams for the refrigerator under different re-
setting rate r, traversing the parameter space of (δ, ε) (Fig. 5).
Note that to assure βc > βh > 0, parameter ε can only range
from 0 to 1/2, since we have set ω = tanh(βc�E/2) = 1/2 >

ε = tanh[(βc − βh)�E/2]. The newly constructed phase di-
agrams exhibit four distinct regions (excluding the case of
r = 0, which only has three regions), constituting our sec-
ond main result. The purple areas are identified as regions
representing the information refrigerator, as clearly extended
in Figs. 5(b)–5(d) when compared to the initial reset-free
demon scenario depicted in Fig. 5(a). This expansion is at-
tributed to the positive contribution �r from resetting, which,
in turn, augments the output power. The green parts denote
the information eraser regions, where the information stored
in the memory tape can be effectively obliterated, restor-
ing a low-information-entropy state that serves as a source
for anomalous work. Impressively, the red parts represent
dual-function regions where the information machine can si-
multaneously generate anomalous work and replenish some
information resources. The remaining white parts within the
phase diagrams are designated as dud regions, wherein the
demon lacks the capability to either produce work or erase
information from the memory tape, rendering it nonfunctional
within this parameter space.

Generalized second law in the presence of resetting. The
dual-function region in the new phase diagram shows that
the autonomous demon with resetting seems to be against
the second law of thermodynamics. To address this issue, a
generalized second law is derived by constructing a Lyapunov
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FIG. 5. The new phase diagrams for the demon under different
resetting rate r. (a) r = 0, not reset. (b) r = 1, (c) r = 2, (d) r = 5.
For (a)–(d), interaction interval τ = 1. In all of the diagrams, the
green region is the information-eraser region (denoting as “E”), in
which the demon is able to reduce the information entropy of the
memory tape. The purple region is the refrigerator region (denoting
as “R”), where the demon can help to produce anomalous work by
exploiting information. The purple region does not exist when r = 0.
The red region is a dual-function region (denoting as “D”), both of
the information erasing and anomalous work production functions
could be realized in this region. The white part is the dud region
where the demon becomes useless.

function, or by using the integral fluctuation theorem for
stochastic entropy production (see Appendix F for details).

As a result, the generalized second law of thermodynamics
of the system with resetting in the periodic steady state is
demonstrated to be

Qc→h(βh − βc) + �SB + �Srst � 0. (29)

This generalized second law is our third main result. The new
term �Srst is the entropic cost for resetting [39] during an
interval [nτ, (n + 1)τ ], and for the information refrigerator it
is given by

�Srst = �SD + βh�pD,ps�E . (30)

Here, �pD,ps ≡ pD,ps
τ,u − pD,ps

in,u denotes the difference between
the steady-state probability of the demon in up state at the
final moment and at the initial moment within an interval.
From the expression, we can see that this new term con-
tributed by resetting consists of two parts. The first part is the
Shannon entropy difference between the initial distribution
and the final distribution in each interaction interval, which
is the system entropic change due to resetting. The second
part βh�pD,ps�E can be interpreted as the entropic flux as-
sociated with the energy cost (heat flow) needed to maintain
this distribution difference between the demon at the final
moment and at the initial moment, or say, to maintain the new

FIG. 6. Apparent violation and restoration of the second law of
thermodynamics in the information refrigerator system for τ = 1.0.
(a) The apparent violation of the original modified second law of
thermodynamics. (b) A demonstration of the generalized second law
incorporating the contribution from stochastic reset.

periodic steady state. To demonstrate the generalized second
law, we plot two plots for the signs of Qc→h(βh − βc) + �SB

and Qc→h(βh − βc) + �SB + �Srst respectively as functions
of ε and δ in the Fig. 6 (contour plot of the detailed values
of these two functions are given at the end of the Appendix E
for completeness). The plots contain distinct regions, with
the yellow regions representing positive values of the plot-
ted function and the blue regions indicating negative values.
Figure 6(a) shows that there is a parameter region where
Qc→h(βh − βc) + �SB < 0, so the original second law de-
rived by Mandal and Jarzynski is violated in this region. It
is worth noting that this region where second law is appar-
ently violated is larger than the dual function region shown in
Fig. 5(b). This is because there is a parameter region in which
�SB satisfies 0 < �SB < Qc→h(βc − βh). This region, which
satisfies this condition, belongs to the refrigerator region, and
the original second law is simultaneously violated within it.
The restoration of the second law after considering the effect
of stochastic reset is demonstrated in Fig. 6(b), thereby vali-
dating the generalized second law Eq. (29). The generalized
second law for the demon with more states can also be found
in a similar manner. What is more, employing the so-called
thermodynamic uncertainty relation (TUR) [52–56] may yield
a relation stronger than the generalized second law (29). This
could be left for the future study.

Based on the expression (30) we may explain physically
why the down state 
� = (0, 1)T should be chosen as the
resetting state to improve the engine’s performance, instead
of the up state 
� = (1, 0)T or any mixed state. Actually, the
down state may be the optimal option for optimizing the
performance of the information refrigerator. To improve the
overall performance of the information refrigerator, a larger
cost from resetting �Srst is preferred. This is because a larger
cost leads to a greater anomalous energy transfer Qc→h and
a smaller the entropy difference �SB. Therefore, the optimal
resetting mechanism should maximize the �pD,ps and the
�SD simultaneously. If the demon is reset to a given mixed
state like (1/2, 1/2)T, the initial Shannon entropy SD,0 would
take the maximal value, resulting in �SD < 0. In contrast,
resetting the demon to a single state like (0, 1)T or (1, 0)T

would make the Shannon entropy of the demon at the initial
moment of an interval being zero, always following with
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�SD > 0. Thus resetting the demon to a single state could
be superior to resetting it to a mixed state. On the other
hand, if the demon is reset to the up state at the end of each
interval, the probability of it being in up state initially turns
to be 1, leading �pD,ps to equals pD,ps

τ,u − 1 < 0, which has a
negative impact on the refrigerator’s performance. Contrarily,
the down-state reset continues to have a positive effect on
this term as �pD,ps = pD,ps

τ,u > 0. In consequence, picking the
down state (0, 1)T as the reset state rather than other states
appears to be the optimal strategy.

To conclude this section, we would like to discuss the
four regions in the new phase diagram according to Eq. (26)
and the generalized second law Eq. (29). When δ > ε, the
driving from the incoming 0 bit prevails over the temperature
difference of two heat baths, so that the demon generates heat
flow from the cold bath to the hot bath even in the r = 0
case as in Fig. 5(a), since �0 > 0. The borderline between
the refrigerator region and the eraser region here is the δ = ε

line. When δ < ε, the driving from the memory tape cannot
overcome the temperature difference (�0 < 0), however, the
positive contribution �r from reset can make the total average
production �tot = �0 + �r > 0 in some parameter intervals,
resulting in the extension of the refrigerator region [the bor-
derline moves from δ = ε to the left as in Figs. 5(b)–5(d)].
When r > 0, a dual-function region emerges to the left of the
boundary between the dud region and the eraser region in the
r = 0 case. The dual-function region arises from the positive
contribution �Srst. The dual-function region is always inside
the dud region of the reset-free case, so the effective working
region of the demon with resetting is always larger than that
of the original demon.

V. DISCUSSION

Autonomous Maxwell’s demons have garnered significant
attention in the field of small-system thermodynamics since
Mandal and Jarzynski proposed their exactly solvable model
in 2012. An intriguing facet of this model is that the evolu-
tion of the memory tape is subject to periodic resetting—a
mechanism wherein the tape’s state is consistently returned
to an given state after fixed time intervals τ . This consistent
resetting of the memory tape prompts an intriguing question:
What if we expose the demon to resetting, akin to the bit’s
dynamics? Such an approach could potentially enhance the
demon’s performance. Indeed, research has demonstrated that
resetting protocol can be devised to optimize various dynam-
ical processes [34,41,42]. Consequently, the idea of random
resets for the demon holds significant promise. However, most
existing frameworks of stochastic resetting only deal with
the continuous-time Markov process. These frameworks may
not directly apply to our scenario, where demon resets are
expected to occur only at the conclusion of specific interaction
intervals.

In this article, we generalize the stochastic resetting for-
malism to discrete-time Markov process. This allows us to
introduce this mechanism to autonomous Maxwell’s demon
systems, providing design principles and strategies. Moreover,
we also report tools for analytically analyzing the relaxation
process in time-periodic or discrete-time Markov systems, as
in Eq. (13). Equipped with these tools, we have systematically
studied the effect of stochastic reset on the demon system. To
begin, we study the time cost for the autonomous demon to
relax to its working state (the periodic steady state), which
has not been taken into account in previous studies [8,10,15].
This is an important consideration in real systems, as minimiz-
ing the time cost for relaxation processes is desirable. Using
stochastic resetting, we provide design principles to optimize
this relaxation process, minimizing the time cost to enter
the working state through a protocol inspired by the strong
Mpemba effect. Furthermore, we construct functional states
with remarkable features by keeping resetting the demon. We
also derive a generalized second law of thermodynamics that
takes the contribution from discrete-time stochastic reset into
account. We believe that our paper provides insights into the
role of stochastic resetting in autonomous demon systems.
Our results could be used to design more efficient and effec-
tive demon systems.

An intriguing open problem lies in the extension of our
framework to accommodate time-dependent resetting rates,
where the waiting time distribution between consecutive re-
setting events deviates from the exponential distribution. The
exploration of alternative waiting time distributions that could
potentially enhance the performance of autonomous demons
remains a compelling avenue for future research. Further-
more, the concept of stochastic resetting has recently piqued
significant interest in the realm of quantum systems [57,58].
Thus, it would be promising to develop a framework as the
quantum counterpart of our discrete-time resetting frame-
work. Such a framework could prove invaluable in analyzing
resetting mechanisms within the domain of quantum systems,
marking a fruitful direction for further investigation.
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APPENDIX A: DETAILS OF INFORMATION
REFRIGERATOR

Extra details of the original information refrigerator. The
transition matrix of the four-state combined system in this
model is given by

R =

⎛
⎜⎜⎜⎜⎝

−�(1 + σ ) �(1 − σ ) 0 0

�(1 + σ ) −[1 − ω + �(1 − σ )] 1 + ω 0

0 1 − ω −[1 + ω + �(1 + σ )] �(1 − σ )

0 0 �(1 + σ ) −�(1 − σ )

⎞
⎟⎟⎟⎟⎠.
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Solution to the periodic steady state the expression of av-
erage production is as follows: the evolution matrix for initial
distribution of the demon is given by

T = PDeRτM, PD =
(

1 0 1 0
0 1 0 1

)
,

M =

⎛
⎜⎜⎝

p0 0
0 p0

p1 0
0 p1

⎞
⎟⎟⎠.

Then the periodic steady state pD,ps
in for demon can be obtained

by solving the linear equation

T pD,ps
in = pD,ps

in .

In the periodic steady state, the joint distribution of the demon
and the interacting bit, at the end of the interaction interval, is
given by pps

τ = eRτMpD,ps
in . The marginal distribution of the

outgoing bit is then given by projecting out the state of the
demon,

pB,ps
τ = (

pf
0 , pf

1

) = PBeRτMpD
in,PB =

(
1 1 0 0
0 0 1 1

)
.

(A1)

Notice that pD,ps
in is the first right eigenvector of T , pB,ps

τ =
(pf

0 , pf
1 ) then can be solved, which determines the value of

average production as � = pf
1 − p1. By performing these cal-

culations using Mathematica,

� = δ − ε

2
η(�), η(�) = ν2P + ν3Q

P + Q
, (A2)

P = μ2(μ4ν3 + μ1ν1), Q = μ3(μ4ν2 + μ1ν1), (A3)

where

ν1 = 1 − e−2�τ , ν2 = 1 − e−(1+�−α)τ , ν2 = 1 − e−(1+�+α)τ ,

(A4)

μ1 = (δ + σ )ω,μ2 = α + � + σω,μ3 = α − � − σω,

μ4 = 1 − δω, (A5)

with α = √
1 + �2 + 2�σω.

APPENDIX B: ADDITIONAL INFORMATION
OF STOCHASTIC RESETTING DYNAMICS

Derivation of the modified dynamics under stochastic re-
setting. Here we provide some details for the derivation of the
Eqs. (17) and (23) in the main text. Plugging the expansion
formula

pD
in(tN ) = pD,ps

in +
∑
i�2

aiλ
N
i Ri

and

�nτ = pD,ps
in +

∑
i�2

diλ
n
i Ri

into the renewal Eq. (10) for the demon’s initial distribution,

pD
in(r, tN ) = e−rNτ pD

in(tN ) + (1 − e−rτ )
N−1∑
n=0

[e−rnτ�nτ ],

we reach that

pD(r, tN ) = e−rNτ

⎡
⎣pD,ps

in +
∑
i�2

aiλ
n
i Ri

⎤
⎦

+(1 − e−rτ )
N−1∑
n=0

e−rnτ

⎡
⎣pD,ps

in +
∑
i�2

diλ
n
i Ri

⎤
⎦
(B1)

=
⎡
⎣pD,ps

in +
∑
i�2

1 − e−rτ

1 − λie−rτ
diRi

⎤
⎦

+
∑
i�2

[
ai − 1 − e−rτ

1 − λie−rτ
di

]
e−rNτ λN

i Ri (B2)

= pD,ps
in +

∑
i�2

{[
ai − di(1 − e−rτ )

1 − λie−rτ

]
e−rNτ

+di(1 − e−rτ )

1 − λie−rτ
· λ−N

i

}
λN

i Ri (B3)

≡ pD,ps
in +

∑
i�2

ai(r, N )λN
i Ri. (B4)

Here, the modified coefficients ai(r, N ) is obtained as

ai(r, N ) =
[

ai − di(1 − e−rτ )

1 − λie−rτ

]
e−rNτ + di(1 − e−rτ )

1 − λie−rτ
· λ−N

i ,

and the Eq. (B2) gives rise to the initial distribution of de-
mon’s new periodic steady state as

pD,ps
in (r) = lim

N→∞
pD(r, tN ) = pD,ps

in +
∑
i�2

1 − e−rτ

1 − λie−rτ
diRi,

(B5)
which is the Eq. (23) in the main text.

A protocol for the realization of the discrete-time stochastic
resetting. This discrete-time resetting process may be realized
as follows: The experimentalist can make resetting events
occur in accordance with a continuous-time Poisson process
characterized by the rate r0. These events exclusively take
place very close to the ending point of each interval, causing
the demon to transition to the designated resetting state 
�.
Letting δt represent the time window during which resetting
events are likely to occur in the vicinity of interval endings,
the likelihood of at least one such event transpiring can be
expressed as γ = 1 − e−r0δt . We assume that δt  τ and
δt ∝ τ , and define a (modified) resetting rate r := r0δt/τ . The
impact of resetting events occurring near the end of an interval
can be approximated by that of a single stochastic resetting
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event taking place precisely at the end of the interval, with a
probability of γ = 1 − e−rτ . That is, this event occurs with a
probability of γ , while there is a probability of 1 − γ that it
does not occur.

APPENDIX C: SPECTRAL ANALYSIS OF THE MATRIX T

In this Appendix, we give some descriptions of the eigen-
vector expansion method used in the main text, i.e., doing
spectral analysis of the evolution matrix T for the demon. T
has right eigenvectors Ri,

T Ri = λiRi (C1)

and left eigenvectors Li as

LT
i T = λiLT

i (C2)

with λi the eigenvalues, which are sorted as 1 = λ1 >

|λ2| � |λ3| � ... (we assume that λ1 is not degenerate).
The right eigenvector R1 with 1 = λ1 corresponds to the
periodic steady state, so we write R1 = pD,ps

in . According
to the completeness relation, the initial state pD

in can be
expanded as

pD
in,0 = pD,ps

in +
∑
i>1

aiRi, (C3)

where

ai = LT
i · pD

in,0

LT
i · Ri

. (C4)

Calculation of the ith coefficient ai. For an arbitrary matrix
T , it can be demonstrated that any pair of left eigenvector
and right eigenvector corresponding to different eigenvalues
of the matrix are mutually orthogonal. Here is the proof (no

degeneracy),

T Ri = λiRi ⇒
⎧⎨
⎩

LT
j T Ri = λiLT

j Ri

LT
j T Ri = λ jLT

j Ri

⇒ (λi − λ j )LT
j Ri = 0

⇒ LT
j Ri = (

LT
i · Ri

)
δi j .

Therefore, for an evolution starting at a given initial dis-
tribution pD

in, we have that di is the corresponding overlap
coefficient between the initial probability and the ith left
eigenvector LT

i . During the relaxation process, the initial dis-
tribution of the demon of the nth time interval, T n pD

in,0, can be
written as

T n pD
in,0 = pD,ps

in +
∑
i>1

diλ
n
i Ri. (C5)

Then, ∥∥T n pD
in,0 − pD,ps

in

∥∥
1

=
∑
i>1

di‖λi‖n
1‖Ri‖1, (C6)

where ||p|| ≡ ∑
i |pi| is the L1 norm. Thus, the relaxation

timescale is typically characterized by

τrel = − 1

ln |λ2| . (C7)

Then it can be observed that a stronger effect (even shorter
relaxation time) can occur: a process where there exists a
specific initial distribution πD

in,0, such that

a2|pD
in,0=πD

in,0
= LT

2 · πD
in,0

LT
2 · R2

= 0.

APPENDIX D: EIGENVALUES OF THE INFORMATION
REFRIGERATOR MODEL

Here we provide the expressions for the eigenvalues of the
transition matrices for the two-state demon model. For the
two-state demon with � = 1, the eigenvalues for T2×2 reads

λ1 = 1, (D1)

λ2 =
(ε − 2)

(
4ωse−2τ (ε−1+δ(ε−2))

ε−2 + s(δω − 1)(e(s−2)τ (s − 2) − e(−s−2)τ (s + 2))
)

4s(ε − ω + 2εω − 2)
, (D2)

s ≡
√

2 + 1 − 2ε

2 − ε
. (D3)

One can readily check that ε−2
4s(ε−ω+2εω−2) � 0 and

s(δω − 1)(e(s−2)τ (s − 2) − e(−s−2)τ (s + 2)) � 0, since
ε ∈ [0, ω], ω ∈ [0, 1] and δ ∈ [−1, 1]. When δ � 0,
ε − 1 + δ(ε − 2) � ε − 1 � 0, so 4ωse−2τ (ε−1+δ(ε−2))

ε−2 � 0.
Therefore, when δ � 0, one always has λ2 � 0 whatever the
value of ω is.

APPENDIX E: ANOTHER EXAMPLE: THE THREE-STATE
INFORMATION ENGINE

Here we provide another application of our framework.
We use our strategy to optimize a three-state demon system
(Fig. 7), i.e., the information engine proposed in [8]. In what
follows we gives the model details. It can be defined that
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FIG. 7. The MIHE model. (a) The three-state demon interacts
with a sequence of bits, a mass and a reservoir. (b) Schematic de-
piction of the demon, the bit and their composite six-state system.
The state of the demon is indicated by an arrow pointing in one
of the directions. The states B and A/C are characterized by an
energy difference �E = Eu − Ed with EB = Eu and EA = EC = Ed .
(c) Network depiction of the composite system, showing allowed
transitions. The edge that connects A1 and C0 represents the coupling
between the demon and bit.

the transition in the A → B → C → A direction is clockwise
(CW), and the transition in the opposite direction is coun-
terclockwise (CCW). The frequency difference between the
CW transition and the CCW transition will cause the demon
to display directional rotation. The demon and bit together

form a composite system with six states, A0, . . . ,C1. When
uncoupled to the bit, the demon can jump between states A
and B, and B and C. Importantly, when the demon interacts
with the bit, the demon is allowed to transition from C to A
if the bit flips from 0 to 1 simultaneously, and vice versa, as
shown in Fig. 7(c).

A positive positive external load f = mg�h/kbT > 0 (T is
the temperature of the thermal reservoir and kb is Boltzmann
constant) is considered. It is assumed that the mass m is
lifted by �h every time the demon makes a transition C → A,
and lowered with A → C. The transition rates with detailed
balance can be written as

RA,B

RB,A
= RC,B

RB,C
= e−�E/kbT , (E1)

and
RA1,C0

RC0,A1

= e− f . (E2)

For convenience, we set the �E  T ∼ mg�h so that
Ri j = 1 for all transition rates except RA1,C0 and RC0,A1 . In
particular, when the demon interacts with a fixed bit for a
long enough time, both will reach equilibrium distribution
simultaneously, which read

peq
i, i∈{A0,B0,C0} = e f

Z , peq
i, i∈{A1,B1,C1} = 1

Z (E3)

with Z = 3(1 + e f ). For simplicity, a weight parameter ε is
defined to describe the difference between the equilibrium
probabilities for the bit after summing over the states of the
demon,

ε ≡ peq
0 − peq

1 = tanh

(
f

2

)
. (E4)

Accelerating functionalization of the three-state demon
through the first resetting strategy. In what follows (Fig. 8), we
show that the first resetting strategy can be used to shorten the
warm-up phase of the three-state demon by numerical results.

Eigenvalues of the three-state demon. The eigenvalues for
transition matrix T3×3 is given by

λ1 = 1, λ2 = σ [σ (4 + σ
√

3 + σ−√
3) + δε(6 − 4σ − σ 1−√

3 − σ 1+√
3)]

6
, λ3 = σ 3,

with σ = e−τ ∈ [0, 1]. It can be readily proved that λ2 �
λ3 = σ 3, here is the proof,

λ2 can be rewritten as

λ2 = δεσ + (1 − δε) · 4σ 2 + σ 2(σ
√

3 + σ−√
3)

6
, (E5)

because δ ∈ [−1, 1] and ε ∈ [−1, 1], then we can let a ≡ δε ∈
[−1, 1]. Equivalently one just need to prove

λ2

λ3
= a

1

σ 2
+ (1 − a)

4 1
σ

+ 1
σ

[(
1
σ

)√3 + (
1
σ

)−√
3
]

6
� 1 (E6)

⇔ f (x, a) ≡ ax2 + (1 − a)
4x + x(x

√
3 + x−√

3)

6
� 1, (E7)

with x ≡ 1/σ ∈ [1,∞). Note that it can be rewritten as

f (x, a) =
[

x2 − 4x + x(x
√

3 + x−√
3)

6

]
a

+ 4x + x(x
√

3 + x−√
3)

6

≡ g(x)a + c(x), (E8)

and

g′(x) = 2x − 2

3
+

√
3 + 1

6
x

√
3 + 1 − √

3

6
x−√

3

� 2 − 2

3
+

√
3 + 1

6
+ 1 − √

3

6
> 0,
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FIG. 8. The evolution of the three-state demon in warm-up phases. For each dynamics with different resetting rate r, the resetting is closed
right after the critical time tc(r) = Nc(r)τ. The distance from the state pD(t ) at time t to the periodic steady state pD,ps are plotted vs the cycle
number t/τ . The dynamical parameters are given by (a) τ = 0.02, δ = 1.0, ε = 0.9 and (b) τ = 0.05, δ = 1.0, ε = 0.9.

thus, g(x) � g(1) = 0 and one can conclude that

f (x, a) � f (x,−1) = c(x) − g(x)

= 4x + x(x
√

3 + x−√
3)

3
− x2 ≡ h(x). (E9)

Because

h′′(x) =3 + √
3

3
x

√
3−1 + 3 − √

3

3
x−√

3−1 − 2

�h′′(1) = 0,

⇒ h′(x) = 4

3
+

√
3 + 1

3
x

√
3 + 1 − √

3

3
x−√

3 − 2x

� h′(1) = 0

⇒ h(x) � h(1) = 4 + 2

3
− 1 = 1. (E10)

Therefore, we have proved that
f (x, a)� f (x,−1) = h(x)� 1, Q. E. D.

APPENDIX F: DERIVATION OF THE GENERALIZED
SECOND LAW OF THERMODYNAMICS

During any interaction interval, the joint distribution of the
interacting bit and the demon evolves according to the master
equation

d p
dt

= Rp.

Imagine that the interaction time τ is long enough (τ → ∞),
then the combined system will finally reach a steady state
(the entries of transition matrix R satisfy detailed balance
condition, so it’s an equilibrium state)

pss = (1, μ, μν,μ2ν)T

1 + μ + μν + μ2ν
, μ = 1 + σ

1 − σ
, ν = 1 − ω

1 + ω
, (F1)

which makes Rpss = 0. When τ → ∞, the steady-state joint
distribution pss is factorized as the product of marginal dis-

tributions pD,ss and pB,ss, because the demon and bit are
uncorrelated at the beginning of each interval by construction.
And in this case distribution of bits can be regarded as an
“effective initial distribution”. That is,

pss
i j = pD,ss

i pB,ss
j , i ∈ {u, d}, j ∈ {0, 1}, (F2)

where pD,ss = (1, μ)T /(1 + μ) and pB,ss = (1, μν)T /(1 +
μν). When interaction time τ is finite, the combined system
always relaxes towards this final steady state, though being
interrupted by the advent of new bits and stochastic reset-
ting events (one should note the similarity between resetting
events for the demon and comings of new bits). Therefore, the
distribution of combined system will get closer to the steady
state pss at the end of an interval, compared to its distribution
at the start of the same interval. That is, the relative entropy
between any state p of the combined system and the steady
state pss,

D(p||pss) =
∑

k

pk ln
pk

pss
k

� 0, (F3)

k ∈ {0u, 0d, 1u, 1d} (F4)

as a distance function is a Lyapunov function, satisfying

d

dt
D(p||pss) � 0. (F5)

Let pin and pτ denote the joint distribution at the start and
at the end of a given interval respectively, and similarly define
pD

in, pD
τ , pB

in, and pB
τ for the marginal distributions of the demon

and the bit. Then Eq. (F5) tells that

D(pin||pss) − D(pτ ||pss) � 0, (F6)

whose physical interpretation is the initial joint state is farther
from steady state than the final state at the end of the given
interval is. Note that the left-hand side of the above equation is
a standard expression of conventional entropy production dur-
ing a period of time τ [59],

�tot
[0,τ ] ≡D(pin||pss) − D(pτ ||pss) � 0.
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Using (F1) and (F3) one can rewrite the above equation as

Sτ − S0 +
∑

i∈{u,d}

(
pD

τ,i − pD
in,i

)
ln pD,ss

i

+
∑

i∈{0,1}

(
pB

τ,i − pB
in,i

)
ln pB,ss

i � 0, (F7)

where S0 and Sτ refer to the information entropies of the
joint distribution at the start and at the end of the current
interval. What we need to consider is just the new periodic
steady state in the presence of resetting. In this case, from
the definition of the average production with resetting φr ,
pB

τ,1 − pB
in,1 = −(pB

τ,0 − pB
in,0) = φr , the last term of (F7) can

be rewritten as∑
i∈{0,1}

(
pB

τ,i − pB
in,i

)
ln pB,ss

i = φr ln μν (F8)

= Qc→h(βh − βc). (F9)

The joint information entropy S can be decomposed as

S = SD + SB + I (D; B), I (D; B) � 0, (F10)

where SD and SB are marginal information entropy of the
demon and the bit. Thus in our NPSS with resetting, Eq. (F7)
gives [note that I0(D; B) = 0 due to the uncorrelated initial
distribution]

Qc→h(βh − βc) + �SB + �Srst � Iτ (D; B) � 0, (F11)

where

�SB = SB,τ − SB,0

= SB(δ′) − SB(δ) = SB(δ − 2φtot ) − SB(δ), (F12)

SB(δ) = −
1∑

i=0

pi ln pi = −1 − δ

2
ln

1 − δ

2
− 1 + δ

2
ln

1 + δ

2
,

(F13)

(δ = p0 − p1, δ′ = p′
0 − p′

1) (F14)

and

�Srst ≡ �SD +
∑

i∈{u,d}

(
pD,ps

τ,i − pD,ps
in,i

)
ln pD,ss

i , (F15)

�SD = −
u∑

i=d

pD,ps
τ,i ln pD,ps

τ,i +
u∑

i=d

pD,ps
in,i ln pD,ps

in,i (F16)

is the “resetting work” during a whole interval [nτ, (n + 1)τ ]
due to stochastic resetting. In the original periodic steady
state without resetting, one has pD,ps

τ = T pD,ps
in = pD,ps

in from
definition of this state, so that the dissipated work (F16) van-
ishes. However, in the NPSS pD,ps

τ (r) = T pD,ps
in (r) �= pD,ps

in (r)
according to the definition (23). In the NPSS, one can
obtain

pD,ps
τ (r) − pD,ps

in (r) = T pD,ps
in (r) − pD,ps

in (r) (F17)

= 1 − e−rτ

1 − λ2e−rτ
d2(T R2 − R2). (F18)

Because pD,ps
τ,u − pD,ps

in,u = −(pD,ps
τ,d − pD,ps

in,d ) ≡ �pD,ps, the sec-
ond contribution of resetting work can be written as

u∑
i=d

(
pD,ps

τ,i − pD,ps
0,i

)
ln pD,ss

i = �pD,ps ln μ = βh�pD,ps�E ,

(F19)

thus the resetting work during each interval in the NPSS is
given by

�Srst = �SD + βh�pD,ps�E . (F20)

The above modified second law can also be derived from an
integral fluctuation theorem for the stochastic entropy pro-
duction. Following Seifert’s spirit, the total stochastic entropy
production in an interaction interval for a single trajectory
�i→ j starting in state i at initial time and ending in state j
at time τ is defined as (i, j ∈ {0u, 0d, 1u, 1d})

σ (�i→ j ) = ln
pi(0)p(�i→ j )

p j (τ )p(�†
j→i)

, (F21)

= ln

⎡
⎣ pi(0)

p j (τ )

∏
k,l∈�i→ j

(
Rkl

Rlk

)nkl

⎤
⎦, (F22)

which naturally gives rise to an integral fluctuation theorem

〈e−σ (�i→ j )〉 =
∑
i, j

∫
d�i→ j pi(0)p(�i→ j )e

−σ (�i→ j )

=
∑
i, j

∫
d�i→ j p j (τ )p(�†

j→i)

=
∑
i, j

∫
d�

†
j→i p j (τ )p(�†

j→i) = 1. (F23)

Then using Jensen equality, it follows that

�tot
[0,τ ] ≡ 〈σ (�i→ j )〉 � 0.

It has been proven that [60]

〈
d

dt
σ (�i→ j )

〉
= [Ri j p j (t ) − Rji pi(t )] ln

Ri j p j (t )

Rji pi(t )
. (F24)

Then we have

〈σ (�i→ j )〉 =
∫ τ

0

∑
i> j

[Ri j p j (t ) − Rji pi(t )] ln
Ri j p j (t )

Rji pi(t )

= −
∫ τ

0

d

dt
D(p(t )||pss)

=Qc→h(βh − βc) + �SB + �Srst − Iτ (D; B) � 0,
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FIG. 9. Contour plots of the values of (a) Qc→h(βh − βc ) + �SB and (b) Qc→h(βh − βc ) + �SB + �Srst.

where in the second line the detailed balance condition
Ri j pss

j = Rji pss
i has been used [61]. Finally, we show the con-

tour plots for Qc→h(βh − βc) + �SB and Qc→h(βh − βc) +

�SB + �Srst as demonstration of the generalized second law
(Fig. 9).
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