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Abstract: We investigate the effective diffusion of a tracer immersed in an active particle bath consisting of self-propelled
particles. Utilising the Dean’s method developed for the equilibrium bath and extending it to the nonequilibrium situation, we
derive a generalized Langevin equation (GLE) for the tracer particle. The complex interactions between the tracer and bath
particles are shown as a memory kernel term and two colored noise terms. To obtain the effective diffusivity of the tracer, we
use path integral technique to calculate all necessary correlation functions. Calculations show the effective diffusion decreases
with the persistent time of active force, and has rich behavior with the number density of bath particles, depending on different
activities. All theoretical results regarding the dependence of such diffusivity on bath parameters have been confirmed by direct
computer simulation.
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INTRODUCTION

Active matter systems, consisting of self-propelled units that are able to convert stored or surrounding en-
ergy into their persistent motion, provide a fresh opportunity for applications of nonequilibrium statistical
mechanics [1–4]. In particular, active colloidal suspension can serve as an active bath that can significantly
influence the motion and dynamics of passive objects submerged within them [5–12]. Understanding the
behavior of tracer particles in the active bath is a fundamental pursuit in statistical physics and plays a crucial
role in various biological [10, 13–16], chemical [17, 18], and physical phenomena [8, 9, 12, 19–32]. Notably,
the tracer particle immersed in the active bath exhibits a distinct diffusion profile compared to its equilibrium
counterpart [26, 33–39]. Furthermore, studying the diffusion behavior of such a tracer is essential for unrav-
eling the intricate dynamics that govern systems away from thermal equilibrium, providing a valuable tool to
investigate the collective behavior [8,40–46] and transport properties in such media [47–51]. Because of the
importance and wide range of applications, understanding the dynamics of the tracer in such an active bath
is desirable.

As one already knows, the classical work by Einstein laid the foundation for understanding Brownian
motion, providing a framework for diffusive behavior in passive media. Subsequent advancements, such
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as the Langevin equation, have enriched our understanding of stochastic processes, diffusive phenomena,
and the fluctuation-dissipation theorem in thermal equilibrium. Nevertheless, the dynamics of particles in
active baths introduce additional complexity [37, 45, 51–57]. Several studies have investigated this question,
often employing analytical and numerical techniques to model and characterize the motion of tracer particles
within nonequilibrium media, including the active bath. For instance, Maes et al. established a generalized
fluctuation-response relation for thermal systems driven out of equilibrium [58–63], utilized this method to
investigate the fluctuation-dissipation relation for nonequilibrium bath [35], and further studied the dynamics
of a tracer immersed in such bath, gave the friction and noise properties [53], the Langevin description
[64], and correlation functions of the tracer variables to study the fluctuation properties [54]. Speck and
Seifert et al. formulated a fluctuation-dissipation theorem (FDT) within a nonequilibrium steady state of a
sheared colloidal suspension system [65, 66], and subsequently investigated the mobility and diffusivity of a
tagged particle within this system, determined the velocity autocorrelation functions and response functions
with small shear force, found that a phenomenological effective temperature recovers the Einstein relation
in nonequilibrium [67]. Esparza-López et al. [68] proposed a stochastic fluid dynamic model to describe
analytically and computationally the dynamics of microscopic particles driven by the motion of surface
attached bacteria, analytically calculated expressions for the effective diffusion coefficient through a run-
and-tumble model, found that the short-time mean squared displacement is proportional to the square of the
swimming speed while the long-time one only depends on the size of the particle. Burkholder and Brady [22]
studied the diffusion of a tracer in a dilute dispersion of active Brownian particles (ABPs), by employing the
Smoluchowski equation and averaging over bath particles and orientation variables, obtained tracers single-
particle probability distribution function, found that the active contribution to the diffusivity scales as U0

(characteristic swim speed of ABP) for strong swimming and U2
0 for weak swimming. Furthermore, they [69]

derived a general relationship between diffusivity and mobility in generic colloidal suspensions, provided a
method to quantify deviations from the FDT and express them in terms of an effective SES relation. More
recently, Granek et al. [51] studied the long-time dynamics of a tracer immersed in a one-dimensional active
bath, derived a time-dependent friction and noise correlation with power law long tails that depend on the
symmetry of tracers, and found that shape asymmetry of the tracer induces ratchet effects and leads to super-
diffusion and friction that grows with time.

Numerous theories based on various starting points have demonstrated the importance and attraction of
studying tracer behavior in nonequilibrium baths. In this study, we propose an alternative theoretical method
based on path-integral method to investigate the behavior of tracer diffusion in an active particle bath, and
subsequent simulation results successfully validate our theory. The starting point of the theory is the gen-
eralized Langevin equation (GLE) for the tracer, which utilizes a generalized version of Dean’s equation to
describe the active bath. The GLE contains a memory kernel function and complex effective noise terms,
reflecting the complex interactions between the tracer and bath particles. We then employ the path integral
method [70,71] to calculate the diffusion coefficient. Numerical calculations show that the effective diffusion
has a non-trivial dependence on bath parameters such as the number density and the persistent time of the
active bath particle. Finally, we perform extensive computer simulations, which show very good agreement
with our theoretical predictions.

This work is organized as follows: In Section “Model and theory” , we introduce the model system and
derive the GLE of the tracer. Then, we utilize the path integral method to obtain the effective diffusion of
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Figure 1 Schematic diagram of a tracer particle with coordinate x in an active particle bath consisting of self-propulsion particles at ri, i =

1, 2, ...,N. The tracer-bath interaction is U(|x − ri |), and the bath-bath interaction is V(|ri − r j |). The wave lines label the thermal noises.

the tracer formally. In Section “Simulation results”, we show the numerical solution of such diffusion and
compare it with simulation results. The paper ends with conclusion in Section “Conclusion”.

MODEL AND THEORY

Active bath model

Considering a system consisting of a tracer particle and N active Ornstein-Uhlenbeck (OU) particles
(Figure 1), the coordinates of the tracer x and the active bath particles ri are governed by the overdamped
Langevin equations,

ẋ = − µt∇x

 N∑
i=1

U(|x − ri|) + Uext(x)

 + √2µtTξt, (1a)

ṙi = − µb

fi + ∇i

∑
j,i

V(|ri − r j|) + U(|ri − x|)

 + √2µbTξi, (1b)

τbḟi = − fi +

√
2Db/µ

2
bηi, (1c)

wherein µt and µb are the mobilities of the tracer and bath particles respectively, Uext is an external potential
acting on the tracer particle, U is the interacting potential between tracer and bath particles, and V is potential
between bath particles, ξt, ξi and ηi are white noises with zero means and unit variances, fi is the self-
propulsion force acting on bath particle i with time correlation function ⟨fi(t)f j(t′)⟩ = Db

µ2
bτb
δi je−|t−t′ |/τb I, where

I is the unit matrix , τb is the self-propulsion correlation time and Db serves as the amplitude of such force,
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with the same dimension as diffusivity. We consider the situation that all potentials (U and V) are square
integrable, meaning that they have well defined and limited Fourier transforms: Uk =

∫
U(r)eik·rdr, Vk =∫

V(r)eik·rdr.
Inspired by the idea of Dean’s studies [72, 73], we derive a self-consistent equation for the density profile

of bath particles ρ(r, t) =
∑N

j=1 δ(r − r j(t)) (See details in Appendix A in Supplementary information),

∂

∂t
ρ(r, t) =µb∇ ·

{
ρ(r, t)

[∫
ρ(r′, t)∇V(|r − r′|)dr′

+ ∇U(|r − x|)
]}
+ µbT∇2ρ(r, t) + ∇ ·

{ √
ρ(r, t)

[
ξT (r, t) + ξA(r, t)

]}
, (2)

where the noise terms ξ{T,A} has correlation functions ⟨ξT (r, t)ξT (r′, t′)⟩ = 2µbTδ(r−r′)δ(t−t′)I, ⟨ξA(r, t)ξA(r′,
t′)⟩ = Db

τb
e−|t−t′ |/τbδ(r−r′)I. In the Fourier space (δρk(t) =

∫
eir·k(ρ(r, t)−ρ0)dk), Eq. (2) has a formal solution,

δρk(t) =
∫ t

−∞
e−(t−s)Gk

{
− µbk2ρ0Ukeik·xs +

√
ρ0ik ·

[
ξ̃

T
k (s) + ξ̃A

k (s)
] }

ds, (3)

wherein Gk = µbk2(T + ρ0Vk) can be considered as a characteristic frequency (a typical illustration of this
term is shown in Figure S1A). Noise terms ξ̃{T,A}k (t) are the Fourier transform of ξ{T,A}, respectively, with
correlation functions ⟨

ξ̃
T
k (t)ξ̃T

k′(t
′)
⟩
=2µbT (2π)3δ(k + k′)δ(t − t′)I, (4a)⟨

ξ̃
A
k (t)ξ̃A

k′(t
′)
⟩
=

Db

τb
(2π)3δ(k + k′)e−|t−t′ |/τb I, (4b)

wherein ⟨· · · ⟩ means the average over noises.

Generalized Langevin equation

To achieve an effective equation of motion of the tracer which does not contain any bath particle variables,
one can use an identity ∇x

∑N
i=1 U(|ri − x|) = − 1

(2π)3

∫
ike−ik·xρkUkd3k, then has a GLE for x,

ẋ(t) = − µt∇xUext(x) + µt
1

(2π)3

∫
ike−ik·x(t)δρkUkd3k +

√
2µtTξt

= − µt∇xUext(x) −
∫ t

−∞
K(s, t)ds + ηT (t) + ηA(t)

√
2µtTξt, (5)

where the memory kernel

K(s, t) =
µtµbρ0

(2π)3

∫
ik2kU2

k e−(t−s)Gk e−ik·(x(t)−x(s))d3k

=
µtµbρ0

(2π)3

∫
Im[eik·(x(t)−x(s))]kk2U2

k e−(t−s)Gk d3k, (6)

and the colored noise terms,

ηT (t) = − µt
1

(2π)3

∫
ke−ik·xt

√
ρ0Uk

∫ t

−∞
e−(t−s)Gk k · ξ̃T

k (s)dsd3k, (7)

ηA(t) = − µt
1

(2π)3

∫
ke−ik·xt

√
ρ0Uk

∫ t

−∞
e−(t−s)Gk k · ξ̃A

k (s)dsd3k, (8)
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and their correlations are

GT (t, t′) =
⟨
ηT (t)ηT (t′)

⟩
=
µ2

t ρ0µbT
(2π)3

∫
e−ik·(xt−xt′ )kkk2U2

k
e−|t−t′ |Gk

Gk
d3k, (9)

GA(t, t′) =
⟨
ηA(t)ηA(t′)

⟩
=
µ2

t ρ0Db

(2π)3

∫
e−ik·(xt−xt′ )kkk2U2

k
τbe−|t−t′ |/τb − (e−|t−t′ |Gk/Gk)[

(τbGk)2 − 1
] d3k. (10)

Path integral and effective diffusion

To calculate the transport coefficients, one needs to calculate several correlation functions first. Considering
the coupling between the tracer position and the colored noises ηA,T , we propose a path integral method to
calculate them.

We consider a path of the tracer in the time interval [ti, t f ]. The partition function of such trajectory can be
written as

Z =
∫ ∏

t

δ
{
ẋ + µt∇Uext +

∫ t

−∞
K(s, t)ds − ηA − ηT −

√
2µtTξt

}
P[ξt]P[ηT ]P[ηA]DxDξtDηADηT . (11)

Using the identity of delta function, δ(x) = 1
(2π)

∫
eipxdp, we also have

Z =
∫

ei
∫

p·
{
ẋ+µt∇Uext+

∫ t
−∞ K(s,t)ds−ηA−ηT−

√
2µtTξt

}
dtP[ξt]P[ηT ]P[ηA]DxDpDξtDηADηT , (12)

where p is an auxiliary real vector field. Next, utilizing ⟨eau⟩ = e
1
2 a2⟨u2⟩ for a Gaussian random variable u

with zero mean, we have the partition function as a function of the action,

Z =
∫

e−S (x,p)DxDp, S (x,p) = S 0(x,p) + S int(x,p), (13)

where
S 0 = −i

∫
p(t) · [ẋ(t) + µt∇xUext

]
dt + µtT

∫
|p(t)|2dt, (14)

for a free particle and

S int = −i
∫

p(t) ·
[∫ t

−∞
K(s, t)ds

]
dt +

1
2

"
p(t) · [GT (t, s) +GA(t, s)] · p(s)dtds (15)

counts for the tracer-bath interaction. Herein, we have assumed that ηA,T are both Gaussian, and their de-
viations from the Gaussian distribution are only weakly present in regions far from the mean. Since this
approximation primarily reflects the properties of the second moments, it is reasonable in this context. In
addition, since we have used the perturbative expansion, the interaction between tracer and bath particles
should be weak. Therefore, we choose soft harmonic potentials as the inter-particle potentials. The perturba-
tion also demands that the activity is not very large, which constitutes a condition for the application of our
theoretical framework.

After introducing the partition function over the trajectory, the average over any operator A as function of
x(t), t ∈ [ti, t j] can be defined as

⟨A⟩ =
∫

Ae−(S 0+S int)DxDp
Z

=
⟨Ae−S int⟩0
⟨e−S int⟩0

, (16)
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where ⟨· · · ⟩0 = Z−1
0

∫
(· · · )e−S 0DxDp corresponds to a tracer particle only affected by external potential, not

any particle bath. So far, the e−S int term is still too complicated to handle. A common treatment is the linear
truncation when S int is weak. Herein, we treat the tracer-bath interaction U as a small perturbative quantity
by assigning U(r) =

√
ϵu(r), where ϵ is a dimensionless factor that scales the interacting strength, and can

be used to the following perturbative expansion. The memory kernel k and correlators GA,T (t) are order 1 of
ϵ. Therefore, Eq. (16) can be expand as

⟨A⟩ = ⟨A⟩0 − ⟨AS int⟩0 + ⟨A⟩0 ⟨S int⟩0 + O(ϵ2). (17)

For studying the diffusion problem, we only need to consider the free particle situation, Uext = 0. According
to the symmetry, we have

⟨
p(t)e−ik·[x(t)−x(s)]

⟩
0
= −i ⟨p(t)[x(t) − x(s)]⟩0 · ke−k2µtT (t−s) = 0. Similarly, we also

have ⟨
p(t) ·GA,T (t, s) · p(t)

⟩
0 ∝
{ ⟨
|p(t)|2

⟩
0
− (k · ⟨(x(t) − x(s))p(t)⟩0

)2 }e−k2µtT (t−s) = 0. (18)

Therefore,

⟨S int⟩0 = 0. (19)

The next step is to calculate the mean square displacement (MSD), i.e., to calculate
⟨
[x(t f ) − x(ti)]2

⟩
for a

long time interval t f − ti. Then, the effective diffusion coefficient can be given as

Deff = lim
(t f−ti)→∞

1
2d(t f − ti)

⟨
[x(t f ) − x(ti)]2

⟩
, (20)

where d is the dimension of the system. According to Eq. (17), the key step of calculating the MSD is
handling

⟨
[x(t f ) − x(ti)]2S int

⟩
0
, i.e., calculating the following two correlation functions, one is⟨

[x(t f ) − x(ti)]2p(t)e−ik·[x(t)−x(s)]
⟩

0

= − 2ik ·
⟨
[x(t) − x(s)][x(t f ) − x(ti)]

⟩
0

⟨
[x(t f ) − x(ti)]p(t)

⟩
0

e−k2µtT (t−s)

=4kµtT L([ti, t f ] ∩ [s, t])χ[ti,t f )(t)e−k2µtT (t−s)

=4kµtT [t −max(ti, s)]χ[ti,t f )(t)e−k2µtT (t−s), (21)

and the other is ⟨
[x(t f ) − x(ti)]2p(t)p(s)e−ik·[x(t)−x(s)]

⟩
0

=
{
4µtT [t −max(s, ti)]kk − 2χ[ti,t f )(s)1

}
e−k2µtT (t−s)χ[ti,t f )(t), (22)

for t > s (the omitted mathematical details can be found in Appendix B in Supplementary information).
After the calculation in Eq. (S9) (Supplementary information), we get

⟨
[x(t f ) − x(ti)]2S int

⟩
0
=2µtT (t f − ti)

µtµbρ0

(2π)3

∫ k4U2
k

Gk(k2µtT +Gk)
d3k

+
µ2

t ρ0Db

(2π)3 (t f − ti)
∫ 2k4U2

k

(τbGk)2 − 1

{
τbµtTk2 − 1

(µtTk2 + τ−1
b )2
− (µtTk2/Gk) − 1

(µtTk2 +Gk)2

}
d3k

+ o(t f − ti), (23)
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where Gk = µbk2(T + ρ0Vk) reflects the bath properties including background temperature T , number density
ρ0 and interactions between bath particles. At last, taking the long-time limit of t f − ti, the o(t f − ti) term can
be neglected, the effective diffusion coefficient of a tracer in an active bath is obtained

Deff = µtT
{

1 −
∫ ∞

0
gT (k)dk +

∫ ∞

0
gA(k)dk

}
, (24a)

to the linear order, wherein

gT (k) =
µtµbρ0

6π2

k6U2
k

Gk(k2µtT +Gk)
, (24b)

gA(k) =
µtρ0Db/T

6π2

k6U2
k

(τbGk)2 − 1

[
µtTk2/Gk − 1
(µtTk2 +Gk)2 −

τbµtTk2 − 1
(µtTk2 + τ−1

b )2

]
. (24c)

This is the main result of the present work. In this equation, “1” in the brace of Eq. (24a) denotes the
bare diffusion of a free tracer particle. The second term in the brace denotes the “passive part” of the
tracer-bath interaction which is always a negative contribution to effective diffusion and recovers the results
in Ref. [70]. In the absence of activity, the FDT holds since the effective mobility of the tracer satisfies
µeff = Deff/T [70], wherein they have obtained an effective mobility coefficient µeff = µt(1 −

∫ ∞
0

gT (k)dk)
(expressed with notations of the present work for convenience). The third term is a pure “active” contribution
on the diffusion, which is a positive contribution and explicitly gives the nontrivial dependence of Deff on the
bath parameters, ρ0, Db, τb and interactions U(r) and V(r). For this linear truncation, Deff is a linear function
of Db. However, the dependence of τb and ρ0 (which is also contained in Gk) is illegible, which require
numerical calculations to determine (see Section “Simulation results”). Further mathematical analysis of this
expression is shown in Appendix C in Supplementary information.

SIMULATION RESULTS

In this section, we show numerical calculations of Eq. (24a) with the persistent time of active force τb and
the number density of bath particles ρ, at small activity Db region. Then, by comparing these results with
computer simulations, the validity and applicability of the theory can be verified.

In the present work, we choose V(r) and U(r) as both harmonic potentials, V(r) = κb2 (r−σbb)2 for r < σbb,
and U(r) = κt

2 (r − σtb)2 for r < σtb. We set σbb as the unit of length, κbσ2
bb as the unit of energy, and

1/(µbκb) as the unit of time. The common parameters are set as: σtb = 2.0, κt = 1.0, µt = 0.333, T = 1.0.
The other parameters are set as variables which are explicitly given in the following figures. In computer
simulations, we construct a three-dimensional system with periodic boundary containing (1+4095) particles.
The diffusion coefficient is calculated through a long-time simulation (∼ 108 steps with 10−3 as the time step)
and averaged over 20 samples with random initial configurations.

Firstly, we focus on the contribution of bath number density ρ on Deff , shown in Figure 2. In Figures 2
and 3, dots and corresponding error bars are the direct simulations, and lines are numerical calculation of
Eq. (24a). In general, Deff shows a diverse dependence on ρ. For small active force amplitude Db, Deff

decreases with ρ as the tracer’s behavior in a passive particle bath. For large activity situation, Deff shows
the opposite behavior. Consequently, one may expect that there is a moderate activity region that Deff has a
non-monotonic dependence on ρ.
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Db

D
e
ff

ρ

Figure 2 The dependence of the effective diffusion on the number density of active bath particle ρ. Dots and corresponding error bars are
simulation results of Deff . Solid lines are the numerical calculations of Deff . Both results show that, with the increase of activity Db, effective
diffusion Deff gradually changes from monotonic decrease to monotonic increase with the number density of bath particle ρ, including a non-
monotonic interval around Db = 2.0. Herein, τb is set as 0.1.

Db

D
e
ff

τb

ρ

Figure 3 The dependence of the effective diffusion on the active force persistent time τb. Dots and corresponding error bars are simulation
results of Deff . Solid lines are the numerical calculations of Deff . Both show that Deff monotonically decreases with the persistent time τb. The
horizontal dash line denotes the bare diffusion coefficient of the tracer particle.

We then investigate the dependence of Deff on persistent time τb. According to Eq. (24a), Deff decreases
with τb since both (Gkτb)2 − 1 and τbµtTk2−1

(µtTk2+τ−1
b )2 increase with τb monotonically. This prediction has been

confirmed in simulations, as shown in Figure 3. Physically, when the persistent time of the active force tends
to zero, the active OU particle can be reduced to an ordinary Brownian particle under a higher temperature.
If the activity amplitude Db is constant, the longer τb means a larger deviation of equilibrium. Based on
the results here, we might conclude that an active OU particle bath that stays closer to equilibrium, is more
conducive to the tracer diffusion, when the activity amplitude is given.

CONCLUSION

This study aims to shed light on the intricacies of tracer diffusion in an active particle bath. By employing
the generalized Dean’s equation, incorporating the path integral method, and utilizing computer simulations,
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we characterize the impact of self-propulsion on the diffusion behavior of a passive tracer particle. In sum-
mary, the effective diffusion decreases with persistent time τb, and exhibits a variety of dependencies on bath
density, depending on Db. The obtained insights expand our understanding of collective dynamics and trans-
port phenomena in non-equilibrium systems, with potential applications in diverse scientific disciplines. For
further studies, an extension of the active bath situation is straightforward since it has been confirmed to cal-
culate the mobility of a tracer in particle bath [70, 71]. Additionally, after the effective mobility is achieved,
the fluctuation-dissipation theorem can be further investigated to determine its validity or deviations with
respect to the activity parameters.
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64 Krüger M, Maes C. The modified Langevin description for probes in a nonlinear medium. J Phys-Condens Matter 2017;

29: 064004.

65 Seifert U, Speck T. Fluctuation-dissipation theorem in nonequilibrium steady states. Europhys Lett 2010; 89: 10007.

66 Mehl J, Blickle V, Seifert U, et al. Experimental accessibility of generalized fluctuation-dissipation relations for nonequi-

librium steady states. Phys Rev E 2010; 82: 032401.

67 Lander B, Seifert U, Speck T. Mobility and diffusion of a tagged particle in a driven colloidal suspension. EPL 2010;

Page 11 of 12 https://engine.scichina.com/doi/10.1360/nso/20230069

https://doi.org/10.1088/1742-5468/ac4801
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1038/nature10874
https://doi.org/10.1103/PhysRevLett.109.248109
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1073/pnas.1922633117
https://doi.org/10.1088/1367-2630/ac3b70
https://doi.org/10.1038/s42005-023-01172-6
https://doi.org/10.1103/RevModPhys.81.387
https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1039/C4SM00665H
https://doi.org/10.1039/C4SM00665H
https://doi.org/10.1073/pnas.1616013114
https://doi.org/10.1103/PhysRevLett.129.038001
https://doi.org/10.1103/PhysRevE.90.032309
https://doi.org/10.1103/PhysRevE.91.022128
https://doi.org/10.1103/PhysRevLett.125.208001
https://doi.org/10.1039/D0SM00828A
https://doi.org/10.1039/D1SM01092A
https://doi.org/10.1088/1751-8121/ac5d82
https://doi.org/10.1088/1751-8121/ac5d82
https://doi.org/10.1103/PhysRevLett.103.010602
https://doi.org/10.1088/1742-5468/2011/01/P01008
https://doi.org/10.1103/PhysRevE.87.022125
https://doi.org/10.1103/PhysRevE.87.022125
https://doi.org/10.1088/1742-6596/638/1/012001
https://doi.org/10.1016/j.physrep.2020.01.002
https://doi.org/10.3389/fphy.2020.00229
https://doi.org/10.1088/1361-648X/29/6/064004
https://doi.org/10.1209/0295-5075/89/10007
https://doi.org/10.1103/PhysRevE.82.032401
https://doi.org/10.1209/0295-5075/92/58001


Natl Sci Open, 2024, Vol.3, 20230069

92: 58001.

68 Esparza López C, Théry A, Lauga E. A stochastic model for bacteria-driven micro-swimmers. Soft Matter 2019; 15:

2605–2616.

69 Burkholder EW, Brady JF. Fluctuation-dissipation in active matter. J Chem Phys 2019; 150: 184901.
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